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Preface

The applications of DSP are numerous and include multimedia technology, audio signal
processing, video signal processing, cellular mobile communication, adaptive network
management, radar systems, pattern analysis, pattern recognition, medical signal processing,
financial data forecasting, artificial intelligence, decision making systems, control systems
and information search engines.
The theory and application of signal processing is concerned with the identification,

modelling and utilisation of patterns and structures in a signal process. The observation
signals are often distorted, incomplete and noisy. Hence, noise reduction and the removal of
channel distortion and interference are important parts of a signal processing system.
Since the publication of the first edition of this book in 1996, digital signal processing

(DSP) in general and noise reduction in particular, have become even more central to the
research and development of efficient, adaptive and intelligent mobile communication and
information processing systems. The third edition of this book has been revised extensively
and improved in several ways to take account of the recent advances in theory and application
of digital signal processing. The existing chapters have been updated with new materials
added. Two new chapters have been introduced; one for speech enhancement in mobile
noisy conditions and the other for modelling and combating noise and fading in wireless
communication systems.
The aim of this book is to provide a coherent and structured presentation of the theory and

applications of statistical signal processing and noise reduction methods and is organised in
17 chapters.
Chapter 1 begins with an introduction to signal processing, and provides a brief review

of signal processing methodologies and applications. The basic operations of sampling and
quantisation are reviewed in this chapter.
Chapter 2 provides an introduction to noise and distortion. Several different types of

noise, including thermal noise, shot noise, acoustic noise, electromagnetic noise and channel
distortions, are considered. The chapter concludes with an introduction to the modelling of
noise processes.
Chapter 3 provides an introduction to the theory and applications of probability models

and stochastic signal processing. The chapter begins with an introduction to random signals,
stochastic processes, probabilistic models and statistical measures. The concepts of stationary,
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nonstationary and ergodic processes are introduced in this chapter, and some important
classes of random processes, such as Gaussian, mixture Gaussian, Markov chains and
Poisson processes, are considered. The effects of transformation of a signal on its statistical
distribution are considered.
Chapter 4 is on Bayesian estimation and classification. In this chapter the estimation

problem is formulated within the general framework of Bayesian inference. The chapter
includes Bayesian theory, classical estimators, the estimate–maximise method, the Cramer–
Rao bound on the minimum–variance estimate, Bayesian classification, and the modelling
of the space of a random signal. This chapter provides a number of examples on Bayesian
estimation of signals observed in noise.
Chapter 5 considers hidden Markov models (HMMs) for nonstationary signals. The chapter

begins with an introduction to the modelling of nonstationary signals and then concentrates
on the theory and applications of hidden Markov models. The hidden Markov model is
introduced as a Bayesian model, and methods of training HMMs and using them for decoding
and classification are considered. The chapter also includes the application of HMMs in
noise reduction.
Chapter 6 considers Wiener filters. The least square error filter is formulated first through

minimisation of the expectation of the squared error function over the space of the error
signal. Then a block-signal formulation of Wiener filters and a vector space interpretation
of Wiener filters are considered. The frequency response of the Wiener filter is derived
through minimisation of mean square error in the frequency domain. Some applications of
the Wiener filter are considered, and a case study of the Wiener filter for removal of additive
noise provides useful insight into the operation of the filter.
Chapter 7 considers adaptive filters. The chapter begins with the state-space equation for

Kalman filters. The optimal filter coefficients are derived using the principle of orthogonality
of the innovation signal. The recursive least square (RLS) filter, which is an exact sample-
adaptive implementation of the Wiener filter, is derived in this chapter. Then the steepest-
descent search method for the optimal filter is introduced. The chapter concludes with a
study of the LMS adaptive filters.
Chapter 8 considers linear prediction and sub-band linear prediction models. Forward

prediction, backward prediction and lattice predictors are studied. This chapter introduces
a modified predictor for the modelling of the short-term and the pitch period correlation
structures. A maximum a posteriori (MAP) estimate of a predictor model that includes the
prior probability density function of the predictor is introduced. This chapter concludes with
the application of linear prediction in signal restoration.
Chapter 9 considers frequency analysis and power spectrum estimation. The chapter

begins with an introduction to the Fourier transform, and the role of the power spectrum
in identification of patterns and structures in a signal process. The chapter considers
nonparametric spectral estimation, model-based spectral estimation, the maximum entropy
method, and high-resolution spectral estimation based on eigenanalysis.
Chapter 10 considers interpolation of a sequence of unknown samples. This chapter begins

