DEVELOPING CHEMICAL
INFORMATION SYSTEMS

AN OBJECT-ORIENTED APPROACH
USING ENTERPRISE JAVA

Fan Li
Merck & Company, Inc.
Rahway, New Jersey

NNNNNNNNNNNN
w

]
NNNNNNNNNNNN

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

Innodata
File Attachment
0470068787.jpg

DEVELOPING CHEMICAL
INFORMATION SYSTEMS

BICENTENNIAL

1807

@WILEY
2007

BICENTENNIAL

TVINNSLN3DI®

BICENTENNIAL

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

Vbtosnind. Pae /B BT Méu

WiLLiIAM J. PESCE PETER BOOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE OFFICER CHAIRMAN OF THE BOARD

DEVELOPING CHEMICAL
INFORMATION SYSTEMS

AN OBJECT-ORIENTED APPROACH
USING ENTERPRISE JAVA

Fan Li
Merck & Company, Inc.
Rahway, New Jersey

NNNNNNNNNNNN
w

]
NNNNNNNNNNNN

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN-13: 978-0-471-75157-1
ISBN-10: 0-471-75157-X

Printed in the United States of America
10 9 87 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

ForYingduo, Melodee, and Michael

I PREFACE

Although I have published several scientific articles throughout my academic
career spanning 15 years, this is my first book. I consider it both an opportu-
nity to share my experience of developing chemical information systems for
the pharmaceutical industry and an opportunity for me to learn. Therefore, I
do not expect this book to be perfect. I welcome feedback from the readers so
that I can improve on the material for my next book.

Hundreds of books are in the marketplace about object-oriented analysis,
design, and programming. A handful of books are about cheminformatics.
But no book exists about how to apply object technology to the cheminfor-
matics domain. This book is an attempt to fill that gap.

For a long time, chemical information systems have been considered spe-
cial and have been dominated by a few vendor proprietary solutions. The costs
for development and support of these systems are extremely high. I strongly
believe that era is over. More and more cheminformatics software vendors
provide open APIs for their proprietary implementations or develop their soft-
ware using open technologies altogether, which offers tremendous opportu-
nity for organizations to acquire or develop their cheminformatics solutions at
a much reduced cost and with increased productivity. There is no need to rely
on a single vendor to provide end-to-end solutions. This book shows how to
apply the software industry’s best practices, principles, and patterns while
effectively integrating vendor tools to solve chemical informatics problems.

Chemical information systems are complex. This book does not cover
every aspect of them. However, it uses a chemical registration system as an
example of how to use an object-oriented approach to develop systems in the
cheminformatics domain.

This book assumes the reader has basic knowledge of object-oriented
analysis, design and programming, UML, Java, and concepts of chemical
registration and searching.

FaN L1

Edison, New Jersey
fan_li_1129@yahoo.com

vii

viii PREFACE
ORGANIZATION OF THE BOOK

Chapter 1 gives an introduction to the book: some historical background, the
purpose of the book, and some basic information on chemical information
systems.

Chapters 2—8 provide some general information and guidance for devel-
oping enterprise chemical information systems using object technology and
the agile iterative process. I firmly believe that both object-oriented analysis
and design principles and the agile iterative process are important to the suc-
cess of any software development projects. The combination of the two helps
a team to do the right things and to do the things right.

Chapters 9-15 use the chemical registration system as a case study to
illustrate how to develop chemical information systems using the object-ori-
ented approach and the Java technology. Chapter 9 presents an example of
capturing functional requirements using a use case specification document.
Other chapters talk about the implementations of each layer of the chemical
registration system. Many analysis and design techniques are presented in
great detail, and there are many code examples and UML diagrams in these
chapters.

Chapter 16 summarizes the key points of the whole book.

EEEN ACKNOWLEDGMENTS

During my career at Merck, I received support from many people. I would
first like to thank the management team of Merck Research Information
Services for Basic Research: Dr. Ingrid Akerblom, Dr. Allan Ferguson, Dr.
Gary Mallow, and Dr. Sanjoy Ray who supported my idea of writing this
book. Without their encouragement, this book would have not been possible.

Special thanks to the Merck Chemical Informatics Application Engineering
Team: Rachel Zhao, Arik Itkis, Xiping Long, LiMiao Chang, Sean Morley,
Vaniambadi Venkatesan, Jarek Pluta, Irene Fishman, Jeanette Cabardo, and
Dr. Hank Owens, without whom much of my research at Merck would not
have been possible. A lot of information in the book is inspired by their work.
I also thank Dr. Christopher Culberson of Molecular Systems of Merck
Research Laboratories, who helped tremendously during the development of
the Merck compound registration system.

