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The recognition of differences in the pharmacological activity of enantiomeric
molecules has created the need to administer them as an isolated enantiomer.
However, this problem of producing enantiopure products affects not only the
pharmaceutical industry but other industrial sectors such as agrochemicals,
food, petroleum and also biotechnology, all of which are increasingly concerned
with developing techniques to produce the pure enantiomeric product. The ma-
jority of the chiral products are sold as racemates or mixtures. Today, with im-
pending regulations on the production and use of chiral drugs, the need to
monitor production, report the isomeric composition of products and study the
pharmacological effects of drugs has resulted in more than 70% of the chiral
chromatography market being accounted for by the pharmaceutical industry,
with emphasis on both analytical- and preparative-scale processes.

The first commercially available stationary phase for chiral HPLC was intro-
duced in 1981 and the continuous development of technology has resulted in sev-
eral stationary phases being applied successfully in analytical and preparative sep-
arations of chiral molecules. The versatility of chiral stationary phases and their
effective application in both analytical- and large-scale enantiopurification have
been discussed in earlier books, A Practical Approach to Chiral Separation by Liquid
Chromatography (ed. G. Subramanian, VCH, Weinheim, 1994) and Chiral Separa-
tion Techniques: a Practical Approach (ed. G. Subramanian, Wiley-VCH, Weinheim,
2001). The present book aims to bring to the forefront current developments in
and successful application of chiral separation techniques, providing an insight
for chemists, biochemists and chemical engineers, allowing a choice of methodol-
ogy in the production of enantiopure substances of quality. For comprehensive
overviews, the reader is referred to specialized review articles.

I am indebted to thirty-four authors and co-authors from laboratories from all
over the world who have agreed to share their experience and knowledge.

Each chapter represents an overview of its chosen topic. Chapter 1 provides
an overview of Method Development and Optimization of Enantioseparations
Using Macrocyclic Glycopeptide Chiral Stationary Phases, while Chapter 2 pro-
vides an account of Role of Polysaccharides in Liquid Chromatography and Cap-
illary Electrophoresis and Chapter 3 details the Analytical and Preparative Po-
tential of Immobilized Polysaccharide-derived Chiral Stationary Phases. Chapter
4 gives an account of Supercritical Fluid Chromatography in Chiral Separations

XVII
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while Ligand Exchanges in Chiral Separation are detailed in Chapter 5. SMB
Technology and Its Application are discussed in Chapters 6 and 7. Chiral Crown
Ethers are detailed in Chapter 8 and Chapter 9 surveys the separation of Amino
Acids and Hydroxy Acids. Capillary Electrophoresis is discussed in Chapter 10.
Countercurrent Chromatography and Molecular Imprinting in Chiral Separa-
tions are detailed in Chapters 11 and 12. Chapter 13 gives an outline of Biosen-
sors in Enantioselectivity and CEC and MEKC Coupled to Mass Spectrometry in
the Analysis of Chiral Products are discussed in Chapters 14 and 15. Chapter
16 describes the Application of the Chiral Polarimeter in Enantioseparations.
An insight into Preparative Chromatography in Drug Discovery is detailed in
Chapter 17.

This book should be helpful to pharmaceutical chemists, biochemists, molec-
ular biologists, pharmacologists and scientists in the agrochemical, food and
biotechnology fields.

I wish to express my sincere thanks to Dr. Frank Weinreich for inviting me to
edit this volume and Dr. Romy Kirsten and her colleagues in the publishing de-
partment for their sustained enthusiasm and support through the production of
this book.

