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Preface

Cyclodextrins and their complexes constitute a fascinating subject that, due to its

complexity, lacked an extended coverage in a monograph for long time. We are

happy to bridge this gap with this book. The field has grown immensely, thus dis-

cussing or even mentioning many valuable works was not possible in the limited

volume. However, we hope to have given an extensive description of all important

aspects of research and applications involving cyclodextrins.
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ment in the project. The critical remarks on specific chapters by Prof. A. Teme-
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R. Nowakowski and Dr. K. Chmurski are gratefully acknowledged. I would like

also to thank Wacker, GmbH for a generous gift of cyclodextrins that helped me

to carry out cyclodextrin experimental studies, and Oxford University that has
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ing of supramolecular complexes.
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d’Artois

Rue Jean Souvraz/Sac postal 18

F-62307 Lens Cédex
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1

Molecules with Holes – Cyclodextrins

Helena Dodziuk

1.1

Introduction

Cyclodextrins, CyDs, are macrocyclic oligosugars most commonly composed of 6,

7, or 8 glucosidic units bearing the names a-1, b-2 and g-3 CyD, respectively [1–3].

Other, usually smaller, molecules (called guests) can enter their cavity forming in-

clusion complexes with these hosts. a- and b-CyDs are believed to have been iso-

lated for the first time at the end of nineteenth century [4] while their first complex

seems to have been reported early in the twentieth century [5]. However, it took

more than 50 years to establish and confirm the structure of CyDs. Today we take

for granted the idea of inclusion complex formation by these macrocycles, but

when it was suggested by Cramer in the 1940s the idea was not, to put it mildly,

generally accepted. Cramer said later with considerable enjoyment [6]: ‘‘When

I presented my results for the first time at a meeting in Lindau, Lake Konstanz,

I met fierce opposition from some parts of the establishment. One of my older

(and very important) colleagues even stated publicly and bluntly in the discussion

that he would try to remove a young man with such crazy ideas from the aca-

demic scene. But there was also a good number of supporters, so I finally made it.’’

According to Stoddart [6], ‘‘Cyclodextrins are all-purpose molecular containers

for organic, inorganic, organometallic, and metalloorganic compounds that may

be neutral, cationic, anionic, or even radical.’’ They are usually built of glucopyra-

noside units in the 4C1 conformation (Fig. 1.1). In most cases these host molecules

have an average structure of a truncated cone with a cavity lined with H3 and H5

protons and lone pairs of glycosidic oxygen atoms lying in a plane thus endowing

the cavity with hydrophobic character, while the bases formed by the primary and

secondary OH groups bestow a hydrophilic character (Fig. 1.2). The great signifi-

cance of CyDs both in research and applications lies in their ability to selectively

form inclusion complexes with other molecules, ions, or even radicals. This phe-

nomenon bears the name molecular recognition while the selectivity in the forma-

tion of complexes with enantiomeric species as guests is called chiral recognition.
Complex formation changes the properties of both host and guest, allowing one

to monitor the process by several experimental techniques. On the basis of X-ray

1



Fig. 1.1. Notation of conformations of the glucopyranoside ring.
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measurements, native CyDs 1–3 have for years been considered to possess a

rigid, truncated-cone structure [7–9]. This view is inconsistent both with the

CyDs’ ability to selectively complex guests of various shapes and with several exper-

imental and theoretical findings, discussed later in this chapter. These data reveal

the amazing flexibility of the CyD macrocycles. The implications of the non-

rigidity of CyDs for their complexing ability, and its influence on the results ob-

tained using different experimental techniques, are also presented there. One of

the most striking examples of this kind is provided by the different mode of en-

trance of the guest in the complex of nitrophenol 4 with permethylated a-CD 5

ðR1 ¼ R2 ¼ R3 ¼ MeÞ [10] in the solid state and in solution shown in Fig. 1.3.

The ability to predict recognition by CyDs would be of great practical value, espe-

cially for drug manufacturers. Consequently, several models of chiral recognition

by CyDs have been proposed in the literature, neglecting the complexity of the

complexation process involving very small energy differences between the com-

plexes with enantiomeric species. The models critically reviewed later in this chap-

ter are mostly based on very few experimental data and some of them contradict

Fig. 1.2. Schematic view of the glucopyranoside ring with the

atom numbering and native CyD sizes and the average

orientation of the most important atoms and OH groups.