Also, I thank my other colleagues at Merck: John Simon, Dr. Yao Wang,
Dr. Annie Samuel, Dr. Jay Mehta, James Goggin, Andrew Ferguson, and
Marianne Malloy. They were all part of the Merck Chemical Registration
System Project Team, and many of them shared invaluable knowledge about
compound data management with me.

POSTSCRIPT

I'made a career change after I finished this book. I am now working at Goldman
Sachs as a Technical Lead. This book was in the production phase when I
joined Goldman Sachs. I am grateful to Allen Hom and Johnathan Lewis,
managing directors at Goldman Sachs, for their support. Thanks to Sue Su,
who helped me to establish contact with Wiley. Also, I thank the editorial and
production team at Wiley: Dr. Darla Henderson, Senior Editor, Rebekah Amos,
Editorial Assistant, and Kris Parrish, Production Editor.

I CONTENTS

1. Introduction

o 0 N &N Ut A

10.

11.
12.
13.
14.
15.
16.

. Software Development Principles: High-Low

Open-Closed Principles

. Introduction to the Object-Oriented Approach

and Its Benefits

. Build Versus Buy

. The Agile and Iterative Development Process
. UML Modeling

. Deployment Architecture

. Software Architecture

. A Case Study: Develop a Chemical Registration

System (CRS)

A Chemical Informatics Domain Analysis
Object Model

Presentation Layer
Business Layer

Entity Dictionary
Chemistry Intelligence API
Data Persistence Layer

Put Everything Together

Bibliography

Index

12
23
26
34
38
43

49

61
65
69
147
168
186
204

207

209

Xi

I CHAPTER 1

Introduction

1.1 BACKGROUND

In 1999, I was asked by my manager to lead an application development team
to lay out a strategic plan for the next generation of chemical information
systems for Merck Research Laboratories. Back then, Java technology was
entering its fifth anniversary, and the J2EE 1.0 specification was just launched
by Sun Microsystems. However, almost all chemical information systems
used by chemical, pharmaceutical, agricultural, and biotech companies were
developed using vendor proprietary technologies such as MDL ISIS, which is
the de facto industry standard. Although many people recognized that the cost
of licensing, developing, and maintaining these legacy systems was high, an
alternative to those systems was unclear. I have to admit that there was proba-
bly no viable alternative at all back then.

Since its inception 30 years ago, object-oriented technology has been
successfully applied in software development in many industries for many
years. However, it is a new beast even now in the chemical informatics
domain. Many chemistry software vendors have been slow in reacting to
technology evolution. As a user or developer, not many technological choices
are available. As an employer, it is difficult and costly to find and recruit
developers who have experience in those vender proprietary development
platforms. There is also a fear factor in many organizations; moving away
from existing technologies to new ones, no matter how promising they may
be, is risky. This risk is true even though many of the limitations of the exist-
ing technologies justify the changes: performance and flexibility are low,
whereas development, maintenance, and licensing costs are high.

From the middle to late 1990s, the situation changed when major chem-
istry software vendors started migrating their chemical information databases
from proprietary formats to Oracle-based relational databases. Another posi-
tive move was that these vendors also started releasing chemical structure

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

2 INTRODUCTION

data cartridges using the Oracle® Extensibility Framework. These prod-
ucts included Accelrys® Accord for Oracle, CambridgeSoft® Oracle
Cartridge, Daylight® DayCart, Tripos® Auspyx for Oracle, and MDL®
MDLDirect. These changes were caused at least in part by the competition
among these vendors. These cartridges enable people to use direct SQL to
query and update chemical databases, something that could only be done
using vendor proprietary programming interfaces in the past. Software
developers in the chemical informatics field now have the opportunity to
use open, industry standards and more interesting technologies to do their
work (like it or not, having fun is one of the biggest factors of software
development productivity).

Having programmed in Java since its inception, I was a firm believer that
Enterprise Java could be one alternative to vendor proprietary technologies. I
proved to my managers that I was right when we finally released the first
compound registration system using J2EE at Merck in 2003.

