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Preface

Carbohydrates are the most abundant biomolecules on Earth. Although information
about these fascinating natural compounds is not yet complete, we have already
learned about some crucial aspects of the carbohydrate involvement in damaging
cellular processes such as bacterial and viral infections, development and growth of
tumors, metastasis, septic shock that are directly associated with deadly diseases of
the twenty-first century, such as AIDS, cancer, meningitis and septicemia. The
tremendous medicinal potential of glycostructures has already been acknowledged
by the development of synthetic carbohydrate-based vaccines and therapeutics. The
elucidation of the mechanisms of carbohydrate involvement in disease progression
would be further improved if we could rely on the detailed knowledge of the
structure, conformation and properties of the carbohydrate molecules. Therefore,
the development of effective methods for the isolation and synthesis of complex
carbohydrates has become critical for the field of glycosciences. Although significant
improvements of the glycoside and oligosaccharide synthesis have already emerged,
a variety of synthetic targets containing challenging glycosidic linkages cannot yet be
directly accessed.
A vast majority of biologically and therapeutically active carbohydrates exist as

polysaccharides (cellulose, chitin, starch, glycogen) or complex glycoconjugates
(glycolipids, glycopeptides, glycoproteins) in whichmonosaccharide units are joined
via glycosidic bonds. This linkage is formed by a glycosylation reaction, most
commonly a promoter-assisted nucleophilic displacement of the leaving group
(LG) of the glycosyl donor with the hydroxyl moiety of the glycosyl acceptor. Other
functional groups on both the donor and the acceptor are temporarily masked with
protecting groups (P). These reactions are most commonly performed in the pre-
sence of an activator: promoter or catalyst. As the new glycosidic linkage creates a
chirality center, particular care has to be taken with regard to the stereoselectivity.
Although in the natural environment specificity and selectivity of an enzyme ensure
the stereoselectivity of glycosylation, synthesis of synthetic carbohydrate faces a
major challenge in comparison to the synthesis of other natural biopolymers, that
is proteins and nucleic acids.
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Although mechanistic studies of the glycosylation reaction are scarce, certain
conventions have already been established. Pioneering mechanistic work of
Lemieux was enriched by recent studies by Bols, Boons, Crich, Gin, Kochetkov,
Schmidt, Whitfield and others. 1,2-trans Glycosides are often stereoselectively
obtained with the assistance of the 2-acyl neighboring participating group. In case
of ether-type nonparticipating substituents, the glycosylation proceeds with poorer
stereocontrol that results in mixtures of diastereomers, which makes the synthesis
of 1,2-cis glycosides a notable challenge.
Since the first attempts at the turn of the twentieth century, enormous progress

has been made in the area of the chemicalO-glycoside synthesis. However, it is only
in the past two–three decades that the scientific world has witnessed a dramatic
improvement in the methods used for glycosylation. Recently, an abundance of
glycosyl donors that can be synthesized under mild reaction conditions and that are
sufficiently stable toward purification, modification and storage have been devel-
oped. Convergent synthetic strategies enabling convenient and expeditious assem-
bly of oligosaccharides from properly protected building blocks with the minimum
synthetic steps have also become available.
As it stands, many of the recent developments in the area of chemical glycosyla-

tion still remain compromised when applied to the stereoselective synthesis of
difficult glycosidic linkages. These special cases include the synthesis of 1,2-cis
glycosides, especially b-mannosides and cis-furanosides, 2-amino-2-deoxyglyco-
sides, 2-deoxyglycosides and a-sialosides. In spite of the considerable progress
and the extensive effort in this field, no universal method for the synthesis of targets
containing these types of linkages has yet emerged. Therefore, these difficult cases
will be discussed individually.
This book summarizes the recent advances in the area of chemical glycosylation

and provides updated information regarding the current standing in the field of
synthetic carbohydrate chemistry. An expansive array of methods and strategies
available to a modern synthetic carbohydrate chemist is discussed. The first chapter
(Chapter 1) discusses major principles of chemical glycosylation, reaction mechan-
isms, survey methods for glycosylation and factors influencing the reaction out-
come, as well as describes the strategies for expeditious synthesis of oligosaccharide.
Each subsequent chapter discusses a certain class of glycosyl donors. Methodologies
developed to date are classified and discussed based on the type of the anomeric
leaving group: halogens (Chapter 2), oxygen-based derivatives (Chapter 3) and
sulfur/selenium-based derivatives (Chapter 4). Bicyclic compounds, 1,2-dehydro
derivatives, miscellaneous glycosyl donors and indirect synthetic methods are dis-
cussed in Chapter 5. Each chapter will discuss the following aspects of a particular
methodology or approach, wherever it is applicable:
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(1) Introduction (relevant to this class of glycosyl donors/methods)
(2) Synthesis of glycosyl donor
(3) Glycosylation (major activators/promoters, particulars of the reaction mechan-

ism, examples of both 1,2-cis and 1,2-trans glycosylations)
(4) Application to target/total synthesis (oligosaccharides, glycoconjugates, natural

products)
(5) Special topics (synthesis of b-mannosides, furanosides, sialosides, glycosides

of aminosugars and deoxysugars, if applicable)
(6) Conclusions and future directions
(7) Typical experimental procedures
(8) References.
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University of Missouri – St. Louis
USA
January, 2008
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1
General Aspects of the Glycosidic Bond Formation
Alexei V. Demchenko

