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Preface

Applied mathematics has made considerable progress in wavelets. In recent years
interest in wavelets has grown at a steady rate, and applications of wavelets are ex-
panding rapidly. A virtual flood of engineers, with little mathematical sophistication,
is about to enter the field of wavelets. Although more than 100 books on wavelets
have been published since 1992, there is still a large gap between the mathemati-
cian’s rigor and the engineer’s interest. The present book is intended to bridge this
gap between mathematical theory and engineering applications.

In an attempt to exploit the advantages of wavelets, the book covers basic wavelet
principles from an engineer’s point of view. With a minimum number of theorems
and proofs, the book focuses on providing physical insight rather than rigorous math-
ematical presentations. As a result the subject matter is developed and presented
in a more basic and familiar way for engineers with a background in electromag-
netics, including linear algebra, Fourier analysis, sampling function of sin πx/πx ,
Dirac δ function, Green’s functions, and so on. The multiresolution analysis (MRA)
is naturally delivered in Chapter 2 as a basic introduction that shows a signal de-
composed into several resolution levels. Each level can be processed according to
the requirement of the application. The application of MRA lies within the Mallat
decomposition and reconstruction algorithm. MRA is further explained in a fast
wavelet transform section with an example of frequency-dependent transmission
lines. Mathematically elegant proofs and derivations are presented in a smaller font if
their content is beyond the engineering requirement. Readers with no time or interest
in this depth of mathematics may always skip the paragraphs or sections written in
smaller font without jeopardizing their understanding of the main subjects.

The main body of the book came from conference presentations, including the
IEEE Microwave Theory and Techniques Symposium (IEEE-MTT), IEEE Antennas
and Propagation (IEEE-AP), Radio Science (URSI), IEEE Magnetics, Progress in
Electromagnetic Research Symposium (PIERS), Electromagnetic and Light Scat-
tering (ELS), COMPUMAG, Conference on Electromagnetic Field Computation
(CEFC), Association for Computational Electromagnetic Society (ACES), Interna-
tional Conference on Microwave and Millimeter Wave Technology (ICMTT), and

xv



xvi PREFACE

International Conference on Computational Electromagnetics and its Applications
(ICCEA). The book has evolved from curricula taught at the graduate level in the
Department of Electronic Engineering at Canterbury University (Christchurch, New
Zealand) and Arizona State University. The material was taught as short courses at
Moscow State University, CSIRO (Sydney, Australia), IEEE Microwave Theory and
Techniques Symposium, Beijing University, Aerospace 207 Institute, and the 3rd In-
stitute of China. The participants in these courses were electrical engineering and
computer science students as well as practicing engineers in industry. These people
had little or no prior knowledge of wavelets.

The book may serve as a reference book for engineers, practicing scientists,
and other professionals. Real-world state-of-the-art issues are extensively discussed,
including full-wave modeling of coupled lossy and dispersive transmission lines,
scattering of electromagnetic waves from 2D/3D bodies and from randomly rough
surfaces, radiation from linear and patch antennas, and modeling of 2D semicon-
ductor devices. The book can also be used as a textbook, as it contains questions,
working examples, and 11 exercise assignments with a solution manual. It has been
used several times in teaching a one-semester graduate course in electrical engineer-
ing.

The book consists of 10 chapters. The first six chapters are dedicated to basic
theory and training, followed by four chapters in real-world applications. Chap-
ter 1 summarizes mathematical preliminaries, which may be skipped on the first
reading. Chapter 2 provides some background and theoretical insights. Chapter 3
covers the basic orthogonal wavelet theory. Other wavelet topics are discussed in
Chapters 4 through 10, including biorthogonal wavelets, weighted wavelets, inter-
polating wavelets, Green’s wavelets, and multiwavelets. Chapter 4 presents applica-
tions of wavelets in solving integral equations. Special treatments of edges are dis-
cussed here, including periodic wavelets and intervallic wavelets. Chapter 5 derives
the positive sampling functions and their biorthogonal counterparts using Daube-
chies wavelets. Many advantages derive from the use of the sampling biorthogonal
time domain (SBTD) method to replace the finite difference time domain (FDTD)
scheme. Chapter 6 studies multiwavelet theory, including biorthogonal and orthogo-
nal multiwavelets with applications in the edge-based finite element method (EEM).
Advanced topics are presented in Chapter 7, 8, and 9, respectively, for scattering and
radiation, 3D rough surface scattering, packaging and interconnects. Chapter 10 is
devoted to semiconductor device modeling using the aforementioned knowledge of
wavelets. Numerical procedures are fully detailed so as to help interested readers
develop their own algorithms and computer codes.
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CHAPTER ONE

Notations and
Mathematical Preliminaries

1.1 NOTATIONS AND ABBREVIATIONS

The notations and abbreviations used in the book are summarized here for ease of
reference.