Fig. 1.3. A schematic view of the entrance of nitrophenol

guest 4 in the cavity of 5 ðR1 ¼ R2 ¼ R3 ¼ MeÞ in solution (a)

and in the solid state (b).

1.1 Introduction 3



the basic properties of three-dimensional space. For instance, the most often used

3-point Dalgleish model [11] is incompatible with the basic requirement of three-

dimensional space that at least four points (not lying in a plane) are necessary for

an object to be chiral [12, 13].

Numerous CyD derivatives have been synthesized with the aim of improving

their complexing properties and to make them suitable for various applications,

in particular to increase the bioavailability of a drug complexed with a particular

CyD derivative. By appropriate choice of host and guest one can achieve a very

high selectivity. For instance, 6 is complexed much more strongly by the dimeric

host 7 than is 8 [14]. Numerous CyD derivatives mono- or polysubstituted in posi-

tions 2, 3 and/or 6 by alkyl groups 5, 9 as well as modifications of hydroxyl groups
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to sulfopropyl, carboxymethyl, tosyl, aldehyde, silyl, and many other groups have

been obtained [15, 16]. The reactivity of CyD and the plethora of exciting CyD

structures developed, among other reasons, to enhance and modify their complex-

ing ability will be shown in Chapter 2. Fascinating CyD structures include, among

others, 10 [17], 11 [18], amphiphilic 5 (R1 ¼ R2 ¼ OH, R3 ¼ CH2S(CH2)3C6F13

[19], capped 12 [20], peptide appended 13 [21] and 2:2 complex 14 formed by the

CyD dimer with porphyrin and zinc ion [22]. On the other hand, obtaining dimers
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of isomeric naphthalenic acid, using an appropriately substituted g-CyD template

to exert control of the reaction’s stereochemistry, shows a very elegant method

making use of the encapsulation of two naphthyl-involving substituents on differ-

ent glucopyranoside rings (Fig. 1.4) [23].

Exciting CyDs involving oligomers and polymers both covalently bound and self-

assembled will be presented in Chapter 3 while their SPM observations and some
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polymers having catenane or rotaxane structures (Fig. 1.5) will be discussed in Sec-

tion 10.6 and Chapter 12.

CyD catalysis, discussed in Chapter 4, and the application of CyDs as enzyme

models constitute a fascinating field. The influence of a specific CyD on the stabil-

ity of the included molecule can have, like the two-headed god Janus, contrasting

consequences. Mostly, luckily for pharmaceutical applications, complexation with

CyD usually stabilizes the guest. (However, it can also catalyze its decomposition

as is the case with aspirin 16 [24] preventing its application in the form of a CyD

complex.) CyDs are known to catalyze numerous reactions. Notably, the catalytic

activity is usually not high, but (a) it can reach high values in a few cases as

evidenced by the ca. 1.3 million-fold acceleration of the acylation of b-CyD 2 by

bound p-nitrophenyl ferrocinnamate 17 [25] and (b) CyDs may impose limitations

on the reaction’s regioselectivity. Chlorination of anisole in the absence or presence

of a-CyD illustrates this point [26] (Fig. 1.6) since it is known to produce only para-
substituted isomers in the presence of a-CyDs while both meta- and para-isomers

are obtained in its absence [27]. It should be stressed that, although the catalytic

activity of CyD can achieve high levels [25, 28], these oligosaccharides are much

more effective in inducing stereo- or regioselectivity than in genuine catalytic

action. Another example of regioselectivity induced by g-CyD was presented earlier

in Fig. 1.4.

An exciting field of considerable importance related to CyD catalysis is their use

as enzyme models by testing the reactivity of appropriately substituted CyDs [29–

32]. For instance, to mimic the cleavage of RNA followed by cyclization of phos-

phate ester with subsequent hydrolysis using imidazole groups of Histidine-12

and Histidine-119 of ribonuclease A, isomeric diimidazole-substituted at C6 posi-

tions b-CyDs 18–20 were synthesized [29] and checked for their influence on the
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cleavage reaction. Interestingly, contrary to the classic mechanism proposed for

this reaction, the close to linear arrangement of imidazole 21 groups in 20 did not

lead to the most efficient catalysis, causing the abandonment of the mechanism

commonly accepted in textbooks. The catalytic action of nuclease, ligase, phospha-

tase, and phosphorylase was also analyzed using more complicated CyD derivatives

[33].