Canterbury, Kent, UK G. Subramanian
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Thomas E. Beesley and J. T. Lee

1.1
Introduction

The efficient development of enantiomeric separations has become increasingly
important, especially in the pharmaceutical industry, as optical isomers often
produce different biological properties, some detrimental to further drug devel-
opment. The closer to the point of drug discovery these issues are resolved, the
less costly the outcome will be. This recognition has put pressure on the de-
mand for more efficient chiral screening protocols. The analysis and prepara-
tion of a pure enantiomer often involve resolution from its antipode. Among all
the chiral separation techniques, chiral high-performance liquid chromatogra-
phy (HPLC) and mass spectrometry (MS) have proven to be the most robust
and widely applicable platform. Chiral stationary phase (CSP) development has
plateaued, but several CSPs now dominate selectivity screening protocols.

Currently, several hundred CSPs have appeared in publications and over 110
of them are available commercially [1]. These CSPs are made by using either a
polymeric structure or a small ligand (MW< 3000) as the chiral selector. The
polymeric CSPs include synthetic chiral polymers [2] and naturally occurring
chiral structures [3–5]. The most commonly used natural polymers include pro-
teins and carbohydrates (cellulose and amylose). The chiral recognition mecha-
nisms for these polymeric CSPs are relatively complicated. A protein, for exam-
ple, is often complex enough to contain several chiral binding sites, in which
case the major (high-affinity) site may differ for any given pair of enantiomers
[6]. The other types of CSPs, with small molecule as the chiral selector, include
ligand-exchange CSPs [7], �-complex (Pirkle-type) CSPs [8, 9], crown ether CSPs
[10], cyclodextrin CSPs [11–15] and macrocyclic glycopeptide CSPs [16–20].
Compared with the polymeric CSPs, the separation mechanisms on these
small-molecule CSPs are better characterized and understood. Macrocyclic gly-
copeptides, which were introduced by Armstrong in 1994, are one of the newest
classes of CSPs [44]. To date, there are six macrocyclic glycopeptides CSPs avail-
able commercially [20] – vancomycin (V and V2), teicoplanin (T and T2), teico-
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planin aglycone (TAG) and ristocetin A (R). Much research effort has been de-
voted to the characterization and application of these CSPs for a wide variety of
chiral compounds.

1.2
Structural Characteristics of Macrocyclic Glycopeptide CSPs

1.2.1
Chiral Recognition Mechanisms

The macrocyclic glycopeptides vancomycin, teicoplanin and ristocetin A are pro-
duced as fermentation products of Streptomyces orientalis, Actinoplanes teichomy-
ceticus and Nocardia lurida, respectively. All three of these related compounds
consist of an aglycone “basket” made up of fused macrocyclic rings and a pep-
tide chain with differing numbers of pendant sugar moieties off the phenoxide
groups (Fig. 1.1). The macrocyclic rings of vancomycin and teicoplanin contain
two chloro-substituted aromatic rings whereas the analogous portion of ristoce-
tin A has no chlorine substituents.

Vancomycin is the smallest of the three basic molecules, consisting of three
macrocyclic rings and a glycoside comprising d-glucose and l-vancosamine. The
other two glycopeptides are larger, having four fused rings and different types
of pendant sugar moieties. Teicoplanin has three monosaccharides: one d-man-
nose and two d-glucosamines. On one of the latter sugars was attached a hydro-
phobic acyl side-chain (hydrophobic tail). Ristocetin A has a pendant tetrasac-
charide (arabinose, mannose, glucose and rhamnose) and two monosaccharide
moieties (mannose and ristosamine) [21]. In addition to the natural CSPs, teico-
planin aglycone was produced by removing the sugar moieties from teicoplanin.
The structural characteristics of the four basic macrocycles are outlined in Table
1.1. In addition, V2 and T2 were produced using different bonding chemistries
on the surface of the silica compared with V and T, respectively. Although the
chemical ligand remains the same, the loading and accessibility of the key inter-
action sites are different between V and V2 [22] and T and T2, yielding higher
selectivity and sample loading capacity for certain significant classes of com-
pounds.