D(α) f = f α(t) := d f α(t)/dtα

f̄ —complex conjugate of f
f̂ := ∫ ∞

−∞ f (t)e−iωt dt , Fourier transform of f (t)

f (t) := 1
2π

∫ ∞
−∞ f̂ (ω)eiωt dω, inverse Fourier transform of f̂ (ω)

‖ f ‖—norm of a function
f ∗ g—convolution
〈 f, h〉 := ∫

f (t)h(t) dt , inner product
fn = O(n)-order of n, ∃C such that fn ≤ Cn
C—complex
N—nonnegative integers
R—real number
Rn—real numbers of size n
Z—integers
Z+—positive integers
L2(R)—functional space consisting finite energy functions

∫ | f (t)|2 dt < +∞
L p(R)—function space that

∫ | f (t)|p dt < +∞
l2(Z)—finite energy series

∑∞
n=−∞ |an |2 < +∞

�—set
H s(�) := W s,2(�)-Sobolev space equipped with inner product of

〈u, v〉s,2 := ∑
|α|≤s

∫
�

Dαu Dαvd�

1



2 NOTATIONS AND MATHEMATICAL PRELIMINARIES

V ⊕ W—direct sum
V ⊗ W—tensor product

 f —gradient
�H , �E—vector fields


 × �H—curl

 · �E—divergence
�α
—largest integer m ≤ α

δm,n—Kronecker delta
δ(t)—Dirac delta
χ [a, b]—characteristic function, which is 1 in [a, b] and zero outside

—end of proof
∃—exist
∀—any
iff—if and only if
a.e.—almost everywhere
d.c.—direct current
o.n.—orthonormal
o.w.—otherwise

1.2 MATHEMATICAL PRELIMINARIES

This chapter is arranged here to familiarize the reader with the mathematical nota-
tion, definitions and theorems that are used in wavelet literature and in this book.
Important mathematical concepts are briefly reviewed. In most cases no proof is
given. For more detailed discussions or in depth studies, readers are referred to the
corresponding references [1–5].

Readers are suggested to skip this chapter in their first reading. They may then
return to the relevant sections of this chapter if unfamiliar mathematical concepts
present themselves during the course of the book.

1.2.1 Functions and Integration

A function f (t) is called integrable if∫ ∞

−∞
| f (t)| dt < +∞, (1.2.1)

and we say that f ∈ L1(R).
Two functions f1(t) and f2(t) are equal in L1(R) if∫ ∞

−∞
| f1(t) − f2(t)| dt = 0.
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This implies that f1(t) and f2(t) may differ only on a set of points of zero measure.
The two functions f1 and f2 are almost everywhere (a.e.) equal.

Fatou Lemma. Let { fn}n∈N be a set of positive functions. If

lim
n→∞ fn(t) = f (t)

almost everywhere, then∫ ∞

−∞
f (t) dt ≤ lim

n→∞

∫ ∞

−∞
fn(t) dt.

This lemma provides an inequality when taking a limit under the Lebesgue integral
for positive functions.

Lebesgue Dominated Convergence Theorem. Let fk(t) ∈ L(E) for k = 1, 2, . . . ,

and

lim
k→∞ fk(t) = f (t) a.e.

If there exists an integrable function F(t) such that

| fk(t)| ≤ F(t) a.e., k = 1, 2, . . . ,

then

lim
k→∞

∫
E

fk(t) dt =
∫

E
f (t) dt.

This theorem allows us to exchange the limit with integration.

Fubini Theorem. If ∫ ∞

−∞

(∫ ∞

−∞
f (t1, t2) dt1

)
dt2 < ∞,

then ∫ ∞

−∞

∫ ∞

−∞
f (t1, t2) dt1 dt2 =

∫ ∞

−∞
dt2

∫ ∞

−∞
f (t1, t2) dt1

=
∫ ∞

−∞
dt1

∫ ∞

−∞
f (t1, t2) dt2.

This theorem provides a sufficient condition for commuting the order of the multiple
integration.
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1.2.2 The Fourier Transform

The Fourier transform pair is defined as

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt,

f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω.

Rigorously speaking, the Fourier transform of f (t) exists if the Dirichlet conditions
are satisfied, that is,

(1)
∫ ∞
−∞ | f (t)| dt < +∞, as in (1.2.1).

(2) f (t) has a finite number of maxima and minima within any finite interval,
and any discontinuities of f (t) are finite. There are only a finite number of
such discontinuities in any finite interval.

All functions satisfying (1.2.1) form a functional space L1. A weaker condition for
the existence of the Fourier transform of f (t), in replace of (1.2.1), is given as∫ ∞

−∞
| f (t)|2 dt < +∞. (1.2.2)

All functions satisfying (1.2.2) form a functional space L2.
When the Dirichlet conditions are satisfied, the inverse Fourier transform con-

verges to f (t) if f (t) is continuous at t , or to

f (t+) + f (t−)

2

if f (t)is discontinuous at t . When f (t) has infinite energy, its Fourier transform
may be defined by incorporating generalized functions. The resultant is called the
generalized Fourier transform of the original function.

1.2.3 Regularity

Lipschitz Regularity. If a function f (t) has a singularity at t = v, this implies that
f (t) is not differentiable at v. Lipschitz exponent at v characterizes the singularity
behavior.

The Taylor expansion relates the differentiability of a function to a local polyno-
mial approximation. Suppose that f is m times differentiable in [v − h, v + h]. Let
pv be the Taylor polynomial in the neighborhood of v:

pv(t) =
m−1∑
k=0

f (k)(v)

k! (t − v)k .