Fig. 1.4. Regioselectivity of the reaction of the included guest:

schematic views of (a) disubstituted g-CyDs, (b) the course of

the reaction, (c) the product and yield of the reaction.
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Fig. 1.5. Schematic catenane (a) and rotaxane (b) structures.
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As mentioned before, CyDs and their complexes elicit a vivid interest as systems

that allowing us to study the factors that drive the selective complexation known as

molecular recognition. Particularly great interest is focused on the differentiation

between enantiomers of guest molecules by their complexation with CyDs, i.e. on

chiral recognition. This will be of great importance in future CyD applications, in

particular in the pharmaceutical industry, since most drugs and the active sites

in which they operate are chiral. As a consequence (remember a small child trying

to put his foot into the other shoe?), enantiomers of several drugs have been found

to exhibit different pharmacological activities [34]. The differences may go so far

as to result in harming instead of healing. (The old thalidomide 22 tragedy, when

pregnant women taking this drug in the racemate form later gave birth to babies

with crippled extremities, was sometimes interpreted in terms of the teratogenic

activity of its second enantiomer [35]. However, the recent revival of interest in tha-

lidomide drug for various illnesses [36–38] should be acknowledged.

Chromatography is one of the most important methods for direct studies of mo-

lecular and chiral recognition by CyDs. Today it has split into several branches, e.g.

gas chromatography, GC, high-performance liquid chromatography, HPLC, and

capillary electrophoresis and other electromigration techniques, that enable us not

only to detect the recognition but also to estimate the complex stoichiometry and

formation constant and, consequently, the enthalpies and entropies of complex for-

Fig. 1.6. Influence of a-CyD on anisole chlorination.
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mation. The amazing sensitivity of CyDs to the shapes of guest molecules or ions

may be illustrated by the big difference among retention times of the complex of

1,8-dimethylnaphthalene 23h with 2 on the one hand and those of other isomers

23a–23g on the other, determined by gas–liquid chromatography (discussed in

Chapter 4 in more detail) [39]. Such a big difference is most probably caused by a

difference in the stoichiometry of these complexes. Namely, the latter complexes

are of 1:1 stoichiometry while in the former one guest molecule is mostly em-

bedded in a capsule formed by two host CyDs [40]. The striking change in elution

order with temperature rise indicates the importance of the entropy factor and

of CyD flexibility on the complex stability [41]. Similarly, the dependence of the

elution order of the enantiomers of phenothiazines 24 complexed with g-CyD 3 on

the buffer used shows the complexity of the complexation process [42]. Molecular

and chiral recognition by CyDs, as studied mainly by HPLC and GC, will be pre-

sented in Chapter 5 together with the application of this method for studying com-

plex stoichiometries and stability constants while a wide range of chromatographic

methods used for enantioseparations will be discussed in Chapter 6.

In most cases, CyD structures are elucidated on the basis of X-ray studies which

will be presented in Chapter 7 together with the results of a few, but very interest-

ing, neutron diffraction investigations. They include systems of O2H ! O3 and

O3H ! O2 hydrogen bonds in b-CyD 2 rapidly interchanging at room temperature

(Fig. 1.7) [43]. Freezing the process and accurately determining the positions

of hydrogen atoms using neutron diffraction [9] allowed the determination of the
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circular systems of the bonds shown in the figure. The mechanism of simultan-

eous change of directions of hydrogen bonds in 2 is called ‘‘flip-flop’’. Other fasci-

nating examples of X-ray determined CyD structures are provided among others

by [3] catenane-type CyDs 25 [44], the sixteenfold deprotonated g-CyD dimer

with Pb ions 26 [45], and the complex of an alkali ion buried inside a capsule

formed by two crown ethers, in turn inserted in another capsule built of two g-CyD

molecules, the whole system resembling a Russian doll [46, 47].

The forces driving complexation by CyDs cannot be understood without a knowl-

edge of the energy differences and barriers involved in the complexation. The calo-

rimetric measurements, involving isothermal titration calorimetry and differential

scanning calorimetry are discussed in Chapter 8. They give the most accurate

thermodynamic data characterizing the complexes. In particular, these data pro-

vide further examples of the amazing enthalpy–entropy compensation that is

not limited to CyD complexes [48]. Exciting studies of isotope effects on complex

formation are also discussed there.