Chemical information systems are complex because they process chemical
structures—a very special and complex sort of data. Indexing and querying
chemical structure data require special techniques, and a handful of software
vendors that have the domain expertise have come up with data storage and
query solutions. The complexity also deterred many organizations from
developing customized chemical information systems in-house. Instead, they
hire outside consultants to implement these systems on their behalf. Many
software developers in these consulting firms are not professional software
devolopers by training but ended up becoming programmers for one reason
or another. I remember during the technology boom in the 1990’s, many
“seasonal” programmers wanted to find IT jobs. Many of them did so simply
because they were tired of what they were doing and believed IT jobs were
easy and less stressful. People were under the impression that one could
become a good programmer by just attending a two-week programming
training course and learning how to write a “Hello World” program—a gross
misperception. Software development projects are challenging and costly.
They require special skills and disciplined practices, or they may fail badly.

The advantage for chemists in developing chemical information systems is
obvious: they know the domain subject e.g., chemistry and what the systems
are supposed to do very well. The disadvantage is that they do not necessarily
know what it takes to develop enterprise strength software systems. There are
certain people who know both very well, but it is not always the case. The con-
sequence is that the systems developed can be hard to maintain and debug and
are not as good in performance and scalability as you may expect. In many
cases, only the person who wrote the code can understand and maintain it. I do
not mean to offend anybody because this is purely due to a lack of training and
experience and has nothing to do with talent. Neither am I suggesting that

CHEMICAL STRUCTURE ENCODING SCHEMA 3

being trained in software engineering automatically makes a person a good
software developer. In fact, many chemists working in the pharmaceutical and
chemical industries have advanced degrees and have trained themselves to be
good software developers. I was a physicist by training initially myself and
acquired a computer science degree later in my career. I learned low coupling
and high cohesion principles in graduate school. They turned out to be the two
most important principles in software development that have guided me since
then. Software development is both an art and an engineering discipline,
which in my mind requires formal training, years of practice, and continuous
learning and exploration of new and better techniques.

Chemical informatics may mean different things to different people. I
am not here to provide an authoritative definition. However, as it is the
topic of this book, I will give a definition from the IT aspect. Chemical
informatics is about capturing, storing, querying, analyzing, and visualiz-
ing chemical data electronically. Modern chemical information systems are
challenged to facilitate industry’s productivity growth by effectively han-
dling a huge amount of data. Making sure these systems are robust and
high-speed is crucial to the competitive advantage of any discovery
research organization. Chemical information systems usually require the
following tools.

1.2 CHEMICAL STRUCTURE ENCODING SCHEMA

One of the most widely used chemical structure-encoding schemas in the
pharmaceutical industry is the MDL® Connection Table (CT) File Format.
Both Molfile and SD File are based on MDL® CT File Format to represent
chemical structures. A Molfile represents a single chemical structure. An SD
File contains one to many records, each of which has a chemical structure and
other data that are associated with the structure. MDL Connection Table File
Format also supports RG File to describe a single Rgroup query, rxnfile,
which contains structural information of a single reaction, RD File, which
has one to many records, each of which has a reaction and data associated
with the reaction, and lastly, MDL’s newly developed XML representation of
the above—XD File. The CT File Format definition can be downloaded from
the MDL website: http://www.mdl.com/downloads/public/ctfile/ctfile.jsp.

Other structure-encoding schemas are developed by software vendors and
academia such as Daylight® Smiles, CambridgeSoft® ChemDraw Exchange
(CDX), and Chemical Markup Language (CML), and they all have advan-
tages and disadvantages. The MDL CT File Format is the only one that is
supported by almost all chemical informatics software vendors.

Figure 1.1 is the structure of aspirin.

4 INTRODUCTION

Figure 1.1 Structure of the aspirin molecule.

The Molfile representation of the above structure is as follows.
-ISIS— 07240513032D

13130000 0 0 0 0999 V2000

—1.1556 —0.1291 0.0000C 000000000000
—1.1568 —0.9565 0.0000C 000000000000
—0.4419 —1.3694 0.0000C 000000000000
0.2745 —0.9560 0.0000C 000000000000
0.2716 —0.1255 0.0000C 000000000000
—0.4437 0.2836 0.0000C 000000000000
—0.4462 1.1086 0.0000C 000000000000O0
—1.1667 1.5250 0.00000 000000000000
0.9846 0.2897 0.00000 000000000000
1.7006 —0.1201 0.0000C 000000000000
2.4135 0.2951 0.0000C 000000000000
1.7037 —0.9451 0.00000 000000000000
0.2677 1.5221 0.00000 000000000000

1220000
6710000
3420000
7820000
5910000
4510000
91010000
2310000
101110000
5620000
101220000
6110000
71310000
M END

The Smiles representation of the same structure is far simpler:
C(=0)(O)cleccecclOC(=0)C.