1.1
Introduction

Since the first attempts at the turn of the twentieth century, enormous progress
has been made in the area of the chemical synthesis of O-glycosides. However, it
was only in the past two decades that the scientific world had witnessed a dramatic
improvement the methods used for chemical glycosylation. The development of
new classes of glycosyl donors has not only allowed accessing novel types of
glycosidic linkages but also led to the discovery of rapid and convergent strategies
for expeditious oligosaccharide synthesis. This chapter summarizes major prin-
ciples of the glycosidic bond formation and strategies to obtain certain classes of
compounds, ranging from glycosides of uncommon sugars to complex oligosac-
charide sequences.

1.2
Major Types of O-Glycosidic Linkages

There are two major types of O-glycosides, which are, depending on nomen-
clature, most commonly defined as a- and b-, or 1,2-cis and 1,2-trans glycosides.
The 1,2-cis glycosyl residues, a-glycosides for D-glucose, D-galactose, L-fucose,
D-xylose or b-glycosides for D-mannose, L-arabinose, as well as their 1,2-trans counter-
parts (b-glycosides for D-glucose, D-galactose, a-glycosides for D-mannose, etc.), are
equally important components in a variety of natural compounds. Representative
examples of common glycosides are shown in Figure 1.1. Some other types of
glycosides, in particular 2-deoxyglycosides and sialosides, can be defined neither as
1,2-cis nor as 1,2-trans derivatives, yet are important targets because of their com-
mon occurrence as components of many classes of natural glycostructures.
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1.3
Historical Development: Classes of Glycosyl Donors

The first reactions performed by Michael (synthesis of aryl glycosides from glycosyl
halides) [1] and Fischer (synthesis of alkyl glycosides from hemiacetals) [2] at the end
of the nineteenth century showed the complexity of the glycosylation process. The
discovery of the first controlled, general glycosylation procedure involving the nu-
cleophilic displacement of chlorine or bromine at the anomeric center is credited to
Koenigs and Knorr [3]. The glycosylations were performed in the presence of
Ag2CO3, which primarily acted as an acid (HCl or HBr) scavenger. At that early
stage, glycosylations of poorly nucleophilic acceptors such as sugar hydroxyls were
sluggish and inefficient; hence, even the synthesis of disaccharides represented a
notable challenge. The first attempts to solve this problem gave rise to the develop-
ment of new catalytic systems that were thought to be actively involved in the
glycosylation process [4]. Thus, Zemplen and Gerecs [5] and, subsequently,
Helferich and Wedermeyer [6] assumed that the complexation of the anomeric
bromides or chlorides with more reactive, heavy-metal-based catalysts would
significantly improve their leaving-group ability. This approach that has become
a valuable expansion of the classic Koenigs–Knorr method made it possible to
replace Ag2CO3 or Ag2O bymore activemercury(II) salt catalysts. The early attempts

Figure 1.1 Common examples of O-glycosides.
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to improve the glycosylation process have revealed the necessity to find a delicate
balance between the reactivity and stereoselectivity [7,8]. Indeed, it was noted that
faster reactions often result in a decreased stereoselectivity. At around the same
time, the first attempts to involve other classes of anomeric leaving groups (LGs)
resulted in the investigation of peracetates as glycosyl donors [9].
Seminal work of Lemieux [10] and Fletcher and coworkers [11,12] has led to the

appreciation that the reactivity of the glycosyl halides and the stereoselectivity of
glycosylation are directly correlated to the nature of the protecting groups, especially
at the neighboring C-2 position. From early days, it has been acknowledged that
peracylated halides often allow stereoselective formation of 1,2-trans glycosides.
Later, this phenomenon was rationalized by the so-called participatory effect of the
neighboring acyl substituent at C-2. Although occasionally substantial amounts of
1,2-cis glycosides were obtained even with 2-acylated glycosyl donors, the purposeful
1,2-cis glycosylations were best achieved with a nonparticipating ether group at C-2,
such as methyl or benzyl. Further search for suitable promoters for the activation of
glycosyl halides led to the discovery of Ag-silicate that proved to be very efficient for
direct b-mannosylation, as these reactions often proceed via a concerted SN2 mech-
anism [13,14].
For many decades classic methods, in which anomeric bromides, chlorides,