with a study of the ideal interpolation of a band-limited signal, a simple model for the
effects of a number of missing samples, and the factors that affect interpolation. Interpolators
are divided into two categories: polynomial and statistical interpolators. A general form of
polynomial interpolation as well as its special forms (Lagrange, Newton, Hermite and cubic
spline interpolators) is considered. Statistical interpolators in this chapter include maximum
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a posteriori interpolation, least square error interpolation based on an autoregressive model,
time–frequency interpolation, and interpolation through the search of an adaptive codebook
for the best signal.
Chapter 11 considers spectral subtraction. A general form of spectral subtraction is

formulated and the processing distortions that result from spectral subtraction are considered.
The effects of processing distortions on the distribution of a signal are illustrated. The chapter
considers methods for removal of the distortions and also nonlinear methods of spectral
subtraction. This chapter concludes with an implementation of spectral subtraction for signal
restoration.
Chapters 12 and 13 cover the modelling, detection and removal of impulsive noise

and transient noise pulses. In Chapter 12, impulsive noise is modelled as a binary-state
nonstationary process and several stochastic models for impulsive noise are considered. For
removal of impulsive noise, median filters and a method based on a linear prediction model
of the signal process are considered. The materials in Chapter 13 closely follow Chapter 12.
In Chapter 13, a template-based method, an HMM-based method and an AR model-based
method for removal of transient noise are considered.
Chapter 14 covers echo cancellation. The chapter begins with an introduction to telephone

line echoes, and considers line echo suppression and adaptive line echo cancellation. Then the
problemofacousticechoesandacousticcouplingbetween loudspeakerandmicrophonesystems
is considered. The chapter concludes with a study of a sub-band echo cancellation system.
Chapter 15 covers blind deconvolution and channel equalisation. This chapter begins with

an introduction to channel distortion models and the ideal channel equaliser. Then the Wiener
equaliser, blind equalisation using the channel input power spectrum, blind deconvolution
based on linear predictive models, Bayesian channel equalisation and blind equalisation for
digital communication channels are considered. The chapter concludes with equalisation of
maximum phase channels using higher-order statistics.
Chapter 16 covers speech enhancement methods. Speech enhancement in noisy

environments improves the quality and intelligibility of speech for human communication and
increases the accuracy of automatic speech recognition systems. Noise reduction systems are
increasingly important in a range of applications such as mobile phones, hands-free phones,
teleconferencing systems and in-car cabin communication systems. This chapter provides an
overview of the main methods for single-input and multiple-input speech enhancement in
noise.
Chapter 17 covers the issue of noise in wireless communication. Noise, fading and

limited radio bandwidth are the main factors that constrain the capacity and the speed
of communication on wireless channels. Research and development of communications
systems aim to increase the spectral efficiency, defined as the data bits per second per
Hertz bandwidth of a communication channel. For improved efficiency, modern mobile
communications systems rely on signal processing methods at almost every stage from source
coding to the allocation of time bandwidth and space resources. In this chapter we consider
how communications signal processing methods are employed for improving the speed and
capacity of communications systems.
As an additional resource, this book is supported by a companion website on which

lecturers and instructors can find electronic versions of the figures. Please go to
ftp://ftp.wiley.co.uk/pub/books/vaseghi3e.

Saeed V. Vaseghi
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A Matrix of predictor coefficients
ak Linear predictor coefficients
a Linear predictor coefficients vector
aij Probability of transition from state i to state j in a Markov

model
�i�t� Forward probability in an HMM
b�m� Backward prediction error
b�m� Binary state signal
�i�t� Backward probability in an HMM
cxx�m� Covariance of signal x�m�
cXX�k1� k2� · · · � kN � kth-order cumulant of x�m�
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fX�Y �x� y� Joint probability density function of X and Y
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ŷ �m �m− i � Prediction of y�m� based on observations up to time m–i
Y Noisy signal matrix
YH Hermitian transpose of Y
Var Variance
wk Wiener filter coefficients
w�m� Wiener filter coefficients vector
W�f� Wiener filter frequency response
z z-transform variable