MATHEMATICAL PRELIMINARIES 5

Then the error

|εv(t)| ≤ |t − v|m
m! sup

u∈[v−h,v+h]
| f (m)(u)|

where

t ∈ [v − h, v + h], εv(t) := f (t) − pv(t).

The Lipschitz regularity refines the upper bound on the error εv(t) with noninteger
exponents. Lipschitz exponents are also referred to as Hölder exponents.

Definition 1 (Lipschitz). A function f (t) is pointwise Lipschitz α ≥ 0 at t = v, if
there exist M > 0 and a polynomial pv(t) of degree m = �α
 such that

∀t ∈ R, | f (t) − pv(t)| ≤ M|t − v|α. (1.2.3)

Definition 2. A function f (t) is uniformly Lipschitz α over [a, b] if it satisfies
(1.2.3) for all v ∈ [a, b] with a constant M independent of v.

Definition 3. The Lipschitz regularity of f (t) at v or over [a, b] is the sup of the α

such that f (t) is Lipschitz α.

Theorem 1. A function f (t) is bounded and uniform Lipschitz α over R if

∫ ∞

−∞
| f̂ (ω)|(1 + |ω|α) dω < +∞. (1.2.4)

If 0 ≤ α < 1, then pv(t) = f (v) and the Lipschitz condition reduces to

∀t ∈ R, | f (t) − f (v)| ≤ M|t − v|α.

Here the function is bounded but discontinuous at v, and we say that the function is
Lipschitz 0 at v.

Proof. When 0 ≤ α < 1, it follows m := �α
 = 0, and pv(t) = f (v).
The uniform Lipschitz regularity implies that ∃M > 0 such that

∀(t, v) ∈ R2.

We need to have

| f (t) − f (v)|
|t − v|α ≤ M.

Since
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f (t) = 1

2π

∫ ∞
−∞

f̂ (ω)eiωt dω,

| f (t) − f (v)|
|t − v|α = 1

2π

∣∣∣∣∣
∫ ∞
−∞

f̂ (ω)

[
eiωt

|t − v|α − eiωv

|t − v|α
]

dω

∣∣∣∣∣
≤ 1

2π

∫ ∞
−∞

| f̂ (ω)| |e
iωt − eiωv |
|t − v|α dω.

(1) For |t − v|−1 ≤ |ω|,

|eiωt − eiωv |
|t − v|α ≤ 2

|t − v|α ≤ 2|ω|α.

(2) For |t − v|−1 ≥ |ω|,

|eiωt − eiωv | =
∣∣∣∣∣iω(t − v) − ω2

2! (t − v)2 − i
(t − v)3

3! + − · · ·
∣∣∣∣∣ .

On the right-hand side of the equation above, the imaginary part

I = ω(t − v) − [ω(t − v)]3
3! + [ω(t − v)]5

5! − + · · · ≤ ω(t − v),

and the magnitude of the real part

R =
{

[ω(t − v)]2
2! − [ω(t − v)]4

4! + − · · ·
}

≤ [ω(t − v)]2
2! .

Thus

|(t − v)ω| ≤ 1 and [(t − v)ω]2 ≤ |(t − v)ω|

and

|eiωt − eiωv | ≤
∣∣∣∣∣iω(t − v) + [ω(t − v)]2

2!

∣∣∣∣∣
=

√
[ω(t − v)]2 + ω4(t − v)4

4

≤ |2ω(t − v)|.

Hence

|eiωt − eiωv |
|t − v|α ≤ 2|ω||t − v|

|t − v|α ≤ 2|ω|α.
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Combining (1) and (2) yields

| f (t) − f (v)|2
|t − v|α ≤ 1

2π

∫ ∞
−∞

2| f̂ (ω)| |ω|α dω := M.

It can be verified that if ∫ ∞
−∞

| f̂ (ω)|[1 + |ω|p] dω < ∞,

then f (t) is p times continuously differentiable. Therefore, if∫ ∞
−∞

f̂ (ω)[1 + |ω|α] dω < ∞,

then f (m)(t) is uniformly Lipschitz α − m, and hence f (t) is uniformly Lipschitz α, where
m = �α
.

1.2.4 Linear Spaces

Linear Space. A linear space H is a nonempty set. Let C be complex. H is called
a complex linear space if

(1) x + y = y + x .

(2) (x + y) + z = x + (y + z).

(3) There exists a unique element θ ∈ H such that for ∀x ∈ H, x + θ = θ + x .

(4) For ∀x ∈ H , there exists a unique −x such that x + (−x) = θ .

In addition we define scalar multiplication ∀(α, x) ∈ C × H such that

(1) α(βx) = (αβ)x,∀α, β ∈ C,∀x ∈ H .

(2) 1x = x .

(3) (α + β)x = αx + βx,∀α, β ∈ C,∀x ∈ H .

α(x + y) = αx + αy,∀α ∈ C,∀x, y ∈ H.

Norm of a Vector

Definition. Mapping of ‖ x ‖: Rn → R is called the norm of x on Rn iff

(1) ‖ x ‖ ≥ 0, ∀x ∈ Rn .