acetates or hemiacetals were used as glycosyl donors, had been the only procedure
for the synthesis of a variety of synthetic targets ranging from simple glycosides to
relatively complex oligosaccharides (Figure 1.2). Deeper understanding of the
reaction mechanism, driving forces and principles of glycosylation have stimu-
lated the development of other methods for glycosylation, with the main effort
focusing on the development of new anomeric leaving groups [15,16]. During the
1970s to early 1980s, a few new classes of glycosyl donors were developed. The
following compounds are only the most representative examples of the first wave
of the leaving-group development: thioglycosides by Ferrier et al. [17], Nicolaou
et al. [18], Garegg et al. [19] and others [20]; cyanoethylidene and orthoester
derivatives by Kochetkov and coworkers [21,22]; O-imidates by Sinay and co-
workers [23] and Schmidt and Michel [24]; thioimidates including S-benzothia-
zolyl derivatives by Mukaiyama et al. [25]; thiopyridyl derivatives by Hanessian et
al. [26] and Woodward et al. [27] and glycosyl fluorides by Mukaiyama et al. [28]
(Figure 1.2). Many glycosyl donors introduced during that period gave rise to
excellent complimentary glycosylation methodologies. Arguably, trichloroacetimi-
dates [29,30], thioglycosides [31–33] and fluorides [34,35] have become the most
common glycosyl donors nowadays.
A new wave of methods arose in the end of the 1980s, among which were glycosyl

donors such as glycosyl acyl/carbonates [36–38], thiocyanates [39], diazirines [40],
xanthates [41], glycals [42,43], phosphites [44,45], sulfoxides [46], sulfones [47],
selenium glycosides [48], alkenyl glycosides [49–51] and heteroaryl glycosides [52]
(Figure 1.2). These developments were followed by a variety of more recent meth-
odologies and improvements, among which are glycosyl iodides [53], phosphates
[54], Te-glycosides [55], sulfonylcarbamates [56], disulfides [57], 2-(hydroxycarbonyl)
benzyl glycosides [58] and novel thio- [59,60] and O-imidates [61,62] (Figure 1.2). In
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addition, a variety of new recent methodologies bring the use of classic glycosyl
donors such as hemiacetals to entirely different level of flexibility and usefulness
[63]. These innovative concepts will be discussed in the subsequent chapters dealing
with particular classes of clycosyl donors..

1.4
General Reaction Mechanism

Detailed glycosylation mechanism has not been elucidated as yet; therefore, specu-
lations and diagrams presented herein are a commonly accepted prototype of the
glycosylation mechanism. Most commonly, the glycosylation reaction involves nu-
cleophilic displacement at the anomeric center. As the reaction takes place at the
secondary carbon atom with the use of weak nucleophiles (sugar acceptors), it often
follows a unimolecular SN1mechanism. Glycosyl donors bearing a nonparticipating
and a participating group will be discussed separately (Scheme 1.1a and b, respec-
tively). In most cases, an activator (promoter or catalyst) assisted departure of the
anomeric leaving group results in the formation of the glycosyl cation. The only

Figure 1.2 Survey of glycosyl donors.
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possibility to intramolecularly stabilize glycosyl cation formed from the glycosyl
donor bearing a non-participating group is by resonance from O-5 that results in
oxocarbenium ion (Scheme 1.1a). The most commonly applied nonparticipating
groups are benzyl (OBn) for neutral sugars and azide (N3) for 2-amino-2-deoxy
sugars; however, other moieties have also been occasionally used. The anomeric
carbon of either resonance contributors is sp2 hybridized; hence, the nucleophilic
attack would be almost equally possible from either the top (trans, b- for the D-gluco
series) or the bottom face (cis, a-) of the ring. Even though the a-product is thermo-
dynamically favored because of the so-called anomeric effect (discussed in the
subsequent section) [64], a substantial amount of the kinetic b-linked product is
often obtained owing to the irreversible character of glycosylation of complex agly-
cones. Various factors such as temperature, protecting groups, conformation, sol-
vent, promoter, steric hindrance or leaving groups may influence the glycosylation
outcome (discussed below) [65,66].
1,2-trans Glycosidic linkage can be stereoselectively formed with the use of an-

chimeric assistance of a neighboring participating group, generally an acyl moiety
such as O-acetyl (Ac), O-benzoyl (Bz), 2-phthalimido (NPhth) and so on [67–69].
These glycosylations proceed primarily via a bicyclic intermediate, the acyloxonium
ion (Scheme 1.1b), formed as a result of the activator-assisted departure of the leaving
group followed by the intramolecular stabilization of the glycosyl cation. In this case,
the attack of a nucleophile (alcohol, glycosyl acceptor) is only possible from the top face
of the ring (pathway c), therefore allowing stereoselective formation of a 1,2-trans
glycoside. Occasionally, substantial amounts of 1,2-cis-linked products are also