1.3 CHEMICAL STRUCTURE RENDERING AND EDITING TOOLS

MDL® ISISDraw and CambridgeSoft® ChemDraw are probably the most
widely used structure editing tools. Both companies have a Web browser

CHEMISTRY INTELLIGENCE SYSTEMS 5

plug-in version of these structure editing tools—MDL® ChimePro Plug-in
and CambridgeSoft® ChemDraw Plug-in. MDL ChimePro also includes a
JavaBean component, which can be used either as applets or in Java Swing
based client applications.

Other products on the market include Daylight® Depict Toolkit, Accelrys®
Discovery Studio ViewerPro, and Chem Axon® Marvin Bean.

1.4 CHEMICAL INFORMATION DATABASES

Data storage and querying are the most fundamental requirements of all
informatics systems. Thanks to the Oracle® Extensibility Framework (a.k.a.
Oracle Data Cartridge Technology), chemical structure data can be stored
and queried using direct SQL and special query operators, such as substruc-
ture search, flexmatch search, similarity search, and formula search. Also,
some indexing techniques make these otherwise slow searches fast. Detailed
discussions about these databases and cartridges are beyond the scope of this
book. Please refer to the vendor’s website and product documentation for
more information.

1.5 CHEMISTRY INTELLIGENCE SYSTEMS

These tools perform structure validations, making sure molecule structures
follow certain conventions that are defined by an organization, property calcu-
lations such as molecular weight, molecular formula, pK,, and so on, and salt
handling. Many chemistry software vendors provide chemistry intelligence
software. Some vendors may encapsulate chemical intelligence components in
their data cartridge products. Some may bundle it with their structure editing
tools. Some may offer it as independent products. MDL, for example, used to
have it as part of its ISIS product suite. Now it has a product called Cheshire
that is independent of ISIS and can be integrated with both Microsoft and Java
platforms.

Since each organization has unique business rules, it is highly desirable
that the chemistry intelligence software is flexible to allow customized
implementations of chemistry rules handling. MDL Cheshire does a pretty
good job from that perspective.

The above tools provide fundamental building blocks of chemical
information systems. With these tools in place, you can pretty much
develop customized solutions that meet your specific technical and business
needs.

I CHAPTER 2

Software Development Principles:
High—-Low Open-Closed Principles

One of the biggest challenges of all software projects is managing changes.
This is true for several reasons. First, most programmers prefer developing
new systems over maintaining existing systems because they feel the former is
more challenging and creative and has a better sense of achievement than the
latter. Developers do not want to spend most of their time supporting existing
systems. Second, many software systems are poorly documented and hard to
understand. Changes in one place may have unpredictable side effects in other
places. Many software systems are poorly designed such that it is impossible
to make changes without breaking the system.

However, no matter how much you hate it, changes in software systems
are inevitable. Usually software systems that cannot be changed are short-
lived and cannot survive when the business evolves, which happens all the
time in drug discovery research. Isn’t it nice that you could always add new
behaviors to or alter the existing behavior of your software by adding new
code without even touching the existing code? Wouldn’t it be even nicer if
there were proven solutions that could help you achieve this? This is exactly
what software design principles and design patterns are about.

There are four fundamental and yet important software design princi-
ples—Ilow coupling, high cohesion, open for extension, and closed for
changes. We can simply call them high—low open—closed principles.

2.1 LOW COUPLING

The low coupling principle tells us that a software module should be loosely
coupled with other modules in the system. Coupling is a measure of how
strongly one module is connected to, has knowledge of, or depends on other

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

6

LOW COUPLING 7

modules (Larman, 2005). High coupling makes the system hard to under-
stand, change, or extend.

Low Coupling Principle: Complexity can be reduced by designing the
system with the weakest possible coupling between modules.

There are two aspects to coupling: one is the number of modules to which
one module is coupled; the other is how rigid these couplings are. The low cou-
pling principle says both of them should be low. Low coupling reduces the
impact of changes in one module on the rest of the system. A good analogy to
this is a business organization that requires collaborations between employees.
A well-organized and efficient business requires only a few collaborators for an
employee to do his or her work; whereas in a poorly organized business, each
employee needs many collaborators to do his or her work. In such an organiza-
tion, there is a greater chance that things will break.