(2) ‖ αx ‖= |α| ‖ x ‖, ∀α ∈ R, x ∈ Rn.

(3) ‖ x + y ‖≤‖ x ‖ + ‖ y ‖, ∀x, y ∈ Rn .

(4) ‖ x ‖= 0 ⇐⇒ x = 0.

Let x = (x1, x2, . . . , xn)T ∈ Rn . The following are commonly used norms:
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‖ x ‖∞ = max
i

|xi |, 
∞ norm,

‖ x ‖1 =
n∑

i=1

|xi |, 
1 norm,

‖ x ‖2 =
(

n∑
i=1

x2
i

)1/2

, 
2 norm,

‖ x ‖p =
(

n∑
i=1

|xi |p

)1/p

, 
p norm.

1.2.5 Functional Spaces

Metric, Banach, Hilbert, and Sobolev spaces are functional spaces. A functional
space is a collection of functions that possess a certain mathematical structure pat-
tern.

Metric Space. A metric space H is a nonempty set that defines the distance of a
real-valued function ρ(x, y) that satisfies:

(1) ρ(x, y) ≥ 0 and ρ(x, y) = 0 iff x = y.

(2) ρ(x, y) = ρ(y, x).

(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), ∀x, y, z ∈ H.

Banach Space. Banach space is a vector space H that admits a norm, ‖ · ‖, that
satisfies:

(1) ∀ f ∈ H, ‖ f ‖≥ 0 and ‖ f ‖= 0 iff f = 0.

(2) ∀α ∈ C, ‖ α f ‖= |α| ‖ f ‖.

(3) ‖ f + g ‖≤‖ f ‖ + ‖ g ‖,∀ f, g ∈ H .

These properties of norms are similar to those of distance, except the homogeneity
of (2) is not required in defining a distance. The convergence of { fn}n∈N to f ∈ H
implies that limn→∞ ‖ fn − f ‖= 0 and is denoted as limn→∞ fn = f .

To guarantee that we remain in H when taking the limits, we define the Cauchy
sequences. A sequence { fn}n∈N is a Cauchy sequence if for ∀ε > 0, there exist n
and m large enough such that ‖ fm − fn ‖< ε. The space H is said to be complete if
every Cauchy sequence in H converges to an element of H . A complete linear space
equipped with norm is called the Banach space.

Example 1 Let S be a collection of sequences x = (x1, x2, . . . , xn, . . .). We define
addition and multiplication naturally as
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x + y = (x1 + y1, x2 + y2, . . . , xn + yn, . . .),

αx = (αx1, αx2, . . . , αxn, . . .),

and define distance as

ρ(x, y) =
∑ 1

2n

|xn − yn|
1 + |xn − yn| .

It can be verified that such a space S is not a Banach space, because ρ(x, y) does not
satisfy the homogeneous condition of the norm.

Example 2 For any integer p we define over discrete sequence fn the norm

‖ f ‖p =
[ ∞∑

n=−∞
| fn |p

]1/p

.

The space 
p = { f : ‖ f ‖p < ∞} is a Banach space with norm ‖ f ‖p .

Example 3 The space L p(R) is composed of measurable functions f on R that

‖ f ‖p=
{∫ ∞

−∞
| f (t)|p

}1/p

< ∞.

The space L p(R) = { f :‖ f ‖p< ∞} is a Banach space.

Hilbert Space. A Hilbert space is an inner product space that is complete. The
inner product satisfies:

(1) 〈α f + βg, h〉 = α〈 f, g〉 + β〈g, h〉 for α, β,∈ C and f, g, h ∈ H .

(2) 〈 f, g〉 = 〈g, f 〉.
(3) 〈 f, f 〉 ≥ 0 and 〈 f, f 〉 = 0 iff f = 0. One may verify that

‖ f ‖= 〈 f, f 〉1/2

is a norm.

(4) The Cauchy–Schwarz inequality states that

|〈 f, g〉| ≤‖ f ‖‖ g ‖,

where the equality is held iff f and g are linearly dependent.

In a Banach space the norm is defined, which allows us to discuss the convergence.
However, the angles and orthogonality are lacking. A Hilbert space is a Banach space
equipped with an inner product.



10 NOTATIONS AND MATHEMATICAL PRELIMINARIES

1.2.6 Sobolev Spaces

The Sobolev space is a functional space, and it could have been listed in the previ-
ous subsection. However, we have placed it in a separate subsection because of its
contents and role in the text.

On many occasions involving differential operators, it is convenient to incorpo-
rate the L p norms of the derivative of a function into a Banach norm. Consider the
functions in the class C∞(�). For any number p ≥ 1 and number s ≥ 0, let us take
the closure of C∞(�) with respect to the norm

‖u‖s,p =
{ ∑

|α|≤s

‖Dαu‖p
L p

}1/p

. (1.2.5)

The resulting Banach space is called the Sobolev space W s,p(�). For p = 2 we
denote W s(�) = W s,2(�), which is a Hilbert space with respect to the inner product

〈u, v〉s,2 =
∑
|α|≤s

∫
�

Dαu · Dαv dx .

Sometimes W s(R) is also denoted as H s(R). Note that the differentiation in (1.2.5)
can be of a noninteger.