Scheme 1.1
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formed, most often when unreactive alcohols are used as the substrates and/or poorly
nucleophilic participatory substituents are present at C-2. In these cases, glycosylation
assumingly proceeds via oxocarbenium ion, via pathways a and b (Scheme 1.1b),
resulting in the formation of 1,2-trans and 1,2-cis glycosides, respectively, or most
commonly mixtures thereof.
Seminal work by Lemieux on the halide-ion-catalyzed glycosidation reaction in-

volved extensive theoretical studies that gave rise to a more detailed understanding
of the reaction mechanism [70]. Thus, it was postulated that a rapid equilibrium
could be established between a relatively stable a-halide A and its far more reactive
b-counterpart I by the addition of tetraalkylammonium bromide (Et4NBr,
Scheme 1.2). In this case, a glycosyl acceptor (ROH) would preferentially react with
the more reactive glycosyl donor (I) in an SN2 fashion, possibly via the tight ion-pair
complex K, providing the a-glycoside L. It is likely that the energy barrier for a
nucleophilic substitution I! L (formation of the a-glycoside) is marginally lower
than that for the reaction A!E (formation of a b-glycoside). If the difference in the
energy barrier were sufficient, it should be possible to direct the reaction toward the
exclusive formation of a-anomers.
Therefore, to obtain complete stereoselectivity, the entire glycosylation process

has to be performed in a highly controlledmanner. In this particular case, the control
is achieved by the use of extremely mild catalyst (R4NBr), although very reactive
substrates and prolonged reaction at times are required.
Other common approaches to control the stereoselectivity of glycosylation will

be discussed in the subsequent sections. In addition to the apparent complexity of
the glycosidation process, there are other competing processes that cannot be
disregarded. These reactions often cause the compromised yields of the glycosyla-
tion products and further complicate the studies of the reaction mechanism.

Scheme 1.2
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Elimination, substitution (formation of unexpected substitution products or hydro-
lysis at the anomeric center), cyclization (inter- and intramolecular orthoesterifica-
tion), migration and redox are only a few to mention [71].

1.5
Anomeric Effects

A basic rule of conformational analysis known from the introductory organic chem-
istry is that an equatorial substituent of cyclic six-membered hydrocarbons is ener-
getically favored. Hence, it is more stable owing to 1,3-diaxial interactions that would
have occurred if a large substituent were placed in the axial position (Figure 1.3). For
sugars, this rule is only applicable to hemiacetals (1-hydroxy derivatives) that are
stabilized in b-orientation via intramolecular hydrogen-bond formation with O-5.
Other polar substituents such as halide, OR or SR attached to the anomeric center of
pyranoses/pyranosides prefer the axial orientation, which would be exclusive if the
equilibrium at the anomeric center could be achieved. This phenomenon, which was
first observed by Edward [72] and defined as anomeric effect by Lemieux [73], is
partially responsible for the stereochemical outcome of processes taking place at
the anomeric center of sugars [64,74,75].

Figure 1.3 Anomeric effect.
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What are the origins of the anomeric effect, sometimes referred to as endo-
anomeric effect? In this context, the so-called exo-anomeric effect dealing with the
stabilization of the b-anomer is of somewhat lesser influence on the overall process
and will not be discussed herein [64]. One factor is that the substituent on the atom
bonded to the ring at C-1 has lone-pair electrons, which would have repulsive
interactions with those of the ring oxygen (O-5) if the anomeric substituent is in
the equatorial position (b-position for D-sugars in 4C1 conformation) but not if it is in
the axial position (Figure 1.3). In addition, an electron-withdrawing axial substituent
(a-anomer for D-sugars in 4C1 conformation) is stabilized via hyperconjugation
owing to the periplanar orientation of both nonbonding orbital of O-5 and antibond-
ing orbital of C-1. This does not occur with the b-anomer, as the nonbonding orbital
of O-5 and antibonding orbital of C-1 are in different planes and therefore are unable
to interact.

1.6
Stereoselectivity of Glycosylation

As noted above, it is a general experience of carbohydrate synthesis that stereose-
lective preparation of 1,2-cis glycosides is more demanding than that of 1,2-trans
glycosides. The formation of 1,2-trans glycosides is strongly favored by the neigh-
boring-group participation (generation of intermediate acyloxonium ion). Typically,
the use of a participating substituent at C-2 is sufficient to warrant stereoselective
1,2-trans glycosylation.
One of the factors affecting the stereochemical outcome of glycosidation of gly-

cosyl donors bearing a nonparticipating substituent at C-2 is the anomeric effect,
which favors a-glycoside formation (1,2-cis for the D-gluco series). However, because
of the irreversible character of glycosylation, the role of the anomeric effect is
diminished and other factors affecting the orientation of the new glycosidic bond
(discussed below) often come to the fore. Although variation of reaction conditions
or structural elements of the reactants may lead to excellent 1,2-cis stereoselectivity,
no successful comprehensive method for 1,2-cis glycosylation has emerged as yet.