All macrocyclic glycopeptides have analogous ionizable groups which have
been proven to play a major role in their association with ionizable analytes
and, thus, chiral recognition. For example, there is an amino group on the agly-
cone portion of each CSP. There is a carboxylic acid moiety on the other side of
macrocyclic basket of both vancomycin and teicoplanin, while the equivalent
group on ristocentin A is methylated. When the sugars are removed from teico-
planin, a dramatic increase in selectivity is observed for a number of types of ra-
cemates [23]. This variety of structures and functionalities on the macrocyclic
glycopeptides provides a unique range of interactions for chiral recognition. A
list of available interactions and their relative strengths is given in Table 1.2.

1 Method Development and Optimization of Enantioseparations2
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Fig. 1.1 Proposed structures of glycopeptide CSPs.
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Fig. 1.1 (continued)



1.2.2
Multi-modal Chiral Stationary Phases

From the structural information given above, it can be seen that the macrocyclic
glycopeptide CSPs are multi-modal such that a variety of mobile phase types
can be used to initiate selectivity [16–18]. Typically, these mobile phase systems
are classified as polar ionic mode (PIM, nonaqueous), reversed-phase mode
(RP, aqueous), polar organic mode (POM, nonaqueous) and normal-phase mode
(NP, nonaqueous). Since these macrocyclic glycopeptides are covalently bonded
to silica gel through multiple (>4) linkages, there is no detrimental effect when
switching from one mobile phase system to another. The only limitation is the
pH range of the aqueous buffer, which should be between 2.8 and 7.0. The en-
antioselectivities of these CSPs are different in each of the mobile phase sys-
tems, because certain molecular interactions (between CSP and analyte) func-
tion more effectively in certain eluent conditions. Table 1.3 shows the break-
down of separation mechanisms versus the mobile phase systems in descend-

1.2 Structural Characteristics of Macrocyclic Glycopeptide CSPs 5

Table 1.1 Structural characterics of macrocyclic glycopeptide chiral ligands.

Vancomycin Teicoplanin Ristocetin A Teicoplanin
aglycone

Molecular weight 1449 1877 2066 1197
Stereogenic centers 18 23 38 8
Macrocycles 3 4 4 4
Sugar moities 2 3 6 0
Hydroxyl groups 9 15 21 7
Amino groups 2 1 2 1
Carboxyl groups 1 1 0 1
Amido groups 7 7 6 7
Aromatic groups 5 7 7 7
Methyl esters 0 0 1 0
Hydrophobic tail 0 1 0 0
pI value 7.2 3.8–6.5 7.5 N/A

Table 1.2 Relative strength of potential interactions between
macrocyclic glycopeptide CSPs and chiral analytes.

Anionic or cationic interactions Very strong

Hydrogen bonding Very strong
�–� complexation Strong
Steric interactions Medium strong
Inclusion complexation Medium
Dipole stacking Weak



ing order of strength. Statistically, the most successful mobile phase for phar-
maceutical compounds is the nonaqueous PIM on macrocyclic glycopeptide
CSPs. This mode accounted for more than 50% of the applications, balanced by
the RP mode, while the POM and NP mode resulted in about 15% of separa-
tions. The most unique characteristic of these CSPs is that they have effective
chiral ionic interaction sites on either side of the aglycone: vancomycin has a
secondary amine and a carboxyl group, teicoplanin and teicoplanin aglycone
have a primary amine and a carboxyl group whereas ristocetin A has one pri-
mary amine only. These ionic sites provide the key interaction site for any com-
pound with ionizable groups. Since chiral separations require three-point simul-
taneous interactions, the subtle differences between these CSPs near the an-
choring site provide complementary separation effects.

1.3
Enantioselectivity as a Function of Molecular Recognition

1.3.1
Ionizable Molecules

1.3.1.1 Polar Ionic Mode
The PIM is a preferred mobile phase system to take advantage of ionic interactions
efficiently. This mobile phase has beneficial MS-compatible components and low
volatility and is easy to manipulate. When dealing with ionizable compounds
(either acid or base), the proximity and availability of functional groups around
the chiral center control the degree of selectivity/separation. For example, when
propranolol was first separated using the PIM on a teicoplanin column, most
�-blockers were also found to be baseline-resolved by the same mobile phase.
These amino alcohols have identical key functionalities around the chiral center

1 Method Development and Optimization of Enantioseparations6

Table 1.3 Possible separation mechanisms for three types of
mobile phase systems on the macrocyclic glycopeptide CSPs.

