PROGRESS IN INORGANIC CHEMISTRY

Edited by

KENNETH D. KARLIN

DEPARTMENT OF CHEMISTRY JOHNS HOPKINS UNIVERSITY BALTIMORE, MARYLAND

VOLUME 49

AN INTERSCIENCE[®] PUBLICATION JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Progress in Inorganic Chemistry

Volume 49

Advisory Board

JACQUELINE K. BARTON CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA THEODORE J. BROWN UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS JAMES P. COLLMAN STANFORD UNIVERSITY, STANFORD, CALIFORNIA F. ALBERT COTTON TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS ALAN H. COWLEY UNIVERSITY OF TEXAS, AUSTIN, TEXAS RICHARD H. HOLM HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS EIICHI KIMURA HIROSHIMA UNIVERSITY, HIROSHIMA, JAPAN NATHAN S. LEWIS CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA STEPHEN J. LIPPARD MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS TOBIN J. MARKS NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS EDWARD I. STIEFEL EXXON RESEARCH & ENGINEERING CO., ANNANDALE, NEW JERSEY KARL WIEGHARDT MAX-PLANCK-INSTITUT, MÜLHEIM, GERMANY

PROGRESS IN INORGANIC CHEMISTRY

Edited by

KENNETH D. KARLIN

DEPARTMENT OF CHEMISTRY JOHNS HOPKINS UNIVERSITY BALTIMORE, MARYLAND

VOLUME 49

AN INTERSCIENCE[®] PUBLICATION JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Cover Illustration of "a molecular ferric wheel" was adapted from Taft, K. L. and Lippard, S. J., *J. Am. Chem. Soc.*, **1990**, 112, 9629.

This book is printed on acid-free paper. \bigotimes

Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 or the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate percopy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc. 605 Third Avenue, New York, NY 10158-0012 (212) 850-6001, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

For ordering and customer service, call 1-800-CALL WILEY.

Library of Congress Catalog Card Number 59-13035 ISBN 0-471-40223-0

10 9 8 7 6 5 4 3 2 1

Contents

Nonclassical Metal Carbonyls	1
ANTHONY J. LUPINETTI and STEVEN H. STRAUSS Colorado State University, Fort Collins, CO	
GERNOT FRENKING	
Philipps-Universität Marburg, Marburg D-35032, Germany	
The Influence of Ligands on Dirhodium(II) on Reactivity and Selectivity in Metal Carbene Reactions	113
Michael P. Doyle	
University of Arizona, Tucson, AZ	
TONG REN	
University of Miami, Coral Gables, FL	
Coordination Chemistry of Transition Metals with Hydrogen Chalcogenide and Hydrochalcogenido Ligands	169
MAURIZIO PERUZZINI and ISAAC DE LOS RIOS Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR, 50132 Firenze, Italy	
Antonio Romerosa	
Universidad de Almeria, 04071 Almeria,Spain	
The Coordination Chemistry of Phosphinines: Their Polydentate and Macrocyclic Derivatives	455
NICOLAS MÉZAILLES, FRANÇOIS MATHEY, and PASCAL LE FLOCH Ecole Polytechnique, 91128 Palaiseau Cedex, France	
Texaphyrins: Synthesis and Development of a Novel Class of Therapeutic Agents	551
TARAK D. MODY and LEI FU Pharmacyclics, Inc., Sunnyvale, CA	
Jonathan L. Sessler	
University of Texas at Austin, Austin, TX	

CONTENTS

The Chemistry of Synthetic Fe–Mo–S Clusters and Their Relevance to the Structure and Function of the Fe–Mo–S Center in Nitrogenase	599
STEVEN M. MALINAK Albion College, Albion, MI DIMITRI COUCOUVANIS The University of Michigan, Ann Arbor, MI	
Subject Index	663
Cumulative Index, Volumes 1–49	687

vi

Progress in Inorganic Chemistry Volume 49

Nonclassical Metal Carbonyls

ANTHONY J. LUPINETTI and STEVEN H. STRAUSS

Department of Chemistry Colorado State University Fort Collins, CO

GERNOT FRENKING

Fachbereich Chemie Philipps-Universität Marburg Marburg D-35032, Germany

CONTENTS

I. INTRODUCTION

- A. Scope of This Chapter
- B. Importance of Metal Carbonyl Compounds in the Chemical Sciences
- C. Importance of Nonclassical Metal Carbonyls
- D. Historical Perspective