1.6.1
Structure of the Glycosyl Donor

1.6.1.1 Protecting Groups
The most powerful impact on the stereoselectivity is produced from the neighboring
group at C-2. Neighboring-group participation is one of the most powerful tools to
direct stereoselectivity toward the formation of a 1,2-trans-linked product. The neigh-
boring substituent at C-2 is also responsible for the �armed–disarmed� chemoselective
glycosylation strategy [76]. The effects of the remote substituents are of lesser impor-
tance; however, there is strong evidence that a substituent at C-6 position may influ-
ence the stereochemical outcome of glycosylation dramatically. Although experimen-
tal proof has not emerged as yet, a possibility for the long-range 6-O-acyl or carbonate
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group assistance resulting in the preferential formation of a-glucosides cannot be
overruled [77–81]. It was also found that the steric bulkiness or strong electron-with-
drawing properties of a substituent at C-6 are beneficial for 1,2-cis glucosylation, most
likely because of shielding (sterically or electronically) the top face of the ring and,
therefore, favoring the nucleophilic attack from the opposite side [14,82–88].
Although the effect of the C-6 substituent was found to be of minor importance

for the derivatives of the D-galacto series [89], a remote effect is sufficiently strong
when a participating moiety is present at C-4 [90,91]. Thus, the use of p-methox-
ybenzoyl (anisoyl) [91] and diethylthiocarbamoyl [81] groups was found to be excep-
tionally beneficial for the formation of a-galactosides. Similar effects (including C-3
participation) were also detected for the derivatives of the L-fuco [92,93], L-rhamno
[94], D-manno and D-gluco [14,82,95] series [96]. It was noted that when the unpro-
tected hydroxyl is present at C-4 of the sulfamidogalacto donor, the expected
b-glycosyl formation occurs. However, when the hydroxyl group is blocked with
benzyl or acyl, the process unexpectedly favors a-glycoside formation. This phenom-
enon was rationalized via the formation of the intramolecular hydrogen bonding
(C4�O�H . . .O�C5), destabilizing oxocarbenium ion contribution to the reaction
mechanism that favors a-glycosylation (pathway b, Scheme 1.1a). Torsional effects
induced by the cyclic acetal protecting groups may also strongly affect the stereo-
selectivity at the anomeric center; however, these effects remain unpredictable at this
stage [88,97–99].

1.6.1.2 Leaving Group
There are a large number of publications describing the comparison of various gly-
cosylation methods applied for particular targets. However, only few principles could
be reliably outlined. It has beenunambiguously demonstrated that halides activated in
the presence of a halide ion (from, e.g. Bu4NBr) often provide the highest ratios of a-/
b-glycosides [100–104]. Since in most cases the glycosylation reactions proceed via
unimolecular SN1 mechanism, the orientation of the leaving group at the anomeric
center is of lesser importance. However, the glycosylation reactions occasionally pro-
ceed via bimolecular SN2 mechanism with the inversion of the anomeric configura-
tion. In this context, glycosyl donors with 1,2-cis orientation form 1,2-trans glycosides:
for example glycosyl halides with insoluble catalysts (also used for b-mannosylation)
[105], a-imidates in the presence of boron trifluoride etherate (BF3–Et2O) at low
temperature [106] and 1,2-anhydro sugars [107]. Conversely, 1,2-trans-oriented glyco-
syl donors stereospecifically afford 1,2-cis glycosides, for example highly reactive
b-glucosyl halides [70], glycosyl thiocyanates [39,108] and anomeric triflates formed
in situ were found superior for the synthesis of b-mannosides [109,110].

1.6.2
Structure of the Glycosyl Acceptor

1.6.2.1 Position of the Hydroxyl
Alcohol reactivity is typically inversely correlated with the 1,2-cis stereoselectivity –
themost reactive hydroxyls give the lowest a-/b-ratios – the stronger the nucleophile,
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the faster the reaction, and hence the more difficult it is to control. Regarding the
sugar or aliphatic glycosyl acceptors, the general rule normally states that glycosyla-
tion of more reactive primary hydroxyl provides poorer stereoselectivity in compari-
son to that when the secondary hydroxyls are involved [111]. The same principles are
applicable for the synthesis of glycopeptides; thus, the glycosylation of the secondary
hydroxyl of threonine typically gives higher a-stereoselectivity than when primary
hydroxyl group of serine is glycosylated with 2-azido-2-deoxy-galactosyl bromide or
trichloroacetimidates [112,113]. Occasionally, primary hydroxyls provide somewhat
higher 1,2-cis stereoselectivity in comparison to that of the secondary hydroxyl
groups. This can serve as an indirect evidence of the glycosylation reaction proceed-
ing via the bimolecular mechanism, at least partially.