Polar ionic mode Ionic interaction
Hydrogen bonding
Steric interaction
�–� interaction

Reversed-phase mode Ionic interaction
Hydrogen bonding
Inclusion complexation
Steric interaction

Polar organic/normal-phase mode Hydrogen bonding
�–� interaction
Steric interaction
Dipole stacking
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Fig. 1.2 Selectivity comparison for structurally related amino
alcohols using a teicoplanin column in the polar ionic mode.
Mobile phase, 100:0.1:0.1 MeOH–HOAc–TEA; flow-rate,
1 mL min–1; UV detection at 230 nm.



(secondary amine and a hydroxyl plus an aromatic moiety). The carboxyl group
(COO–) of the teicoplanin provided the anchoring point with the amino group
(secondary –NH+) of the �-blocker. However, the degree of selectivity obtained
was dictated by the bulkiness of alkyl groups off the anchoring site (secondary –
NH+). The best examples to demonstrate this were albuterol, isopreterol and epi-
nephrine, as their structures are very similar. Note the decreased selectivity that is
observed in Fig. 1.2, from albuterol (tert-butyl group) to isoproterenol (isopropyl
group) to epinephrine (methyl group). It follows that steric effects play a signifi-
cant role in chiral selectivity in the PIM system.

The predictability of selectivity is further shown with �-hydroxy-/halogenated
carboxylic acids on a ristocetin A column. Again, the mobile phase is a PIM
(Fig. 1.3). In this example, a carboxylic group of the analyte initiates the interac-
tion with the amino group of the ristocetin A chiral stationary phase. Then, an
H-bonding-capable functional group (bromine or/hydroxyl) enhances the chiral
recognition. The last point of interaction (minor one), which is steric or hydropho-
bic, completes the enantioselective interactions. Note that in the PIM, the eluent is

1 Method Development and Optimization of Enantioseparations8

Fig. 1.3 Enantiomeric separation of �-hydroxy-/halogenated
acids on ristocetin CSP. Column, 250�4.6 mm i.d.; mobile
phase, 100:0.1 MeOH–NH4OH; flow-rate, 1 mL min–1;
UV detection at 230 nm. (a) 2-Bromo-3-methylbutyric acid;
(b) �-phenyllactic acid.



mostly methanol, which has a strong H-bonding capability. With this mobile
phase system, only ionic and H-bond interactions between the CSP and analyte
stand out and interact with each other more effectively, leading to retention and
possible separation. Most profen-type compounds can be separated in a similar
fashion, but only with the ristocetin A CSP. Again, the selectivity is dictated by
the availability and the strength of the additional functionalities (e.g. H-bond, di-
pole) in addition to carboxyl group and aromatic rings. It is not surprising that ibu-
profen demonstrates no selectivity in the PIM since it has only a hydrocarbon
functional group (off the aromatic ring) that will not provide significant interac-
tion in this mobile phase system. Finally, it should be noted that the effectiveness
of these chiral interactions is inversely proportional to the distance from the chiral
center of the analyte. In other words, the shorter the distance of the chiral inter-
actions to the chiral center is, the higher the selectivity will be.