Abbreviations

AR Autoregressive process
ARMA Autoregressive moving average process
AWGN Additive white Gaussian noise
bps Bits per second
cdf Cumulative density function
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Signal processing provides the basic analysis, modelling and synthesis tools for a diverse
area of technological fields, including telecommunication, artificial intelligence, biological
computation and system identification. Signal processing is concerned with the modelling,
detection, identification and utilisation of patterns and structures in a signal process.
Applications of signal processing methods include audio hi-fi, digital TV and radio, cellular
mobile phones, voice recognition, vision, radar, sonar, geophysical exploration, medical
electronics, bio-signal processing and in general any system that is concerned with the
communication or processing and retrieval of information. Signal processing theory plays a
central role in the development of digital telecommunication and automation systems, and
in the efficient transmission, reception and decoding of information.
This chapter begins with a definition of signals, and a brief introduction to various signal

processing methodologies. We consider several key applications of digital signal processing
in adaptive noise reduction, channel equalisation, pattern classification/recognition, audio
signal coding, signal detection, spatial processing for directional reception of signals, Dolby
noise reduction and radar.

1.1 SIGNALS AND INFORMATION

A signal is the variation of a quantity by which information is conveyed regarding the state,
the characteristics, the composition, the trajectory, the evolution, the course of action or the

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd



2 INTRODUCTION

intention of the information source. A signal is a means of conveying information regarding
the state(s) of a variable.
The information conveyed in a signal may be used by humans or machines for

communication, forecasting, decision-making, control, geophysical exploration, medical
diagnosis, forensics, etc. The types of signals that signal processing deals with include textual
data, audio, ultrasonic, subsonic, image, electromagnetic, medical, biological, financial and
seismic signals.
Figure 1.1 illustrates a communication system composed of an information source, I�t�,

followed by a system, T�·�, for transformation of the information into variation of a signal,
x�t�, a communication channel, h�·�, for propagation of the signal from the transmitter to
the receiver, additive channel noise, n�t�, and a signal processing unit at the receiver for
extraction of the information from the received signal.
In general, there is a mapping operation that maps the output, I�t�, of an information

source to the signal, x�t�, that carries the information; this mapping operator may be denoted
as T�·� and expressed as

x�t�= T�I�t�� (1.1)

The information source I�t� is normally discrete-valued, whereas the signal x�t� that carries
the information to a receiver may be continuous or discrete. For example, in multimedia
communication the information from a computer, or any other digital communication device,
is in the form of a sequence of binary numbers (ones and zeros), which would need to be
transformed into voltage or current variations and modulated to the appropriate form for
transmission in a communication channel over a physical link.
As a further example, in human speech communication the voice-generating mechanism

provides a means for the speaker to map each discrete word into a distinct pattern of
modulation of the acoustic vibrations of air that can propagate to the listener. To communicate
a word, w, the speaker generates an acoustic signal realisation of the word, x�t�; this acoustic
signal may be contaminated by ambient noise and/or distorted by a communication channel,
or impaired by the speaking abnormalities of the talker, and received as the noisy, distorted
and/or incomplete signal y�t�, modelled as

y�t�= h�x�t��+n�t� (1.2)

In addition to conveying the spoken word, the acoustic speech signal has the capacity to
convey information on the prosody (i.e. pitch, intonation and stress patterns in pronunciation)
of speech and the speaking characteristics, accent and emotional state of the talker. The
listener extracts this information by processing the signal y�t�.

Information
source I(t) Information to

signal mapping
T [·]

Channel
h [·]

Digital signal
processor

Noise n(t)

Noisy
signal Signal and

informationSignal

x(t) h[x(t)] y(t) ˆ ˆx(t), I(t)

+

Figure 1.1 Illustration of a communication and signal processing system.
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In the past few decades, the theory and applications of digital signal processing have
evolved to play a central role in the development of modern telecommunication and
information technology systems.
Signal processing methods are central to efficient communication, and to the development

of intelligent man–machine interfaces in areas such as speech and visual pattern recognition
for multimedia systems. In general, digital signal processing is concerned with two broad
areas of information theory:

(1) efficient and reliable coding, transmission, reception, storage and representation of
signals in communication systems; and

(2) extraction of information from noisy signals for pattern recognition, detection,
forecasting, decision-making, signal enhancement, control, automation, etc.

In the next section we consider four broad approaches to signal processing.