1.6.2.2 Protecting Groups
It is well established that ester-electron-withdrawing substituents reduce electron
density of the neighboring hydroxyl group by lowering its nucleophilicity
[88,105,114]. This may improve stereoselectivity, as the reaction can be carried out
in amore controlledmanner. As an example, glycosylation of axial 4-OH of galactose
often gives excellent 1,2-cis stereoselectivity, especially in combination with electron-
withdrawing substituents (e.g. O-benzoyl, OBz) [115]. However, poorly reactive
hydroxyls can lose their marginal reactivity completely when surrounded by the
deactivating species, resulting in lower glycosylation yields.

1.6.3
Reaction Conditions

1.6.3.1 Solvent Effect
Another important factor that influences the stereoselectivity at the anomeric center
is the effect of the reaction solvent. In general, polar reaction solvents increase the
rate of the b-glycoside formation via charge separation between O-5 and b-O-1. If
the synthesis of a-glycosides is desired, CH2Cl2, ClCH2CH2Cl or toluene would be
suitable candidates as reaction solvents. However, there are more powerful forces
than simple solvation that have to be taken into consideration. The so-called partici-
pating solvents, such as acetonitrile and diethyl ether, were found to be the limiting
cases for the preferential formation of b-D- and a-D-glucosides, respectively [78].
These observations were rationalized as follows: if the reactions are performed
in acetonitrile, the nitrilium cation formed in situ exclusively adopts axial orienta-
tion, allowing stereoselective formation of equatorially substituted glycosides
(Scheme 1.3). This approach allows obtaining 1,2-trans glucosides with good stereo-
selectivity even with glycosyl donors bearing a nonparticipating substituent. On the
contrary, ether-type reaction solvents such as diethyl ether, tetrahydrofuran [116] or
dioxane [117] can also participate in the glycosylation process. Differently, in these
cases the equatorial intermediate is preferentially formed, leading toward the axial
glycosidic bond formation [85,86,118–120]. Nitroethane was also employed as a
suitable solvent for 1,2-cis glycosylation [121].
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1.6.3.2 Promoter (Catalyst), Additions
Milder activating conditions are generally beneficial for 1,2-cis glycosylation. Thus,
halide-ion-catalyzed reactions give the best results for the glycosylation with glycosyl
halides [70]; thioglycosides perform better when activated with a mild promoter,
such as iodonium dicollidine perchlorate (IDCP) [122,123]; whereas trichloroaceti-
midates are best activated with the strong acidic catalysts, such as trimethylsilyl
trifluoromethanesulfonate (TMS-triflate, TMSOTf) or triflouromethanesulfonic ac-
id (triflic acid, TfOH) [106]. Various additions to the promoter systems often influ-
ence the stereochemical outcome of the glycosylation. Among the most remarkable
examples is the use of perchlorate ion additive that was found to be very influential in
1,2-cis glycosylations [118,124].

1.6.3.3 Temperature and Pressure
High pressure applied to the reactions with participating glycosyl donors further
enhances 1,2-trans selectivity [125]; when the high-pressure conditions were applied
for glycosylations with a nonparticipating glycosyl donor, remarkable increase in the
reaction yield was noted with only marginal changes in stereoselectivity [126].
Kinetically controlled glycosylations at lower temperatures generally favor 1,2-trans
glycoside formation [100,120,127–130], although converse observations have also
been reported [131,132].

1.6.4
Other Factors

Unfavorable steric interactions that occur between glycosyl donor and acceptor in
the transition state or other factors or conditions may unexpectedly govern the
course and outcome of the glycosylation process. One of the most remarkable
effects, the so-called �double stereodifferentiation� takes place when stereochemical
interactions between bulky substituents in glycosyl donor and glycosyl acceptor
prevail the stereodirecting effect of a neighboring participating group. The pair of
reagents where these interactions occur is called a �mismatched pair�. Thus, only
a-linked product was unexpectedly formed with 2-phthalimido glycosyl acceptor
(Scheme 1.4). [133]. A coupling of the same glycosyl donor with conformationally

Scheme 1.3
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modified 1,6-anhydro acceptor afforded b-linked oligosaccharide with 75% yield. It
was also demonstrated that if this effect takes place with a sugar of the D-series, its L-
enantiomer forms a matched pair with the same glycosyl acceptor.

