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SPECIAL TOPICS IN INORGANIC
CHEMISTRY

This text represents the second in a series of one-volume introductions to
major areas of inorganic chemistry written by leaders in the field. Inorganic
chemistry covers a variety of diverse substances including molecular, coordina-
tion, organometallic, and nonmolecular compounds as well as special materials
such as metallobiomolecules, semiconductors, ceramics, and minerals. The great
structural diversity of inorganic compounds makes them vitally important as
industrial feedstocks, fine chemicals, catalysts, and advanced materials. Inorganic
compounds such as metalloenzymes also play a key role in life processes. This
series will provide valuable, concise graduate texts for use in survey courses
covering diverse areas of inorganic chemistry.

R. Bruce King, Series Editor
Department of Chemistry

University of Georgia
Athens, Georgia USA
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CHAPTER 1

INORGANIC POLYMERS AND
CLASSIFICATION SCHEMES

1.1 INTRODUCTION

This is an exciting time to be involved in the field of inorganic polymers.
The advances being made in the core areas of inorganic polymer chemistry are
truly remarkable and outstanding, using any logical definition. Recent synthetic
breakthroughs are very impressive. Just a few years ago, no one envisioned
the synthesis of polyphosphazenes at room temperature or the ready synthesis of
organometallic polymers through ring-opening polymerizations. Both are realities
at the present time. These and other examples of both main group and metal-
containing polymers are discussed in Chapter 2.

Uses for inorganic polymers abound, with advances being made continually.
Polysiloxane and polyphosphazene elastomers, siloxane and metal-containing
coupling agents, inorganic dental polymers, inorganic biomedical polymers,
high temperature lubricants, and preceramic polymers are examples of major
applications for inorganic polymers. Conducting and superconducting inor-
ganic polymers have been investigated as have polymers for solar energy
conversion, nonlinear optics, and paramagnets. These uses are detailed in
Chapter 4. If we were to include inorganic coordination and organometallic
species anchored to organic polymers and zeolites, catalysis would also be a
major use.

1



2 INORGANIC POLYMERS AND CLASSIFICATION SCHEMES

1.1.1 What Is an Inorganic Polymer?

Inorganic by its name implies nonorganic or nonhydrocarbon, and polymer
implies many mers, monomers or repeating units. Organic polymers are char-
acteristically hydrocarbon chains that by their extreme length provide entangled
materials with unique properties. The most obvious definition for an inorganic
polymer is a polymer that has inorganic repeating units in the backbone. The inter-
mediate situation in which the backbone alternates between a metallic element
and organic linkages is an area where differences in opinion occur. We will
include them in our discussions of inorganic polymers, although, as noted below,
such polymers are sometimes separated out as inorganic/organic polymers or
organometallic polymers or are excluded altogether.

Various scientists have provided widely differing definitions of inorganic
polymers. For example, Currell and Frazer (1) define an inorganic polymer as a
macromolecule that does not have a backbone of carbon atoms. In fact, several
other reviews define inorganic polymers as polymers that have no carbon atoms
in the backbone (2–4). Such definitions leave out almost all coordination and
organometallic polymers, even though a sizable number of such polymers have
backbone metal atoms that are essential to the stability of the polymer chains.

Some edited books (3), annual reviews (5), and the present work include
metal-containing polymers in the definition by using titles like inorganic and
organometallic polymers. One text includes these polymers but only gives them
a few percent of the total polymer coverage (6). Research papers sometimes
use the term inorganic/organic polymers, inorganic/organic hybrid polymers,
organometallic polymers, or metal-containing polymers for polymers that have
both metal ions and organic groups in the backbone. MacCallum (7) restricts
inorganic polymers to linear polymers having at least two different elements in
the backbone of the repeat unit. This definition includes the coordination and
organometallic polymers noted above, but it classifies polyesters and polyamides
as inorganic polymers while leaving out polysilanes and elemental sulfur!

Holliday (8) is also very inclusive by including diamond, graphite, silica,
other inorganic glasses, and even concrete. Thus it seems that ceramics and
ionic salts would also fall under his definition. Anderson (9) apparently uses a
similar definition; however, Ray (10) suggests that the term inorganic polymers
should be restricted to species that retain their properties after a physical change
such as melting or dissolution. Although this would retain silica and other oxide
glasses, inorganic salts would definitely be ruled out. Whereas other definitions
could undoubtedly be found, the lack of agreement on the definition of inorganic
polymers allows for either inclusiveness or selectivity.