X-ray and neutron diffraction studies yield precise information on the CyD struc-

ture in the solid state. On the other hand, in addition to the information on the

structure and dynamics of complexes in the solid state, NMR spectra allow elucida-

tion of the structure in solution, which is of particular importance since most CyD

applications take place in this state. (Even if we take a drug as a CyD complex in

the form of a pill it dissolves in the stomach before acting.) NMR studies can give

not only unequivocal proof of the complex formation in form of, usually small,

chemical shifts but also, by studying the NOE effect [49], they can show how the

organic guest molecule enters the host cavity in the solid state and in solution.

The spectra are also sensitive to the dynamics of the complex and so they provide

Fig. 1.7. Rapidly interconverting circular systems of hydrogen

bonds in b-CyD 2 (flip-flop, HO2 ! O3 simultaneously and

reversibly changing to O3H ! O2).
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information on the complex’s nonrigidity showing the host and/or guest move-

ment even in the solid state where, owing to positional and time averaging, X-ray

results point to a single rigid structure. This is the case for the complex of benzyl

alcohol 27 with 2 for which 2H NMR spectra indicate a rapid flip of the aromatic

ring around the C1C4 axis [50]. In addition to information on the complex’s
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stoichiometry and stability constants, in favorable cases the study of relaxation

rates in 1H NMR spectra can show the orientation of the guest in the host cavity

in solution, which no other technique can give, as shown for the complexes of

camphor enantiomers 28 with 1 [51]. The kind of information on CyDs and their

complexes that can be provided by NMR studies is discussed in Chapter 9 while

Chapter 10 is devoted to the application of other physicochemical methods (UV,

circular dichroism, mass spectroscopy, electrochemistry, AFM and STM, etc.) to the

elucidation of the structure of CyDs and their complexes. Some of these methods

are usually less sensitive to complex formation involving CyDs, but the effect can

be considerable in specific cases and is of importance for applications in sensors

and other devices. Although CyDs themselves do not have electroactive groups,

electrochemical studies of their complexes form the basis of their future applica-

tions. Dendrimers with electroactive end groups like 29 [52] forming multiple

CyD complexes are, probably, one of the most interesting examples in this area.

Of course, mass spectra are most frequently used to prove the synthesis of a CyD

derivative but, as shown in this chapter, they can be a source of valuable informa-

tion on CyD complexes. New, rapidly developing AFM and STM techniques allow-

ing the study of CyD aggregates on surfaces will also be presented there. They pro-

vide information on a single molecular aggregate or superstructures formed by
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them. In particular, rotaxane-type structures 15b (discussed in detail in Chapter 12)

can be observed with atomic resolution by the latter method.

The possibility of predicting the molecular and chiral recognition ability of CyDs

would be of great value, in particular for the pharmaceutical industry. The need for

reliable theoretical treatment of CyD complexes is also reflected in several chapters

in this book. Numerous studies applying quantum mechanics [53], molecular

mechanics [54], and molecular dynamics [55] have been published by researchers

fascinated by beautiful computer models and the ease of carrying out the calcula-

tions. The complexity of the complexation process and its consequences for the

nonrigidity of CyDs, as well as the limited accuracy of the calculations, are ne-

glected in most of these studies. Modeling of CyDs and their complexes and the

dependence of the results of calculations on the assumed model and its parameter-

ization are critically reviewed in Chapter 11.

The exciting catenanes, like 25 [44], and rotaxane molecular necklace 30 of 1:n
stoichiometry incorporating n ¼ 20–22 a-CyD macrocycles [56], respectively, falling

into the realm of topological chemistry [57] will be shown in Chapter 12. These

systems, also discussed in Chapters 10.6 and 16, form the basis of exciting applica-

tions. Large CyDs such as the 12-membered 31, which differ dramatically from

native CyDs in properties and, most probably, in complexing ability, will be dis-

cussed in Chapter 13. In particular, contrary to the structure of 1–3, large CyDs

do not have truncated-cone average structures with glycosidic oxygen atoms lying

approximately in a single plane, but some of them are known to be twisted

allowing for formation of hydrogen bonds between OH groups of distant glycosidic

units [58].