In object-oriented software systems, there are two types of couplings. One
is inheritance (also referred to as Is-A relationship). The other is composition
(also referred to as Has-A relationship). Inheritance is a more rigid coupling
than composition and should be avoided if possible. In an inheritance hierar-
chy, changes in the interface or in the base class impose the same changes in
all the subclasses. This is not necessarily a bad thing as long as all classes in
the same class hierarchy share the same behaviors. (I mean behavior at the
interface level, not at the implementation level, because each class in the hier-
archy can have its own implementation of the behaviors.) In fact, inheritance
gives you the benefits of code reuse. However, if classes in a class hierarchy
do not always have the same behavior, then inheritance is not a good choice;
in which case, you should consider using composition.

Figure 2.1 shows coupling by inheritance and how changes in Base prop-
agate to all its concrete subclasses.

In a composition relationship, one object can shield changes in another
object that it “owns.” In Figure 2.2, Class1 owns Class2. Changes in Class2
are hidden to the clients of Class] because Class1 wraps Class2. Figure 2.2
shows coupling by composition.

Composition is a very powerful technique and is used in many Gang of
Four (GoF) design patterns (Gamma et al., 1995) such as Strategy, State, and
Command. You can further reduce coupling by having Class1 referencing an
interface or an abstract class instead of a concrete class as in Figure 2.3. This
design enables the system to dynamically swap implementation Class2
and Class3 at runtime. Figure 2.3 shows coupling by composition through
interface.

This kind of reduced coupling has direct benefits to the goals of open-
closed principles as you can see later in this chapter.

8 SOFTWARE DEVELOPMENT PRINCIPLES: HIGH-LOW OPEN-CLOSED PRINCIPLES

Base

S behaviori()
Subt | [sub2] [subs
[i [1 [I
Members in a class hierarchy
are strongly coupled. If
behavior2 is added to Base,
all sub classes are forced to
implement it no matter
whether behavior2 belongs to
them or not. Base
< behavior1()
Q behavior2()
[swt] [sub2] [sus |
I 1 I 1 I 1
| 1 | 1 |]
Figure 2.1 Coupling by inheritance.
Class Class2
S behavior1()
Class1 hides
changes in Class2
Class2
Class1

S behavior1()
S behavior2()

Figure 2.2 Coupling by composition.

2.2 HIGH COHESION

Cohesion is a measure of how strongly related or focused are the responsibil-
ities of a module. A module is highly cohesive if its responsibilities are highly
focused, which can be translated to the notion that a module’s responsibilities
should all be related. Or to be more extreme, a module should have only one

OPEN FOR EXTENSION AND CLOSED FOR CHANGES 9

Class1 O

Interface

Sbehaviori()

Class2 Class3

Figure 2.3 Coupling by composition through interface.

responsibility or one reason to change. Robert Martin’s (2003) book has very
good explanations about the high cohesion principle.

High Cohesion Principle: Responsibilities of a module should be highly
related and focused so that the module has only one reason to change.

Some techniques can help you to achieve high cohesion—one of which is
to use descriptive names for your classes and methods. Descriptive names
can help you to keep the classes and methods focused. When you add
responsibilities to your classes or methods, think about whether these
responsibilities have any relevancy to the names of the class and method.
If not, most likely it does not belong there. Never use ambiguous names
for your classes and methods because they make the code hard to under-
stand and most likely lead to low cohesive design. The same rule applies
to member and local variables. Here are some bad names: MyClass and
myMethod. These names should never be used in your code (although I
use these names in this chapter to describe some concepts, they are not
recommended in the real world). Here are some good names: Molstructure,
ChemistryConventionChecker, and CompoundRegistrationService. Another
technique is to keep the module short. If the size of a class or a method is
large, usually it is a bad sign indicating the class or method is not focused
enough and you should consider moving some of the responsibilities out of
the class or method.

High cohesion makes the system easy to understand, reuse, and extend.

2.3 OPEN FOR EXTENSION AND CLOSED FOR CHANGES

These two principles are closely related.

Open (for Extension) — Closed (for Changes) Principles: Modules
should be open for extension and adaptation and closed for modifi-
cation in ways that affect its clients.