Recall that the Fourier transform of the derivative f ′(t) is iω f̂ (ω). The Plancherel–
Parseval formula proves that f ′(t) ∈ L2(R) if∫ ∞

−∞
| f ′(t)|2 dt = 1

2π

∫ ∞

−∞
|ω|2| f̂ (ω)|2 < +∞.

This expression can be generalized for any s > 0,∫ ∞

−∞
|ω|2s | f̂ (ω)|2 dω < +∞

if f ∈ L2(R) is s times differentiable.
Considering the summation nature of (1.2.5), we can write the more precise ex-

pression of Sobolev space in the Fourier domain as∫ ∞

−∞
(1 + ω2)s | f (ω)|2 dω < +∞.

For s > n + 1
2 , f is n times continuously differentiable. The Sobolev space Hα,

α ∈ R consists of functions f (t) ∈ S′ such that∫ ∞

−∞
f̂ (ω)(1 + ω2)α dω < ∞.

For α = 0, the Hα reduces to L2(R). For α = 1, 2, . . . , Hα is composed of ordinary
L2(R) functions that are (α − 1) times differentiable and whose αth derivative are
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in L2(R). For α = −1,−2, . . . , Hα contains the −αth derivatives of L2(R) and all
distributions with point support of order < α.

It can be seen Hα ⊃ Hβ when α > β. The inner product of f, g ∈ Hα is

〈 f, g〉α = 1

2π

∫
f̂ (ω)ĝ(ω)(1 + ω2)α dω

and is complete with respect to this inner product. Therefore it is a Hilbert space.

1.2.7 Bases in Hilbert Space H

Orthonormal Basis. A sequence { fn}n∈N in a Hilbert space H is orthonormal if

〈 fm , fn〉 = δm,n .

If for f ∈ H there exist αn such that

lim
N→∞ ‖ f −

N∑
n=0

αn fn‖ = 0,

then { fn}n∈N is called an orthogonal basis of H .
For an orthonormal basis we require ‖ fn‖ = 1. A Hilbert space that admits an

orthogonal basis is said to be separable. The norm of f ∈ H is

‖ f ‖2 =
∞∑

n=0

|〈 f, fn〉|2

Riesz Basis. Let { fn} be linear independent and complete in L2(a, b), meaning
that the closed linear span of { fn} is L2(a, b). The set is called a Riesz basis if there
exist A > 0 and B > 0 such that

A
∑

i

|ci |2 ≤ ‖
∑

i

ci fi‖2 ≤ B
∑

i

|ci |2 (1.2.6)

for each sequence {ci } of complex numbers. The Riesz representation theorem guar-
antees the existence of the dual { f̃n} in L2(a, b) such that:

(1) { f̃n} is the unique biorthogonal sequence to { fn}; namely 〈 fm , f̃n〉 = δm,n .

(2) If {cn} ∈ 
2, then
∑

n cn fn converges in L2(a, b).

(3) For each f ∈ L2(a, b), {〈 f, f̃n〉} ∈ 
2.

(4) For each f ∈ L2(a, b),

f =
∞∑

i=0

〈 f, f̃i 〉 fi =
∞∑

i=0

〈 f, fi 〉 f̃i .
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A Riesz basis of a separable Hilbert space H is a basis that is close to being or-
thogonal. The right inequality in (1.2.6) is essential. It prevents the expansion from
blowing up. The left inequality in (1.2.6) is important too, since it ensures the exis-
tence of the inverse.

1.2.8 Linear Operators

In computational electromagnetics, the method of moments and finite element
method are based on linear operations. An operator T from a Hilbert space H1
to another Hilbert space H2 is linear if

∀α1, α2 ∈ C, ∀ f1, f2 ∈ H1, T (α1 f1 + α2 f2) = α1T ( f1) + α2T ( f2).

Sup Norm. The sup operator norm of T is defined as

‖T ‖S = sup
f ∈H1

‖T f ‖
‖ f ‖ . (1.2.7)

If this norm is finite, then T is continuous; namely ‖T f1 − T f2‖ becomes arbitrarily
small if ‖ f1 − f2‖ is sufficiently small.

Adjoint. The adjoint of T is the operator T a from H2 to H1 such that for any
f1 ∈ H1 and f2 ∈ H2

〈T f1, f2〉 = 〈 f1, T a f2〉.
When T is defined from H into itself, it is self-adjoint if T = T a . A nonzero vector
f ∈ H is a called an eigenvector if there exists an eigenvalue λ ∈ C such that

T f = λ f.

In a finite-dimensional Hilbert space, meaning that Euclidean space, a self-adjoint
operator is always diagonalized by an orthogonal basis {en}0≤n<N of eigenvectors

T en = λnen .

For a self-adjoint operator T , the eigenvalues λn are real, and for any f ∈ H

T f =
N−1∑
n=0

〈T f, en〉en =
N−1∑
n=0

λn〈 f, en〉en .

In an infinite-dimensional Hilbert space, the previous result can be generalized in
terms of the spectrum of the operator, which must be manipulated with caution.