This book will explore the classifications of polymers that are included in
the more inclusive definitions and will then take a more restrictive point of
view in terms of developing the details of inorganic (including metal-containing
organometallic) polymer synthesis, characterization, and properties. The synthesis
and characterization chapters will emphasize linear polymers that have either
at least one metal or one metalloid element as a regular essential part of the
backbone and others that have mainly noncarbon main group atoms in the
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backbone. Inorganic species that retain their polymeric nature on dissolution
will be emphasized rather than species that happen to be polymeric in the solid
state by lattice energy considerations alone.

For the main group elements, linear chain polymers containing boron, silicon,
phosphorus, and the elements below them in the periodic table will be emphasized
provided they have sufficient stability to exist on a change of state or dissolution.
For transition and inner transition elements, linear polymers in which the metal
atom is an essential part of the backbone will be emphasized, with the same
restriction noted for the main group elements.

To categorize inorganic polymers further, we must distinguish between
oligomers and polymers on the basis of degrees of polymerization. Too often
in the literature, a new species is claimed to be polymeric when only three or
four repeating units exist per polymer chain on dissolution. For our purposes,
we will use an arbitrary cut-off of at least 10 repeating units as a minimum for
consideration as a polymer. Anything shorter will be classed as an oligomer.

Note: In step-growth and condensation polymers of the AA + BB type, where
the repeating unit is AABB, 10 repeating units, (AABB�10, corresponds to a
degree of polymerization of 19. That is, 2n – 1 reaction steps are necessary
to assemble the 20 reacting segments that make up the polymer. The reader
can verify this relationship with a simple paper-and-pencil exercise. One of the
greatest challenges in transition metal polymer chemistry has been to modify
synthetic procedures such that polymers rather than oligomers are formed before
precipitation (cf. Exercise 1.1).

1.2 CLASSIFICATIONS BY CONNECTIVITIES

N. H. Ray, in his book on inorganic polymers (10), uses connectivity as a method
of classifying inorganic polymers. Ray defines connectivity as the number of
atoms attached to a defined atom that are a part of the polymer chain or matrix.
This polymer connectivity can range from 1 for a side group atom or functional
group to at least 8 or 10 in some metal-coordination and metal-cyclopentadienyl
polymers, respectively. Multihapticity is designated with a superscript following
the � for example, the cyclopentadienyl ligand in Figure 1.2b is �5.

An alternate designation of connectivity of the cyclopentadienyl ring is based
on the number of electron pairs donated to the metal ion. Thus a metal species
with a bis(cyclopentadienyl) bridge has a connectivity of 6 using this alternate
designation. This is more in keeping with its bonding.

Also note that double-ended bridging ligands in linear coordination polymers
are classed as bis(monodentate), bis(bidentate), bis(tridentate), bis(tetradentate),
etc. and provide connectivities of 2, 4, 6, or 8, respectively.

1.2.1 Connectivities of 1

Anchored metal-containing polymers used for catalysis can have connectivity
values as low as 1 with respect to the polymer chain as shown in Figure 1.1.
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Figure 1.1 Schematic of anchored metal-containing polymer with a connectivity of 1,
where M might be palladium or platinum with three other ligands. For catalytic activity,
at least one of the three must be easily removed by a substrate.
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Ni
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R R

H3C CH3
Mn
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C

CH3

CO2C8H17

(a)
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R =

Figure 1.2 Higher connectivities for metal-anchored polymers: (a). Schematic repre-
sentation of an anchored polymer that can convert dienes to cyclohexene aldehydes
under the right conditions. (b). Schematic representation of an anchored polymer that can
photolytically transport N2 across membranes. The analogous manganese cyclopentadienyl
tricarbonyl monomer decomposes under comparable conditions.

TABLE 1.1 Dentate Number (Denticity) Designation of Metal Chelates.

Donor Atoms
on Metal Designation in This Texta Alternate Designation

one monodentate [Fig. 1.3d] unidentate
two bidentateb [Fig. 1.8b,c] didentate
three tridentate [Fig. 1.10a] terdentate
four tetradentate [Fig. 1.12] quadridentate
five pentadentate quinquidentate
six hexadentate sexadentate

a1990 IUPAC nomenclature except when noted otherwise [text examples in brackets]
b1970 IUPAC nomenclature
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Note that the metal can have other ligands (groups coordinated to the metal) as
well, but inasmuch as they do not affect the polymer connectivity, the metal is
defined as having a connectivity of 1. Important connectivities of 1 are fairly rare
because the inertness of a single metal connection to a polymer is appreciably less
than cases in which multidentate chelation (2 or more ligating atoms from a single
ligand are coordinated to the same metal atom; cf. Table 1.1) or multihapticity
(2 or more atoms from the same molecule interacting with the same metal atom
in an organometallic species; cf. Fig. 1.2) occurs.