1.2 SIGNAL PROCESSING METHODS

Signal processing methods have evolved in algorithmic complexity, aiming for optimal
utilisation of the information in order to achieve the best performance. In general the
computational requirement of signal processing methods increases, often exponentially, with
the algorithmic complexity. However, the implementation cost of advanced signal processing
methods has been offset and made affordable by the consistent trend in recent years of a
continuing increase in the performance, coupled with a simultaneous decrease in the cost, of
signal processing hardware.
Depending on the method used, digital signal processing algorithms can be categorised into

one or a combination of four broad categories. These are transform-based signal processing,
model-based signal processing, Bayesian statistical signal processing and neural networks,
as illustrated in Figure 1.2. These methods are briefly described below.

1.2.1 TRANSFORM-BASED SIGNAL PROCESSING

The purpose of a transform is to describe a signal or a system in terms of a combination
of a set of elementary simple signals (such as sinusoidal signals) that lend themselves to

Transform-based analysis/synthesis

Laplace
transform

z-
Transform

Digital signal processing methods

Fourier
transform

Wavelet
transform

Model-based methods

Linear
prediction

Adaptive
filters

Kalman
filter

Bayesian estimation methods

Probabilistic
estimation

Hidden Markov
models

Neural networks

Layered networks of
‘neuron’ elements

Figure 1.2 A broad categorisation of some of the most commonly used signal processing methods.
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relatively easy analysis, interpretation and manipulation. Transform-based signal processing
methods include Fourier transform, Laplace transform, z-transform and wavelet transforms.
The most widely applied signal transform is the Fourier transform, which is effectively a
form of vibration analysis, in that a signal is expressed in terms of a combination of the
sinusoidal vibrations that make up the signal. Fourier transform is employed in a wide range
of applications, including popular music coders, noise reduction and feature extraction for
pattern recognition. The Laplace transform, and its discrete-time version the z-transform, are
generalisations of the Fourier transform and describe a signal or a system in terms of a set
of sinusoids with exponential amplitude envelopes.
In Fourier, Laplace and z-transform, the different sinusoidal basis functions of the

transforms all have the same duration and differ in terms of their frequency of vibrations
and amplitude envelopes. In contrast, the wavelets are multi-resolution transforms in which
a signal is described in terms of a combination of elementary waves of different durations.
The set of basis functions in a wavelet is composed of contractions and dilations of a single
elementary wave. This allows non-stationary events of various durations in a signal to be
identified and analysed.

1.2.2 MODEL-BASED SIGNAL PROCESSING

Model-based signal processing methods utilise a parametric model of the signal generation
process. The parametric model normally describes the predictable structures and the expected
patterns in the signal process, and can be used to forecast the future values of a signal from
its past trajectory. Model-based methods normally outperform nonparametric methods, since
they utilise more information in the form of a model of the signal process. However, they
can be sensitive to the deviations of a signal from the class of signals characterised by the
model. The most widely used parametric model is the linear prediction model, described
in Chapter 8. Linear prediction models have facilitated the development of advanced signal
processing methods for a wide range of applications such as low-bit-rate speech coding in
cellular mobile telephony, digital video coding, high-resolution spectral analysis, radar signal
processing and speech recognition.

1.2.3 BAYESIAN SIGNAL PROCESSING

The fluctuations of a purely random signal, or the distribution of a class of random signals in
the signal space, cannot be modelled by a predictive equation, but can be described in terms
of the statistical average values, and modelled by a probability distribution function in a
multidimensional signal space. For example, as described in Chapter 10, a linear prediction
model driven by a random signal can provide a source-filter model of the acoustic realisation
of a spoken word. However, the random input signal of the linear prediction model, or the
variations in the characteristics of different acoustic realisations of the same word across the
speaking population, can only be described in statistical terms and in terms of probability
functions.
The Bayesian inference theory provides a generalised framework for statistical processing

of random signals, and for formulating and solving estimation and decision-making problems.
Chapter 4 describes the Bayesian inference methodology and the estimation of random
processes observed in noise.
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1.2.4 NEURAL NETWORKS

Neural networks are combinations of relatively simple nonlinear adaptive processing units,
arranged to have a structural resemblance to the transmission and processing of signals in
biological neurons. In a neural network several layers of parallel processing elements are
interconnected by a hierarchically structured connection network. The connection weights
are trained to perform a signal processing function such as prediction or classification.
Neural networks are particularly useful in nonlinear partitioning of a signal space, in feature
extraction and pattern recognition and in decision-making systems. In some hybrid pattern
recognition systems neural networks are used to complement Bayesian inference methods.
Since the main objective of this book is to provide a coherent presentation of the theory and
applications of statistical signal processing, neural networks are not discussed in this book