Orthogonal Projector. Let V be a subspace of H . A projector PV on V is a linear
operator that satisfies ∀ f ∈ H, PV f ∈ V and ∀ f ∈ V, PV u = f .
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The projector PV is orthogonal if

∀ f ∈ H,∀g ∈ V, 〈 f − PV f, g〉 = 0.

The following properties are often used in the text:

Property 1. If PV is a projector on V , then the following statements are equivalent:

(1) PV is orthogonal.
(2) PV is self-adjoint.
(3) ‖PV ‖S = 1.
(4) ∀ f ∈ H, ‖ f − PV f ‖ = ming∈v ‖ f − g‖.

If {en}n∈N is an orthogonal basis of V , then

PV f =
+∞∑
n=0

〈 f, en〉
‖en‖2

en .

If {en}n∈N is a Riesz basis of V and {ẽn}n∈N is the biorthogonal basis, then

PV f =
+∞∑
n=0

〈 f, en〉ẽn =
+∞∑
n=0

〈 f, ẽn〉en .

Density and Limit. A space V is dense in H if for any f ∈ H there exist { fm}m∈N

with fm ∈ V such that

lim
m→+∞ ‖ f − fm‖ = 0.

Let {Tn}n∈N be a sequence of linear operators from H to H . Such a sequence con-
verges weakly to a linear operator T∞ if

∀ f ∈ H, lim
n→+∞ ‖Tn f − T∞ f ‖ = 0.

To find the limit of operators it is preferable to work in a well chosen subspace
V ⊂ H which is dense. The density and limit are justified by the property below.

Property 2 (Density). Let V be a dense subspace of H . Suppose that there exists C
such that ‖Tn‖S ≤ C for all n ∈ N . If

∀ f ∈ V, lim
n→+∞ ‖Tn f − T∞ f ‖ = 0,

then

∀ f ∈ H, lim
n→+∞ ‖Tn f − T∞ f ‖ = 0.

For numerical computations, an operator is often discretized into a matrix. Only then
digital computers can be utilized.
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Norm of a Matrix. For a matrix A ∈ Rn×n , the norm of A is defined, similarly to
(1.2.7), as

‖ A ‖= max
x �=0

{‖ Ax ‖
‖ x ‖

}
.

In particular, the commonly used norms are as follows:

(1) The column norm (
1 norm)

‖ A ‖1= max
j

n∑
i=1

|ai j |.

(2) The row norm (
∞ norm)

‖ A ‖∞= max
i

{‖ai ·‖1} = max
i

n∑
j=1

|ai, j |.

(3) The spectral norm (
2 norm)

‖A‖2 = (λAT A)1/2,

where λAT A is the maximum eigenvalue of AT A.

(4) The Frobenius norm

‖A‖F =
(

n∑
j=1

n∑
i=1

|ai, j |2
)1/2

= [tr {AT A}]1/2.
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CHAPTER TWO

Intuitive Introduction
to Wavelets

2.1 TECHNICAL HISTORY AND BACKGROUND

The first questions from those curious about wavelets are: What is a wavelet? Who
invented wavelets? What can one gain by using wavelets?

2.1.1 Historical Development

Wavelets are sometimes referred to as the twentieth-century Fourier analysis.
Wavelets exploit the multiresolution analysis just like microscopes do in micro-
biology. The genesis of wavelets began in 1910 when A. Haar proposed the staircase
approximation to approximate a function, using the piecewise constants now called
the Haar wavelets [1]. Afterward many mathematicians, physicists, and engineers
made contributions to the development of wavelets:

• Paley–Littlewood proposed dyadic frequency grouping in 1938 [2].
• Shannon derived sampling theory in 1948 [3].
• Calderon employed atomic decomposition of distributions in parabolic H p

spaces in 1977 [4].
• Stromberg improved the Haar systems in 1981 [5].
• Grossman and Morlet decomposed the Hardy functions into square integrable

wavelets for seismic signal analysis in 1984 [6].
• Meyer constructed orthogonal basis in L2 with dilation and translation of a

smooth function in 1986 [7].

15
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• Mallat introduced the multiresolution analysis (MRA) in 1988 and unified
the individual constructions of wavelets by Stromberg, Battle–Lemarie, and
Meyer [8].

• Daubechies first constructed compactly supported orthogonal wavelet systems
in 1987 [9].

2.1.2 When Do Wavelets Work?

Most of the data representing physical problems that we are modeling are not totally
random but have a certain correlation structure. The correlation is local in time (spa-
tial domain) and frequency (spectral domain). We should approximate these data sets
with building blocks that possess both time and frequency localization. Such building
blocks will be able to reveal the intrinsic correlation structure of the data, resulting
in powerful approximation qualities: only a small number of building blocks can
accurately represent the data. In electromagnetics the compactly supported (strictly
localized in space) wavelets may be used as basis functions. These wavelets, by the
Heisenberg uncertainty principle (or by Fourier analysis), cannot have strictly fi-
nite spectrum, but they can be approximately localized in spectrum. If most of their
spectral components are beyond the visible region, for example, κx > k0, they will
produce little radiation, resulting in a sparse impedance matrix in the method of mo-
ments.