Chiral recognition by CyDs is of primary importance for the pharmaceutical in-

dustry since the second enantiomer of a drug, usually present as 50% impurity as

the result of chemical synthesis, can be harmful. Therefore, an effective prepara-

tive separation of enantiomers is one of the important goals of applied CyD re-

search since at present it has not reached the industrial scale. Today the main

CyD application in the pharmaceutical industry is their use as drug carriers, since

CyD containers in most cases stabilize and solubilize the included drugs (see, how-
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ever, the aspirin case mentioned above). Moreover, the slow release of a drug from

the complex results in its higher and more uniform content in the organism,

allowing less frequent administration of the drug. Interestingly, CyD applications

in drug delivery were considerably delayed by the erroneous determination of their

toxicity at an early stage of development [59]. Today we know that they are not

harmful in most cases by oral, parenteral, nasal, or skin administration [60]. CyD

applications in the form of inclusion complexes in the pharmaceutical industry in

general are presented in Chapter 14 with a detailed discussion of the ways in

which various CyD types (hydrophilic, hydrophobic, or ionizable ones) affect the

bioavailability of drugs by influencing their solubility and the rate of release from

the CyD complex. A small section on site-specific drug delivery is also included.

The even better therapeutic effect of drugs in the form of emulsions, micro-

particles, nanoparticles, and higher aggregates is given in Chapter 15.

CyD applications are by no means restricted to the pharmaceutical industry. Sev-

eral examples, mainly prospective ones, are scattered throughout this book. CyDs

are used to remove unpleasant tastes, odors, or other undesirable components in

the food industry, in agrochemistry, cosmetics, dying, cleaning, and in many other

areas. To name just a few examples of numerous CyDs applications: grapefruit

juice loses its unpleasant taste when its bitter component naringine is removed by

complexation with b-CyD [61]; similarly, removal of phenylalanine and tyrosine
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makes the food harmless for those suffering from phenylketonuria [62]. Garlic re-

tains all its health benefits but lacks its annoying odor when applied in the form of

a CyD complex. Similarly, other flavor components (such as apple, citrus fruits,

and plums) and spices (cinnamon, ginger, horseradish, menthol, etc.) are mar-

keted as b-CyD complexes characterized by high stability exhibited towards heating

during industrial food processing [63–66]. The problems encountered by the use of

CyDs for stabilization of mixtures has to be mentioned here since the components

involved can be released at different rates, changing the taste or smell of the prod-

uct. The creation and higher stability of foams used in both the food and cosmetic

industries is also favored by the complexation. Interestingly, CyD applications

should not only improve the properties of a marketed product but, consistently

with modern trends, they are also aiming at creating new needs by producing

new types of products with unheard of properties. A long-lifetime fragrance-releas-

ing room-decorating paint is one example of such applications [67]. A few exam-

ples of numerous CyD applications in industries other than pharmaceuticals are

briefly presented in Chapter 16, which concludes with the presentation of their

thought-challenging prospective applications in molecular devices and machines.

The cyclodextrin field is rapidly expanding. According to information from the

Cyclolab website, 3.9 articles per day on CyDs were published on average in 1995.

This figure increased to 4.4 in 2004 (http://www.cyclolab.hu/literature_0.htm) and

is still growing. The field is not only very large but also highly diversified. This is

probably the reason why no general modern comprehensive monograph on CyDs

has been available [1–3, 16, 68–71] for so long. We would like to bridge this gap,

providing a survey of the whole exciting area with numerous references to help

novices to enter this domain on the one hand and to give researchers in a specific

field a broader insight into the whole area on the other. We apologize for not being

able to mention, even briefly, numerous valuable works on CyDs but we hope to

have given the picture of the whole CyDs field, illustrated by representative exam-

ples of the respective research and applications.

1.2

Cyclodextrin Properties

In the standard way, native CyDs 1–3 are obtained by enzymatic degradation of

starch. First obtained in minute amounts and very expensive, in particular a- and

g-CyD, they now cost less than $10/kg, making their large-scale industrial use feasi-

ble [72]. IUPAC names of these macrocycles are cumbersome; 5,10,15,20,25,30,35-

heptakis-(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaocta-

cyclo[31.2.2.2.3; 6.28; 11.213; 16.218; 21.223; 26.228; 31]nonatetracontane-36,37,38,39,40,

41,42,43,44,45,46,47,48,49-tetradecol for b-CyD makes the use of trivial names nec-

essary. Lichtenthaler and Immel proposed a general system of naming macrocyclic

oligosaccharides [73] but it has not been generally accepted and used. The chemical,

physical, and biological properties of CyDs, and in particular their toxicity by various

type of administration, are summarized in Ref. [60] while their stability when
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treated by various enzymes is presented in Ref. [74]. Some of their properties are

given in Table 1.1.