1.7
Special Cases of Glycosylation

This section outlines special cases of glycosylation, not necessarily uncommon,
which do not follow general conventions discussed above. It is not unusual when
general glycosylation methods do not work or cannot be applied to the synthesis of
glycosides described herein. The synthesis of each of these classes of compounds
requires careful selection of techniques, their modification or design of conceptually
new approaches. Sometimes special indirect or total synthesis based technologies
have been developed and applied specifically to the synthesis of these targets.

1.7.1
Aminosugars

Glycosides of 2-amino-2-deoxy sugars are present in the most important classes of
glycoconjugates andnaturally occurringoligosaccharides, inwhich they are connected
to other residues via either 1,2-cis or, more frequently, 1,2-trans glycosidic linkage
[134–136]. In particular, 2-acetamido-2-deoxyglycosides, most common of the D-gluco
and D-galacto series, are widely distributed in living organisms as glycoconjugates
(glycolipids, lipopolysaccharides, glycoproteins) [134], glycosaminoglycans (heparin,
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heparin sulfate, dermatan sulfate, chondroitin sulfate, hyaluronic acid) [137] and so on
[138,139]. Special efforts for the synthesis of glycosyl donors of 2-amino-2-deoxy
sugars have been focusing on the development of simple, efficient, regio- and stereo-
selective procedures.
As a vast majority of naturally occurring 2-amino-2-deoxy sugars are N-acetylated,

from the synthetic point of view, a 2-acetamido-2-deoxy substituted glycosyl donor
would be desirable to minimize protecting-group manipulations. For this type of
glycosyl donors, however, the oxocarbenium ion rearranges rapidly into an oxazoline
intermediate (Scheme 1.5). Even under harsh Lewis acid catalysis, this highly stable
oxazoline intermediate does not exert strong glycosyl-donor properties. Although
the synthesis of 1,2-trans glycosides is possible with the use of this type of glycosyl
donors, the synthesis of 1,2-cis glycosides is a burden. As a matter of fact, the
participating nature of the N-acetyl moiety presents an obvious hindrance when
the formation of the a-linkage is desired. A minimal requirement for the synthesis
of 1,2-cis glycosides would be the use of a C-2 nonparticipating moiety.
Nowadays, a variety of synthetic approaches to the synthesis of 2-amino-2-deox-

yglycosides have been developed, and progress in this area has been reviewed
[140–142]. These syntheses are started either from a glycosamine directly or by the
introduction of nitrogen functionality to glycose or glycal derivatives. To this end,
various glycosamine donors with modified functionalities have been investigated; in
particular, those bearing an N-2 substituent capable of either efficient participation
via acyloxonium, but not (2-methyl) oxazoline, intermediate for 1,2-trans glycosyla-
tion or a nonparticipating moiety for 1,2-cis glycosylation.

1.7.2
Sialosides

Sialic acids are nine-carbon monosaccharides involved in a wide range of biological
phenomena. Their unique structure is characterized by the presence of a carboxylic
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group (ionized at physiological pH), deoxygenated C-3, glycerol chain at C-6 and
differently functionalized C-5. Among the 50 derivatives reported so far, N-acetyl-
neuraminic acid (5-acetamido-3, 5-dideoxy-D-glycero-D-galacto-non-2-ulopyranosonic
acid, Neu5Ac) is the most widespread. The natural equatorial glycosides and their
unnatural axial counterparts are classified as a- and b-glycosides, respectively. In
spite of extensive efforts and notable progress, the chemical synthesis of sialosides
remains a significant challenge [143–146]. The presence of a destabilizing electron-
withdrawing carboxylic group and the lack of a participating auxiliary often drive
glycosylation reactions toward competitive elimination reactions, resulting in the
formation of a 2,3-dehydro derivative and in poor stereoselectivity (b-anomer).
To overcome these problems, a variety of leaving groups and activation conditions
for direct sialylations have been developed. It was also demonstrated that the
N-substituent at C-5 plays an influential role in both stereoselectivity of sialylation
and the reactivity of sialyl donors [147].
Along with these studies, a variety of indirect methods for chemical sialylation

have been developed. Several glycosyl donors derived from Neu5Ac have been
prepared that possess an auxiliary at C-3. This auxiliary should control the anome-
ric selectivity of glycosylation by neighboring-group participation, leading to the
formation of 2,3-trans-glycosides [143]. Thus, a-glycosides are favored in the case
of equatorial auxiliaries (Scheme 1.6), whereas b-glycosides are preferentially
formed when the participating auxiliary is axial. The auxiliaries also help in
preventing 2,3-elimination that often constitutes a major side reaction in the
direct O-sialylations. One of the most important requirements is that an auxiliary
should be easily installed prior to, and removed after, glycosylation. Usually, the
auxiliaries are introduced by a chemical modification of the readily accessible 2,3-
dehydro derivative of Neu5Ac [148]. These transformations can be performed
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either through a 2,3-oxirane derivative or by a direct addition reaction to the double
bond.