The previous observations may be generalized and described more precisely:

(1) Wavelets and their duals are local in space and spectrum. Some wavelets are
even compactly supported, meaning strictly local in space (e.g., Daubechies
and Coifman wavelets) or strictly local in spectrum (e.g., Meyer wavelets).
Spatial localization implies that most of the energy of a wavelet is confined to
a finite interval. In general, we prefer fast (exponential or inverse polynomial)
decay away from the center of mass of the function. The frequency localiza-
tion means band limit. The decay toward high frequencies corresponds to
the smoothness of the wavelets; the smoother the function is, the faster the
decay. If the decay is exponential, the function is infinitely many times dif-
ferentiable. The decay toward low frequencies corresponds to the number of
vanishing polynomial moments of the wavelet. Because of the time-frequency
localization of wavelets, efficient representation can be obtained. The idea of
frequency localization in terms of smoothness and vanishing moments may
generalize the concept of “frequency localization” to a manifold, where the
Fourier transform is not available.

(2) Wavelet series converge uniformly for all continuous functions, while Fourier
series do not. In electromagnetics, the fields are often discontinuous across
material boundaries. For piecewise smooth functions, Fourier-based methods
give very slow convergence, for example, α = 1, while nonlinear (i.e. with
truncation) wavelet-based methods, exhibit fast convergence [10], for exam-
ple, α ≥ 2, where α is the convergence rate defined by ‖ f − fM‖ = O(M−α)
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and the M-term approximate of f is given by

fM =
∑

λ∈�M

cλψλ. (2.1.1)

(3) Wavelets belong to the class of orthogonal bases that are continuous and prob-
lem independent. As such, they are more suitable for developing systematic
algorithms for general purpose computations. In contrast, the pulse bases, al-
though orthogonal and compact in space, are not smooth. Indeed, they are dis-
continuous and are not localized in the spectral domain. On the other hand,
Chebyshev, Hermite, Legendre, and Bessel polynomials are orthogonal but
not localized in space within the domain (in comparison with intervallic and
periodic wavelets). Shannon’s sinc functions are localized in the transform
domain but not in the original domain. The eigenmode expansion method is
based on orthogonal expansion, but is problem dependent and works only for
limited specific cases (e.g., rectangular, circular waveguides) [11].

(4) Wavelets decompose and reconstruct functions effectively due to the multires-
olution analysis (MRA), that is, the passing from one scale to either a coarser
or a finer scale efficiently. The MRA provides the fast wavelet transform,
which allows conversion between a function f and its wavelet coefficients c
with linear or linear-logarithmic complexity.

2.1.3 A Wave Is a Wave but What Is a Wavelet?

The title of this section is a note in the June 1994 issue of IEEE Antennas and Prop-
agation Magazine from Professor Leopold B. Felson. Wavelet is literally translated
from the French word ondelette, meaning small wave.

Wavelets are a topic of considerable interest in applied mathematics. One may use
wavelets to decompose data, functions, and operators into different frequency com-
ponents, and then study each component with a “resolution” level that matches the
“scale” of the particular component. This “multiresolution” technique outperforms
the Fourier analysis in such a way that both time domain and frequency domain
information can be preserved. In a loose sense, one may say that the wavelet trans-
form performs the optimized sampling. In contrast to the wavelet transform, the win-
dowed Fourier transform oversamples the object under investigation, with respect to
the Nyquist sampling criterion. Again, in a loose sense, one can say that wavelets
decompose and compress data, images, and functions with good basis systems to
reach high efficiency or sparseness. A key point to understand about wavelets is the
introduction of both the dilation (frequency information) and translation (local time
information).

Wavelets have been applied with great success to engineering problems, including
signal processing, data compression, pattern recognition, target identification, com-
putational graphics, and fluid dynamics. Recently wavelets have also been used in
boundary value problems because they permit the accurate representation of a vari-
ety of operators without redundancy.
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2.2 WHAT CAN WAVELETS DO IN ELECTROMAGNETICS
AND DEVICE MODELING?

2.2.1 Potential Benefits of Using Wavelets

Owing to their ability to represent local high-frequency components with local basis
elements, wavelets can be employed in a consistent and straightforward way. It
is well known to the electromagnetic modeling community that the finite element
method (FEM) is a technique that results in sparse matrices amenable to efficient nu-
merical solutions. For the FEM the solution times tend to increase by n log(n), where
n ~  N 3, with N being the number of points in one dimension. In using surface inte-
gral equations, implemented by the method of moments (MoM), the solution times
have been demonstrated to increase by M3, where M ~ N 2. It is obvious that N 2 is
much smaller than N 3, and that therefore the MoM deals with many fewer unknowns
than the FEM. Unfortunately, the matrix from the MoM is dense. The corresponding
computational cost, using the direct solver, is on the order of O(n3), where n ~ N 2.
It is clear that the solution of dense complex matrices is prohibitively expensive,
especially for electrically large problems.