1.3 APPLICATIONS OF DIGITAL SIGNAL PROCESSING

In recent years, the development and commercial availability of increasingly powerful and
affordable digital computers has been accompanied by the development of advanced digital
signal processing algorithms for a wide variety of applications such as noise reduction,
telecommunications, radar, sonar, video and audio signal processing, pattern recognition,
geophysics explorations, data forecasting, and the processing of large databases for the
identification, extraction and organisation of unknown underlying structures and patterns.
Figure 1.3 shows a broad categorisation of some digital signal processing (DSP) applications.
This section provides a review of several key applications of DSP methods.

1.3.1 ADAPTIVE NOISE CANCELLATION

In speech communication from a noisy acoustic environment such as a moving car or train,
or over a noisy telephone channel, the speech signal is observed in an additive random noise.

DSP applications

Speech recognition, image
and character recognition,
bio-signal processing

Spectral analysis, radar
and sonar signal processing,
signal enhancement, geophysics
exploration

Information extraction

Model estimation Pattern recognition

Signal transmission/storage/retrieval

Source coding and
channel coding

Channel equalisation
multi-path fading

Speech coding, music coding,
image/video coding, data compression,
communication over noisy channels

Voice and data
communication on
mobile channels

Figure 1.3 A classification of the applications of digital signal processing.
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In signal measurement systems the information-bearing signal is often contaminated by noise
from its surrounding environment. The noisy observation, y�m�, can be modelled as

y�m�= x�m�+n�m� (1.3)

where x�m� and n�m� are the signal and the noise, and m is the discrete-time index. In
some situations, for example when using a mobile telephone in a moving car, or when using
a radio communication device in an aircraft cockpit, it may be possible to measure and
estimate the instantaneous amplitude of the ambient noise using a directional microphone.
The signal, x�m�, may then be recovered by subtraction of an estimate of the noise from the
noisy signal.
Figure 1.4 shows a two-input adaptive noise cancellation system for enhancement of noisy

speech. In this system a directional microphone takes as input the noisy signal x�m�+n�m�,
and a second directional microphone, positioned some distance away, measures the noise
�n�m+��. The attenuation factor, �, and the time delay, �, provide a rather over-simplified
model of the effects of propagation of the noise to different positions in the space where
the microphones are placed. The noise from the second microphone is processed by an
adaptive digital filter to make it equal to the noise contaminating the speech signal, and then
subtracted from the noisy signal to cancel out the noise. The adaptive noise canceller is more
effective in cancelling out the low-frequency part of the noise, but generally suffers from the
nonstationary character of the signals, and from the over-simplified assumption that a linear
filter can model the diffusion and propagation of the noise sound in the space.

1.3.2 ADAPTIVE NOISE REDUCTION

In many applications, for example at the receiver of a telecommunication system, there is
no access to the instantaneous value of the contaminating noise, and only the noisy signal
is available. In such cases the noise cannot be cancelled out, but it may be reduced, in an

y(m) = x(m) + n(m)

. . .

Noise estimation filter

Noisy signal

Noise
α n(m + τ)

ˆNoise estimate, n(m)

Signal

Adaptation
algorithm

z 
–1 z 

–1 z 
–1

w0 w1 w2
wP–1

x̂(m)

–

Figure 1.4 Configuration of a two-microphone adaptive noise canceller.
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Figure 1.5 A frequency-domain Wiener filter for reducing additive noise.

average sense, using the statistics of the signal and the noise process. Figure 1.5 shows a
bank of Wiener filters for reducing additive noise when only the noisy signal is available.
The filter bank coefficients attenuate each noisy signal frequency in inverse proportion to
the signal-to-noise ratio at that frequency. The Wiener filter bank coefficients, derived in
Chapter 6, are calculated from estimates of the power spectra of the signal and the noise
processes.