1.2.2 Connectivities of 2

Sulfur and selenium in their chain polymer allotropes undoubtedly possess a
connectivity of 2. They also have a connectivity of 2 in their ring structures,
for example, the crown S8 structure. Linear polyphosphates, polyphosphazenes,
poly(sulfur nitride), polycarboranes, pyroxenes (single-chain silicates), silicones
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(b)

(e)
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C C
C

O O
O
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Figure 1.3 Examples of inorganic polymeric species with connectivity of 2: (a) poly-
(sulfur nitride); (b) linear polyphosphate; (c) poly(dichlorophosphazene); (d) poly[bis-
(R3phosphine)-�2-diacetylenato-C1, C4(2-)platinum(II)], where R is a large organic group;
(e) carborane oligomer with meta-B10H10C2 polyhedra linked by CO (although the
hydrogens on the boron atoms and the BH groups in the back of the B10H10C2 polyhedra
are not shown). Carborane polymers with –SiR2�OSiR2�n – linkages also exist and have
been shown to have practical applications (cf. Chapter 4).
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Figure 1.4 Examples of silicon polymers with silicon connectivities of 2: (a) a
portion of a pyroxene silicate chain; (b) a portion of a silicone chain where R is
typically an alkyl organic group; (c) a portion of a polysilane chain where again R
is typically an alkyl organic group; (d) the repeating unit of a high-molecular-weight
ferrocene/dialkylsilicon polymer; and (e) the repeating unit of the six-coordinate silicon
in poly[oxophthalocyaninatosilicon(IV)] (cf. Figure 1.14c).

(–Si–O– backbones), polysilanes (–Si–Si– backbones), and simple linear coor-
dination and organometallic polymers that are joined by monodentate ligands
also have a connectivity of 2. Examples are shown in Figures 1.3 and 1.4. Such
polymers will be a primary emphasis of this book.

1.2.3 Connectivities of 3 (Fig. 1.5)

Boron in boric oxide has a connectivity of 3, as do the pnictides (N, P, As,
Sb, Bi) in some of their binary chalcogenides (e.g., As has a connectivity of 3
in As2S3), silicon in silicates such as mica, talc, and pyrophillite, and carbon
in graphite. Such connectivities of 3 provide two-dimensional polymers that
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Figure 1.5 Examples of connectivity of 3: (a) boric acid, (b) arsenic(III) sulfide, (c) a
synthetic polysilyne (Reprinted with permission from Bianconi et al., Macromolecules,
1989, 22, 1697;  1989 American Chemical Society); and (d) a synthetic silver polymer
(Venkataraman et al., Acta Cryst. 1996, C52, 2416).

are good lubricants and film- and sheet-forming materials. Polysilynes of the
type [RSi]n and metals [e.g., silver(I)] surrounded with three donors provide
synthetic examples of connectivities of 3, although the latter example would not
be expected to keep this connectivity in solution.
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1.2.4 Mixed Connectivities of 2 and 3

Although both the linear polyphosphoric acids and cyclic metaphosphoric acids
have a connectivity of 2 with respect to phosphorus, ultraphosphoric acids
exist (Fig. 1.6) that are intermediates in the hydrolysis of P4O10 to simpler
phosphoric acids. Note that the connectivity of phosphorus changes from 3
in the oxide through a mixture of 3 and 2 in the ultraphosphoric acids to
2 in the polyphosphoric acids. However, as noted by Ray (10), these are
dynamic processes with bond making and bond breaking causing changes in the
connectivity of individual phosphorus atoms increasing and decreasing during the
hydrolysis process. The phosphate salts possess similar connectivities to the acids.

Amphibole silicates, such as asbestos, have double chains or ladders of silicon
and oxygen in which the silicon atoms have connectivities of both 2 and 3. (See
Fig. 1.6.) Note that linear polymers with a basic connectivity of 2 typically
have mixed connectivities of 2 and 3 when crosslinked because appropriate
crosslinking affects only a small portion of the total chain atoms. A number
of intractable bis(monodentate) ligand metal coordination species — insoluble,
amorphous, uncharacterizable and suspected of being polymers — undoubtedly
fall into this class as well.
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Figure 1.6 Examples of polymeric inorganic species with mixed connectivities of 2 and
3: (a) an ultraphosphoric acid and (b) a portion of an asbestos chain.
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1.2.5 Connectivities of 4

Vitreous silica has silicon atoms with a connectivity of 4. Silicate glasses, if
counter ions are included (10), also have connectivities of 4. Boron and aluminum
phosphates and many other three-dimensional polymers have connectivities of
4 for at least one type of atom in the polymer; cf. Figure 1.7. Another class
of inorganic polymers that have connectivities of 4 are metal coordination
polymers in which each metal ion in the backbone is coordinated to the polymer
chain through two bidentate ligands, where a bidentate ligand is a donor that
coordinates to the same metal ion through two donor atoms. Examples are shown
in Figure 1.8.