As mentioned earlier, native CyDs are usually obtained by biochemical processes

[72]. However, a 21-step synthesis of 1 with 0.3% total yield [75] and that of 3 [76]

with 0.02% yield are worth mentioning. The macrocycle built of only five gluco-

pyranose rings 32 [77] (thought to be too strained to exist on the basis of model

calculations [78]) and probably thousands of CyD derivatives have been synthe-

sized [15, 16]. Several exciting CyDs have been presented earlier. Here CyDs hav-

ing glucopyranoside ring(s) in 1C4 [79–81] or skew conformations [82], those incor-

porating other than glucopyranoside units [83] and large CyDs having from 9 to

Table 1.1. Some properties of native CyDs [60]a

a-CyD 1 b-CyD 2 2g-CyD 3

Number of glucose units 6 7 8

Molecular weight 972 1134 1296

Approximate inner cavity diameter (pm) 500 620 800

Approximate outer diameter (pm) 1460 1540 1750

Approximate volume of cavity (106 pm3) 174 262 427

½a�D at 25 �C 150G 0.5 162.5G 0.5 177.4G 0.5

Solubility in water (room temp., g/100 mL) 14.5 1.85 23.2

Surface tension (MN/m) 71 71 71

Melting temperature range (�C) 255–260 255–265 240–245

Crystal water content (wt.%)* 10.2 13–15 8–18

Water molecules in cavity 6 11 17

aSome data on these and larger CyDs are also given in Tables 9.1 and

13.1.
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more than 100 monosaccharide rings (discussed in Chapter 13) should be men-

tioned [58, 84, 85]. Interestingly, three unusual CyD derivatives have been found

in nature [86].

As discussed in Chapter 7, native CyDs can form complexes with differing

amounts of water. CyDs are seldom really empty. Even if they do not contain an-

other guest there is usually at least one solvent molecule in their cavity. Almost all

their applications involve inclusion complex formation when one or more mole-

cules are at least partly immersed in the CyD cavity. The complexes can be ob-

tained both in solution (sometimes requiring heating or the use of a cosolvent) or

in the solid state, e.g. by cogrinding or milling [87]. In solution, they exist in a rap-

idly exchanging equilibrium of the free CyD host and guest. As mentioned before,

CyD complexes of different stoichiometry are known. In addition to 1:1 complexes

like 4@5 ðR1 ¼ R2 ¼ R3 ¼ MeÞ [10], the 1:2 ones like those of camphor enan-

tiomers 28 embedded in a capsule formed by two a-CD 1 [51] and that of C60

buried in two g-CyD molecules 3 in a similar way [88], 2:2 complex 14 [22] or

even rotaxane molecular necklace 29 of 1:n stoichiometry involving n ¼ 20–22 a-

CyD macrocycles [56] are known. In spite of the years that have passed from the

publication of the Szejtli review [89], his statement ‘‘The ‘driving force’ of complex-

ation, despite the many papers dedicated to this problem, is not yet fully under-

stood.’’ is still valid. The complexation process in a, mostly water, solvent is consid-

ered to involve a release of water molecule(s) from the relatively hydrophobic CyDs’

cavity, removal of the polar hydration shell of the apolar guest molecule, entry of

the guest into the empty CyD cavity where it is stabilized mainly by weak but

numerous van der Waals attractive interactions, restoration of the structure of wa-

ter around the exposed part of the guest, and integration of this with the hydration

shell of host macrocycle. Thus, a change in both enthalpic and entropic contribu-

tions occurs in complex formation that depends on the host- and guest-induced fit