1.3.1.2 Reversed-phase Mode
The typical RP mode involves the use of aqueous buffers as part of the mobile
phase composition. However, macrocyclic CSPs can tolerate from 0 to 95% buf-
fer without any deleterious effects. In this mobile phase system, ionic and H-
bond interactions and hydrophobic inclusion complexation may provide the
needed mechanisms for chiral recognition. For ionizable compounds (acid or
base), the anchoring point is still either carboxyl or amino group, respectively.
Then, H-bond and hydrophobic/inclusion complexation helps complete the chir-
al discrimination of the analyte. There are two reasons why ketoprofen was se-
parated better in the RP mode than in the PIM on the ristocetin A column.
First, in the PIM, the carbonyl group of the analyte is far away from the chiral
center so that the effectiveness of H-bond interaction is compromised. Second,
in the RP mode, the aromatic ring helps stabilize the molecule through inclu-
sion complexation within the cavity of the CSP so that H-bonding with carbonyl
becomes more effective. Another example is �-methylbenzylamine, separated on
a vancomycin (V2) CSP. When the PIM was used initially, just baseline separa-
tion was obtained. When water was added to the mobile phase, the selectivity,
along with separation, increased (Fig. 1.4). By adding water, the structural con-
formation of CSP changes such that it favors inclusion complexation, leading to
a much better separation.

1.3.2
Neutral Molecules

For neutral molecules, the chiral recognition processes rely heavily on the pep-
tide chain and the multiple cavities on the cleft of the CSPs. Therefore, in the
RP mode, in addition to the availability of inclusion complexation, analytes
should have multiple H-bond donor/acceptor sites for a decent separation,
although it is more unpredictable than for ionizable compounds. Compounds
without an ionizable group (neutral) are also suitable for POM/NP systems. In
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Fig. 1.4 From polar ionic mode to reversed-phase mode on a
vancomycin (V2) column. Sample: �-methylbenzylamine.
Mobile phase: (a) 100:0.05 MeOH–NH4TFA; (b) as
(a) + 25% H2O; (c) as (a) + 50% H2O. Flow-rate, 1 mL min–1;
UV detection at 254 nm.
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Fig. 1.5 Polar organic node separations on 5-methyl-5-phenyl-
hydantoin using (a) ristcetin A, (b) vancomycin and
(c) teicoplanin. Mobile phase, 100% MeOH; flow-rate,
1 mL min–1; UV detection at 220 nm.



these systems, the eluent is composed of pure organic solvents with different
degrees of polarity. For molecules with multiple H-bonding (> 2) capability
around the chiral center, the POM should be tried first. The best example is ob-
served with 5-methyl-5-phenylhydantoin (Fig. 1.5). Pure MeOH or EtOH (or a
combination of the two) yields very efficient separations. Other neutral com-
pounds should be tried with typical normal phases such as the combinations of
EtOH [or 2-propanol (IPA)] and hexane (or heptane). Again, the peptide chain
of the macrocyclic glycopeptide CSPs provides ample opportunities for multiple
H-bond interactions, aided by steric, �–� or dipole–dipole interactions to obtain
effective chiral recognition. In addition the above-mentioned solvents, acetoni-
trile (ACN), tetrahydrofuran (THF), methylene chloride, methyl tert-butyl ether
(MtBE) and dimethyl sulfoxide (DMSO) have been used as the major eluent
component or as additives to control selectivity and the separation by modulat-
ing H-bond interactions, by reinforcing steric effects and/or by improving the
compounds’ solubility.

1.4
Complementary Effects

One of the unique characteristics of macrocyclic glycopeptide CSPs is the com-
plementary effects among these six CSPs [18, 20]. Under the same mobile
phase composition, if one CSP has shown marginal selectivity, other glycopep-
tide phases will most likely yield better selectivity. Also, by utilizing different
linkers to the silica surface, enhanced selectivity could be obtained between van-
comycin columns, V and V2. Teicoplanin demonstrated a similar effect between
T and T2, for the same reason. Figure 1.6 demonstrates this complementary ef-
fect on these two phases. Also, propranolol, for example, is just baseline re-
solved on a teicoplanin column in the PIM. When the same mobile phase is
used on a teicoplanin aglycone column, better separation is obtained. In addi-
tion, the elution order is reversed. Figure 1.7 demonstrates these unique phe-
nomena. Also, as mentioned in the previous section, when one type of mobile
phase did not yield satisfactory results, better separation may be obtained by
switching to one of the other mobile phase types (see Fig. 1.4).