Integral operators are represented in a classical basis as a dense matrix. In contrast,
wavelets can be seen as a quasi-diagonalizing basis for a wider class of integral op-
erators. The “quasi” is necessary because the resulting wavelet expansion of integral
operators is not truly diagonal. Instead, it has a peculiar palm pattern. This palm-
type sparse structure represents an approximation of the original integral operator to
arbitrary precision. It was reported that wavelet-based impedance matrices contain
90 to 99% zero entries. It has been shown by mathematicians that the solution of a
wide range of integral equations can be transformed, using wavelets, from a direct
procedure requiring order O(n3) operations to that requiring only order O(n) [12].
In recent years, wavelets have been applied to electromagnetics and semiconductor
device modeling for several purposes:

(1) To solve surface integral equations (SIE) originating from scattering, an-
tenna, packaging and EMC (electromagnetic compatibility) problems, where
very sparse impedance matrices have been obtained. It was reported that the
wavelet scheme reduces the two-norm condition number of the MoM matrix
by almost one order of magnitude [13].

(2) To improve the finite difference time domain (FDTD) algorithms in terms of
convergence and numerical dispersion using Daubechies sampling biorthog-
onal time domain method (SBTD).

(3) To improve the convergence of the finite element method (FEM) using multi-
wavelets as basis functions.

(4) To solve nonlinear partial differential equations (PDEs) via the collocation
method, in which the nonlinear terms in the PDEs are treated in the physical
space while the derivatives are computed in the wavelet space [14].
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(5) To model nonlinear semiconductor devices, where the finite difference
method is implemented on the adaptive mesh, based on the interpolating
wavelets and sparse point representation.

Some fascinating features of wavelets in the aforementioned applications are as fol-
lows:

(1) For the finite difference time domain (FDTD) method, numerical disper-
sion has been improved greatly. By imposing the Daubechies wavelet-based
sampling function and its dual reproducing kernel, the SBTD requires much
coarser mesh size in comparison with the Yee-FDTD while achieving the
same precision. For a 3D resonator problem, the SBTD improves the CPU
time by a factor of 13, and memory by 64. Material inhomogeneity and
boundary conditions can be easily incorporated [15].

(2) For the finite element method (FEM), the multiwavelet basis functions are
in C1. At the node/edge, they can match not only the function but also its
derivatives, yielding faster convergence than the traditional high-order FEM.
For a partially loaded waveguide, the improvement of multiwavelet FEM over
linear basis EEM exceeds 435 in CPU time reduction [16].

(3) For packaging and interconnects, the wavelet-based MoM speeds up parasitic
parameter extraction by 1000 [17].

(4) Often in semiconductor device modeling, a small part of the computational
interval or domain contains most of the activity, and the representation must
have high resolution there. In the rest of the domain such high resolution is
a high-cost waste. Various adaptive mesh techniques have been developed to
address this issue. However, they often suffer accuracy problems in the ap-
plication of operators, multiplication of functions, and so on. Wavelets offer
promise in providing a systematic, consistent and simple adaptive framework.
In the simulation of a 2D abrupt diode, the potential distribution was com-
puted using wavelets to achieve a precision of 1.6% with 423 nodes. The
same structure was simulated by a commercial package ATLAS, and 1756
triangles were used to reach a 5% precision [18].

(5) Coifman wavelets allow the derivation of a single-point quadrature of pre-
cision O(h5), which reduces the impedance filling process from O(n2) to
O(n).

2.2.2 Limitations and Future Direction of Wavelets

Wavelets are relatively new and are still in their infancy. Despite the advantages and
beneficial features mentioned above, there are difficulties and problems associated in
using wavelets for EM modeling.

Classical wavelets are defined on the real line, while many real world problems
are in the finite domain. Periodic and intervallic wavelets have provided part of the
solution, but they have also increased the complexity of the algorithm. Multiwavelets
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seem to be very promising in solving problems on intervals because of their orthog-
onality and interpolating properties.

The problems and difficulties encountered in practical fields have stimulated the
interest of mathematicians. In recent years mathematicians have constructed wavelets
on closed sets of the real line, satisfying certain types of boundary conditions. They
have also studied wavelets of increasing order in arbitrary dimensions [19], wavelets
on irregular point sets [20], and wavelets on curved surfaces as in the case of spheri-
cal wavelets [21].

2.3 THE HAAR WAVELETS AND MULTIRESOLUTION ANALYSIS

One of the most important properties of wavelets is the multiresolution analysis
(MRA). Without losing generality, we discuss the MRA through the Haar wavelets.
The Haar is the simplest wavelet system that can be studied immediately without any
prerequisite. Later we will pass these conclusions on to other orthogonal wavelets.
Therefore mathematical proofs are bypassed.

The Haar scaling functions (or scalets) are defined as

ϕ(x) =
{

1 if 0 < x < 1
0 otherwise.

(2.3.1)

The Haar mother wavelets (or wavelets) are defined as

ψ(x) =



1 0 ≤ x < 1
2

−1, 1
2 ≤ x < 1

0 otherwise.
(2.3.2)

These two functions are sketched in Fig. 2.1. In the rest of the book, we will refer to
mother wavelets as wavelets and scaling functions as scalets, in order to emphasize
their roles as counterparts of wavelets. Notice that the term “wavelets” has a dual
meaning. Depending on the context, wavelet can mean the wavelet or both the scalet
and wavelet.

(x)

1

0 1
x

(a) ϕ (b) ψ (x)

1

1

0

-1

x

FIGURE 2.1 Haar (a) scalet and (b) wavelet.