1.7.3
Synthesis of 2-Deoxyglycosides

2-Deoxyglycosides are important constituents of many classes of antibiotics. The
development of reliable methods for stereoselective synthesis of both a- and b-2-
deoxyglycosides has become an important area of research and development of new
classes of drugs and glycomimetics [149,150]. It should be noted that because of the
lack of anchimeric assistance of the substituent at C-2, the synthesis of both types of
linkages represents a notable challenge. On one hand, the direct glycosylation of
2-deoxy glycosyl donors often results in the formation of anomeric mixtures.
Similar to that of conventional glycosylation, the solvent and promoter effects play
important stereodirecting roles in the synthesis. On the other hand, similar to that
discussed for the sialosides, a participating auxiliary can be used to add to the
stereoselectivity of glycosylation. Usually this moiety is introduced through 1,2-
dehydro derivatives with concomitant or sequential introduction of the anomeric
leaving group. The methods employing both axial and equatorial substituents are
known to result in the formation of 1,2-trans glycosides, which upon 2-deoxygen-
ation can be converted into the respective targets. Although this latter approach
requires additional synthetic steps, it is often preferred because it provides higher
level of stereocontrol.

1.7.4
Synthesis of b-Mannosides

b-Mannosyl residues are frequently found in glycoproteins. The chemical synthe-
sis of 1,2-cis-b-mannosides cannot be achieved by relying on the anomeric effect
that would favor axial a-mannosides at the equilibrium. In addition, it is further
disfavored by the repulsive interactions that would have occurred between the
axial C-2 substituent and the nucleophile approaching from the top face of the
ring. For many years the only direct procedure applicable to b-mannosylation –

Ag-silicate promoted glycosidation of a-halides – was assumed to follow bimolec-
ular SN2 mechanism [13,14]. The difficulty of the direct b-mannosylation was
addressed by developing a variety of indirect approaches such as C-2 oxidation-
reduction, C-2 inversion, anomeric alkylation and intramolecular aglycone
delivery (Scheme 1.7) [151–155]. This was the standing in this field before Crich
and coworkers discovered that 4,6-O-benzylidene protected sulfoxide [109] or
thiomannoside [110] glycosyl donors provide excellent b-manno stereoselectivity.
Mechanistic and spectroscopic studies showed that anomeric a-O-triflates
generated in situ as reactive intermediates can be stereospecifically substituted.
On a similar note, 2-(hydroxycarbonyl)benzyl glycosides have proven to be
versatile glycosyl donors for the synthesis of b-mannosides via anomeric triflate
intermediates [58].
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1.7.5
Synthesis of Furanosides

In comparison to their six-membered ring counterparts, furanosides are relatively
rare. Nevertheless, their presence in a variety of glycostructures from bacteria,
parasites and fungi makes this type of glycosidic linkage an important synthetic
target [156,157]. The synthesis of 1,2-trans furanosides is relatively straightforward
and, similar to that of pyranosides, can be reliably achieved with the use of glycosyl
donors bearing a participating group at C-2. In contrast, the construction of 1,2-cis-
glycofuranosidic linkage is difficult, even more so than with pyranosides, because
the stereocontrol in glycofuranosylation cannot be added by the anomeric effect
owing to the conformational flexibility of the five-membered ring. In fact, both
stereoelectronic and steric effects favor the formation of 1,2-trans glycofuranosides.
Despite some recent progress, stereoselective synthesis of 1,2-cis glycofuranosides
has been one of the major challenges of synthetic chemistry. General glycosylation
methods, involving glycosylfluorides [158], trichloroacetimidates [159], and thioglyco-
sides [156,160] along with less common and indirect techniques [161–164], were
applied to 1,2-cis furanosylation. More recently, a notable improvement in stereose-
lectivity of 1,2-cis furanosylation was achieved by using glycosyl donors in which the
ring has been locked into a single conformation. These examples include 2,3-anhydro
[165–169], 3,5-O-(di-tert-butylsilylene) [170,171] and 3,5-O-tetraisopropyldisiloxanyli-
dene [172] protected bicyclic glycosyl donors.

1.8
Glycosylation and Oligosaccharide Sequencing

Stereoselective glycosylation is only a part of the challenge that synthetic chemists
confront during the synthesis of oligosaccharides. Regardless of the efficiency of a
single glycosylation, a traditional stepwise approach requires subsequent conversion
of the disaccharide derivative into the second-generation glycosyl acceptor or glycosyl

Scheme 1.7

16j 1 General Aspects of the Glycosidic Bond Formation