1.3.3 BLIND CHANNEL EQUALISATION

Channel equalisation is the recovery of a signal distorted in transmission through a
communication channel with a nonflat magnitude or a nonlinear phase response. When the
channel response is unknown, the process of signal recovery is called ‘blind equalisation’.
Blind equalisation has a wide range of applications, for example in digital telecommunications
for removal of inter-symbol interference due to nonideal channel and multipath propagation,
in speech recognition for removal of the effects of the microphones and communication
channels, in correction of distorted images, in analysis of seismic data and in de-reverberation
of acoustic gramophone recordings.
In practice, blind equalisation is feasible only if some useful statistics of the channel

input are available. The success of a blind equalisation method depends on how much is
known about the characteristics of the input signal and how useful this knowledge can be in
the channel identification and equalisation process. Figure 1.6 illustrates the configuration
of a decision-directed equaliser. This blind channel equaliser is composed of two distinct
sections: an adaptive equaliser that removes a large part of the channel distortion, followed
by a nonlinear decision device for an improved estimate of the channel input. The output of
the decision device is the final estimate of the channel input, and it is used as the desired
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Channel noise
n(m)

x(m) Channel distortion

H( f )

f
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x(m)ˆ
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– +

Adaptation
algorithm

+
f

Equaliser

Blind decision-directed equaliser

Hinv( f )

Decision device

+

Figure 1.6 Configuration of a decision-directed blind channel equaliser.

signal to direct the equaliser adaptation process. Blind equalisation is covered in detail in
Chapter 15.

1.3.4 SIGNAL CLASSIFICATION AND PATTERN RECOGNITION

Signal classification is used in detection, pattern recognition and decision-making systems.
For example, a simple binary-state classifier can act as the detector of the presence, or the
absence, of a known waveform in noise. In signal classification, the aim is to design a
minimum-error system for labelling a signal with one of a number of likely classes of signal.

To design a classifier, a set of models is trained for the classes of signals that are of
interest in the application. The simplest form that the models can assume is a bank, or
code book, of waveforms, each representing the prototype for one class of signals. A more
complete model for each class of signals takes the form of a probability distribution function.
In the classification phase, a signal is labelled with the nearest or the most likely class.
For example, in communication of a binary bit stream over a band-pass channel, the binary
phase-shift keying (BPSK) scheme signals the bit ‘1’ using the waveform Ac sin�ct and the
bit ‘0’ using −Ac sin�ct.
At the receiver, the decoder has the task of classifying and labelling the received noisy

signal as a ‘1’ or a ‘0’. Figure 1.7 illustrates a correlation receiver for a BPSK signalling

Received noisy symbol
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Figure 1.7 A block diagram illustration of the classifier in a binary phase-shift keying demodulation.
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Figure 1.8 Configuration of a speech recognition system; f�Y ��i� is the likelihood of the model �i

given an observation sequence Y .

scheme. The receiver has two correlators, each programmed with one of the two symbols
representing the binary states for the bit ‘1’ and the bit ‘0’. The decoder correlates the
unlabelled input signal with each of the two candidate symbols and selects the candidate that
has a higher correlation with the input.
Figure 1.8 illustrates the use of a classifier in a limited-vocabulary, isolated-word speech

recognition system. Assume there are V words in the vocabulary. For each word a model is
trained, on many different examples of the spoken word, to capture the average characteristics
and the statistical variations of the word. The classifier has access to a bank of V +1 models,
one for each word in the vocabulary and an additional model for the silence periods. In
the speech-recognition phase, the task is to decode and label an acoustic speech feature
sequence, representing an unlabelled spoken word, as one of the V likely words or silence.
For each candidate word the classifier calculates a probability score and selects the word
with the highest score.

1.3.5 LINEAR PREDICTION MODELLING OF SPEECH

Linear predictive models are widely used in speech processing applications such as low-
bit-rate speech coding in cellular telephony, speech enhancement and speech recognition.
Speech is generated by inhaling air into the lungs, and then exhaling it through the vibrating
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Excitation Speech
Random
source

Glottal (pitch)
model
P(z)

Vocal tract
model
H(z)

Pitch period

Figure 1.9 Linear predictive model of speech.

glottis cords and the vocal tract. The random, noise-like, air flow from the lungs is spectrally
shaped and amplified by the vibrations of the glottal cords and the resonance of the vocal
tract. The effect of the vibrations of the glottal cords and the vocal tract is to introduce a
measure of correlation and predictability to the random variations of the air from the lungs.
Figure 1.9 illustrates a source-filter model for speech production. The source models the
lung and emits a random excitation signal which is filtered, first by a pitch filter model of
the glottal cords and then by a model of the vocal tract.
The main source of correlation in speech is the vocal tract modelled by a linear predictor.