1.2.6 Mixed Connectivities of 3 and 4

A number of polymeric inorganic species have mixed connectivities of 3 and
4, including some borate glasses, where the counter cations provide the counter
charges for the four oxide ions connected to at least some of the boron atoms as
shown in Figure 1.9. Other examples of mixed connectivity include the silicon
atoms in fibrous zeolites and the silicon atoms at the surfaces of silica.

1.2.7 Connectivities of 6

Examples of connectivities of 6 include metal coordination polymers having
metal atoms or ions joined with two tridentate ligands. A tridentate ligand is a
ligand that has three atoms that are coordinated to the same metal atoms or ion;
cf. Figure 1.10.
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Figure 1.7 Examples of polymeric inorganic species with mixed connectivities of 4:
(a) silica with silicon atoms of connectivities of 4 and (b) boron phosphate with both
phosphorus and boron atoms with connectivities of 4.
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Figure 1.8 Metal coordination polymers with connectivities of 4 for the metal ions: (a)
a small portion of the three-dimensional [CoHg�SCN�4]n solid used as a standard for
magnetic susceptibility measurements — both Co and Hg are tetrahedrally coordinated;
(b) a typical linear polymer for a 4-coordinate metal with a bis-bidentate ligand; (c) a
linear polymer for octahedral coordination with two bidentate ligands per metal plus two
other ligands not involved in connectivity of the polymer (R can be CH2, C3H8, a large
diazo link, etc.); (d) coordination analogous to (c) except that each of the four donors of
the ligand are bonded to four different metal ions, which gives a two-dimensional sheet.

Ferrocene polymers (Fig. 1.10) can be considered to have iron atoms with
connectivities of 6 if each cyclopentadienyl ring is considered a connectivity of
3 — consistent with bonding considerations. That is, considering the 18-electron
rule, iron(II) can accommodate only six pairs of electrons in addition to the six
electrons in its 3d6 valence electron levels. Thus, although five carbon atoms of
each cyclopentadienyl ring are approximately equidistant from the iron, only the
three pairs of pi-symmetry electrons are coordinated or bonded to the iron atom
from each ring. However, using the number-of-atoms definition, these polymers
have a connectivity of 10.
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Figure 1.9 An example of mixed connectivities of 3 and 4 for (a) the boron atoms in a
typical borate salt and (b) the silicon atoms in a typical fibrous zeolite.
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Figure 1.10 Examples of connectivities of 6 (or more) for metal atoms/ions.

Another example of connectivity of 6 can be found in the carborane carbons
of the carborane oligomer shown in Figure 1.3e using the atoms-connected
definition of connectivity. Naturally, the connectivity would not be more than
4 if the number of electron pairs bonding the carborane carbons to the chain
were considered.

1.2.8 Mixed Connectivities of 4 and 6

Orthophosphates and arsenates of titanium, zirconium, tin, cerium, thorium,
silicon, and germanium have mixed connectivities of 4 and 6. An example is
shown in Figure 1.11.



12 INORGANIC POLYMERS AND CLASSIFICATION SCHEMES

O
P

Zr Zr Zr

ZrZr

Figure 1.11 An orthophosphate of mixed connectivites of 4 and 6.
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Figure 1.12 A Schiff-base polymer of zirconium with a connectivity of 8.

1.2.9 Connectivities of 8

Metal coordination polymers of zirconium(IV), yttrium(III), and several lan-
thanide ions [cerium(IV), lanthanum(III), europium(III), gadolinium(III), and
lutetium(III)] have been synthesized that possess connectivities of 8 because two
tetradentate ligands are coordinated to each metal ion that is part of the polymer
chain. An example is shown in Figure 1.12 (cf. Exercises 1.2–1.6).

1.3 CLASSIFICATIONS BY DIMENSIONALITY

Another manner in which polymers can be classed is by dimensionality. Pittman
et al. (3) use this classification for polymeric species containing metal atoms in
their backbones — one category of metal-containing polymers in the next section.
Here we will use the dimensionality for all types of inorganic polymers.

1.3.1 1-D Polymeric Structures

A linear chain polymer is categorized as a one-dimensional (1-D) polymer even
though it may have twists and turns in the “linear” chain. Simple polymer chains
in which all of the atoms in the chain have a connectivity of 2 are classed as
1-D polymers. However, a linear chain polymer with one or more atoms of each