[90], the solvent used, and numerous other factors. On the other hand, in the solid

state the magnitude of the crystal forces is comparable with the forces keeping the

complex together. Thus, as exemplified by 4@5 ðR1 ¼ R2 ¼ R3 ¼ MeÞ [10], they

can influence the complex’s structure and dynamics which is considerable even in

the solid state. To summarize: CyD complexes are very difficult to study since (1)

for poorly soluble species the complexation process can be much more effective

for impurities (present in minute amount in the solution) than for the guest under

investigation; (2) the process depends heavily on the experimental conditions (pH,

cosolvent, temperature, etc.); (3) the complexes can involve species of different sto-

ichiometries, e.g. dimethylnaphthalenes 23a–g and 23h [40], or an additional sol-

vent molecule can enter the cavity as a second guest resulting in ternary complex

formation [91, 92] (interestingly, complexes of even higher stoichiometry, involving

two CyDs, one pyrene, and two cyclohexanol guest molecules [92] are known); (4)

the experimental results for a CyD complex can depend on the technique used

since the CyD complexes are held together by weak forces (one example of this

kind was shown in Fig. 1.3 [10]); (5) Reliable theoretical studies for CyD complexes

are extremely difficult to obtain since, as discussed in detail in Chapter 11, these

large systems are characterized by energy surfaces exhibiting numerous very shal-
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low local minima separated by low energy barriers [93, 94]. The size of the system

and its n-fold degeneracy (n ¼ 6; 7; 8 for a-, b-, or g-CyD, respectively) also make it

difficult to compare X-ray geometrical parameters for, for example, complexes with

different guests. As discussed in detail in Section 1.4, one can either attempt to an-

alyze the values of all internal parameters (e.g. of 126 bond lengths in a-CyD, etc.)

in the series, which gives a very nontransparent picture, or compare the values of,

for instance, the C2O2 bond length averaged over all saccharide rings, losing a lot

of information by such an approach.

1.3

Cyclodextrin Nonrigidity [94, 95]

On the basis of X-ray studies [7–9], for tens of years CyDs structure was thought to

resemble a rigid truncated cone of the high C6, C7, or C8 symmetry for a-, b-, or g-

CyD, respectively, with a planar ring of glycosidic oxygen atoms [8, 96, 97]. Numer-

ous experimental and theoretical data are incompatible with the concept of rigid

CyDs. First of all, a general analysis of these systems shows that there is no physi-

cal reason for the rigidity, since the macrocycles are built of relatively rigid gluco-

pyranose rings connected by ether CaO bonds, characterized by a low barrier to in-

ternal rotation of ca. 1 kcal mol�1 [98]. This reasoning was supported by model

molecular mechanics calculations on a-CyD [93] showing that (a) the usually de-

picted structure with planar rings formed by glycosidic oxygen atoms does not

correspond to the energy minimum and (b) the energy hypersurface exhibits sev-

eral energy minima separated by low barriers. With regard to CyD complexes, they

are held together by weak intermolecular interactions which somewhat limit the

macrocycle’s mobility but cannot endow the macrocycle with considerable rigidity.

It should be emphasized that a rigid structure for CyDs is also incompatible with

the ease of formation of inclusion complexes of various shapes, since the latter im-

plies an effective fitting of the host and guest to each other [90]. Most experimental

proofs of the nonrigidity of CyDs come from NMR studies not only in solution but

even in the solid state. If CyDs were not flexible then the spectra of complexes with

aromatic guests in solution should exhibit several signals for, e.g. H3 CyD protons

on different glucopyranose rings pointing into the cavity (Fig. 1.2). This is not the

case [99]. Moreover, NMR studies in the solid state show that the rings included in

the CyD cavity can exhibit a rapid flip around the C1C4 axis. One example is pro-

vided by 27@2 for which 2H NMR spectra are incompatible with the rigid struc-

ture [50]; similar evidence has been obtained on the basis of 13C NMR spectra

[100, 101]. The rapid inversion of cis-decalin 33 in the complex with 2 at room tem-

perature frozen at 233 K, observed in both 1H and 13C NMR spectra [102, 103], is

also incompatible with CyD rigidity.

The very fast internal movement of native CyDs and of most of their derivatives,

leading to the observation of averaged structures by most experimental techniques,

is frequently overlooked. In addition to the temperature-dependent process of self-

inclusion of substituent(s) [104–107], we were able to find only two studies of sub-

stituted CyDs in which movement of the macrocycles was at least partly frozen

[104, 108]. Some other experimental results proving CyD flexibility using NMR
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