1.5
Method Development

The macrocyclic CSPs are multi-modal phases and can be switched from one
mobile phase system to another without any deleterious effects. The PIM offers
the advantages of broad selectivity, high efficiency, low back-pressure, short anal-
ysis time, extended column life, high capacity and excellent prospects for pre-
parative-scale applications. Whenever a racemic compound is targeted for sepa-
ration, its structure can give a hint as to which mobile phase/CSP combination

1 Method Development and Optimization of Enantioseparations12



should be approached. Table 1.4 summarizes the relationship between CSPs,
mobile phase system and type of compound to be analyzed. A typical screening
protocol in HPLC for the PIM is 100 :0.1 :0.1 (v/v/v) MeOH–HOAc–TEA
whereas for the RP mode it is 20 :80 MeOH–buffer (pH 5), for the POM it is
100% EtOH and for the NP mode it is 30 :70, EtOH–heptane.
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Fig. 1.6 Comparison of two vancomycin col-
umns, V (solid line) and V2 (broken line), and
two teicoplanin columns, T (solid line) and T2
(broken line) in polar ionic mode.

(a) Tolperisone; (b) terbutaline. Mobile
phase, 100 : 0.1 MeOH–NH4TFA; flow-rate,
1 mL min–1; UV detection at 230 nm.



With LC/MS platforms, 100 :0.5 :0.3 (v/v/v) MeOH–HOAc–NH4OH or 100 :0.1
(v/w%). MeOH–ammonium formate is recommended for screening in the PIM.
In the RP mode, volatile additives such as formic acid–acetic acid and ammonium
acetate–formate salts can be used.

1 Method Development and Optimization of Enantioseparations14

Fig. 1.7 Complementary effect and reversal of elution order
on propranolol using (a) a teicoplanin and (b) a teicoplanin
aglycone column. Mobile phase, 100 :0.1 MeOH–NH4TFA;
flow-rate, 1 mL min–1.

Table 1.4 Compound type versus mobile phase system on all
the macrocyclic glycopeptide CSPs. A double tick means that
the selection is preferred based on the statistics.

Mobile phase type b) Molecules a)

Acidic (–) Basic (+) Neutral

PIM RP PIM RP POM NP RP

Vancomycin
� � � � � ��

Vancomycin 2
�� �� � � �

Teicoplanin
�� �� �� � c) � � ��

Teicoplanin 2
�� �� �� � c) � � �

Teicoplanin aglycone
�� �� � �� �� �

Ristocetin A
�� �� � � ��

a) Samples are classified into three groups according to their
ionizable functionality around the chiral center.

b) PIM, polar ionic mode; RP, reversed-phase mode; POM,
polar organic mode; NP, normal-phase mode.

c) Mobile phase consists of >70% ACN.



1.6
Optimization Procedures

1.6.1
Polar Ionic Mode

This anhydrous organic solvent system uses methanol as primary carrier with
addition of small amounts of acid and base functioning as the primary mecha-
nism to maintain proper charges on both the CSP and the ionizable compound
being chromatographed. Since ionic interaction is the key, the ratio of acid to
base controls both the selectivity and retention, because the changes in the ratio
of acid to base affect the degree of charge on both the glycopeptides and the
analytes. As in the case of the basic analyte mianserin (Fig. 1.8), the highest se-
lectivity is obtained when the HOAc:TEA ratio is 3 :1 whereas very little selectiv-
ity is observed when the ratio is 1 :3. When the amino group is fully positively
charged while the COOH of vancomycin maintains sufficient negative charge,
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Fig. 1.8 Acid–base effect in the polar ionic mode on a vancomycin column.
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Fig. 1.9 Ammonium salt effect in the polar ionic mode on (a) a teicoplanin (T2)