A linear predictor forecasts the amplitude of the signal at time m�x�m�, using a linear
combination of P previous samples �x�m−1�� · · · � x�m−P�� as

x̂�m�=
P∑

k=1

akx�m−k� (1.4)

where x̂�m� is the prediction of the signal x�m�, and the vector aT = �a1� 	 	 	 � aP� is the
coefficients vector of a predictor of order P. The prediction error e�m�, i.e. the difference
between the actual sample, x�m�, and its predicted value, x̂�m�, is defined as

e�m�= x�m�−
P∑

k=1

akx�m−k� (1.5)

The prediction error e�m� may also be interpreted as the random excitation or the so-called
innovation content of x�m�. From Equation (1.5) a signal generated by a linear predictor can
be synthesised as

x�m�=
P∑

k=1

akx�m−k�+ e�m� (1.6)

1.3.6 DIGITAL CODING OF AUDIO SIGNALS

In digital audio, the memory required to record a signal, the bandwidth required for signal
transmission and the signal-to-quantisation noise ratio are all directly proportional to the
number of bits per sample. The objective in the design of a coder is to achieve high fidelity
with as few bits per sample as possible, at an affordable implementation cost. Audio signal
coding schemes utilise the statistical structures of the signal and a model of the signal
generation, together with information on the psychoacoustics and the masking effects of
hearing. In general, there are two main categories of audio coders: model-based coders, used
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Figure 1.10 Block diagram configuration of a model-based speech (a) coder and (b) decoder.

for low-bit-rate speech coding in applications such as cellular telephony, and transform-based
coders used in high-quality coding of speech and digital hi-fi audio.
Figure 1.10 shows a simplified block diagram configuration of a speech coder-decoder of

the type used in digital cellular telephones. The speech signal is modelled as the output of
a filter excited by a random signal. The random excitation models the air exhaled through
the lung, and the filter models the vibrations of the glottal cords and the vocal tract. At
the transmitter, speech is segmented into blocks about 30ms long, during which speech
parameters can be assumed to be stationary. Each block of speech samples is analysed to
extract and transmit a set of excitation and filter parameters that can be used to synthesise
the speech. At the receiver, the model parameters and the excitation are used to reconstruct
the speech.
A transform-based coder is shown in Figure 1.11. The aim of transformation is to convert

the signal into a form that lends itself to more convenient and useful interpretation and
manipulation. In Figure 1.11 the input signal is transformed to the frequency domain using
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Figure 1.11 Illustration of a transform-based coder.
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a filter bank, or a discrete Fourier transform, or a discrete cosine transform. The three main
advantages of coding a signal in the frequency domain are:

(1) The frequency spectrum of a signal has a relatively well-defined structure, for example
most of the signal power is usually concentrated in the lower regions of the spectrum.

(2) A relatively low-amplitude frequency would be masked in the near vicinity of a
large-amplitude frequency and can therefore be coarsely encoded without any audible
degradation.

(3) The frequency samples are orthogonal and can be coded independently with different
precisions.

The number of bits assigned to each frequency of a signal is a variable that reflects the
contribution of that frequency to the reproduction of a perceptually high-quality signal. In
an adaptive coder, the allocation of bits to different frequencies is made to vary with the
time variations of the power spectrum of the signal.

1.3.7 DETECTION OF SIGNALS IN NOISE

In the detection of signals in noise, the aim is to determine if the observation consists of
noise alone, or if it contains a signal. The noisy observation, y�m�, can be modelled as

y�m�= b�m�x�m�+n�m� (1.7)

where x�m� is the signal to be detected, n�m� is the noise and b�m� is a binary-valued
state indicator sequence such that b�m�= 1 indicates the presence of the signal, x�m�, and
b�m� = 0 indicates that the signal is absent. If the signal, x�m�, has a known shape, then
a correlator or a matched filter can be used to detect the signal, as shown in Figure 1.12.
The impulse response h�m� of the matched filter for detection of a signal, x�m�, is the
time-reversed version of x�m� given by

h�m�= x�N −1−m� 0 ≤m≤ N −1 (1.8)

where N is the length of x�m�. The output of the matched filter is given by

z�m�=
N−1∑

m=0

h�m−k�y�m� (1.9)

Matched filter
h(m) = x(N – 1 – m)

y(m) = x(m) + n(m) z(m) Threshold
comparator

b(m)ˆ

Figure 1.12 Configuration of a matched filter followed by a threshold comparator for detection of
signals in noise.