II. THE JUSTIFICATION FOR TWO CATEGORIES OF METAL CARBONYLS

- A. What Is a Classical Metal Carbonyl? The Ten Statements
- B. Violations of Statements 1b-5b: Experimental and Theoretical Observations That Led to the Nonclassical Metal Carbonyl Concept
 - 1. ν (CO) > 2143 cm⁻¹ and *R*(CO) < 1.12822 Å
 - 2. Sign of $\Delta R(CO)$ Upon Lengthening R(MC) from $R(MC)_{eq}$
 - 3. Sign of $\Delta \nu$ (CO) Upon Dissociation of One CO Ligand from a Polycarbonyl Complex
 - 4. $M(CO)_n^+$ versus $M(CO)_n\overline{F_2}$
- C. What Is a Nonclassical Metal Carbonyl?

III. SURVEY OF NONCLASSICAL METAL CARBONYLS AND RELATED SPECIES

- A. s-Block Species
 - 1. H⁺
 - $2. \quad Li^+ \ to \ Cs^+$

Progress in Inorganic Chemistry, Vol. 49, Edited by Kenneth D. Karlin. ISBN 0-471-40223-0 © 2001 John Wiley & Sons, Inc.

- 3. Be^{2+} to Ba^{2+}
- B. p-Block Species
 - 1. Boranes
 - 2. Al³⁺
 - 3. R⁺
 - 4. Si⁴⁺
 - 5. Sn^{2+} and Pb^{2+}
 - 6. N⁺
 - 7. Cl⁺
- C. Groups 3 (IIIB)-7 (VIIB) d-Block Species
 - 1. Sc^{3+} , Y^{3+} , and La^{3+} 2. Ti^{3+} , Ti^{4+} , and Zr^{4+} 3. V^{3+}

 - 4. Cr^{2+} and Cr^{3+}
 - 5. Mn²⁺
- D. Groups 8 (VIII)-10 (VIII) d-Block Species
 - 1. Fe^{2+} , Fe^{3+} , Ru^{2+} , and Os^{2+}
 - 2. $Co^+, Co^{2+}, Rh^+, Rh^{3+}, Rh^{4+}, Ir^+, and Ir^{3+}$ 3. $Ni^{2+}, Pd^+, Pd^{2+}, Pt^+, Pt^{2+}, and Pt^{4+}$
- E. Group 11 (IB) d-Block Species
 - 1. Cu^+ and Cu^{2+}
 - 2. Ag⁺
 - 3. Au⁺
- F. Group 12 (IIB) d-Block Species
 - 1. Zn^{2+}
 - 2. Cd²⁺
 - 3. Hg_2^{2+} and Hg^{2+}
- G. f-Block Species
- H. Carbon-13 NMR Data
- IV. GEOMETRIC AND ELECTRONIC STRUCTURES OF NONCLASSICAL METAL CARBONYLS
 - A. Comparison of Experimental and Theoretical Results
 - B. Insights from Theoretical Investigations
 - 1. The Interaction of CO With Positively Charged Species
 - 2. A Discontinuous Transition from Classical to Nonclassical Metal Carbonyls
 - 3. Energy Decomposition Analysis of d^6 Hexacarbonyls
 - 4. Bond Energies of Cationic d^{10} Carbonyl Complexes
 - C. Insights from Experimental Investigations
 - 1. $M(CO)^+$ (M⁺ = Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺)
 - 2. cis-Pt(CO)₂X₂ (X⁻ = I⁻, Br⁻, Cl⁻, C₆Cl₅, C₆F₅, SO₃F⁻)
 - 3. $Cu(CO)_n^+$ versus $Ag(CO)_n^+$
 - 4. Exceptions to Statement 4b
 - 5. Carbon-13 NMR Spectroscopy
 - 6. ν (CO) Values of M(CO)⁺_n Cations in Ne/CO Matrices and in Fluoroanion Salts

V. SYNTHESIS OF NONCLASSICAL METAL CARBONYLS; TWO CASE STUDIES

A. $Pt(CO)_{4}^{2+}$

2

B. $Cu(CO)_4^+$

VI. FUTURE WORK

ACKNOWLEDGMENTS

REFERENCES

I. INTRODUCTION

A. Scope of This Chapter

We will be concerned with the geometric and electronic structures, as probed by spectroscopic, diffraction, and theoretical methods, of M-C \equiv O and E-C \equiv O species with ν (CO) values >2143 cm⁻¹ (M = a metallic element, E = a nonmetallic element). As discussed in Section II, a ν (CO) value >2143 cm⁻¹, which is the value for gaseous CO, is the most important criterion that categorizes a M-C \equiv O species as a nonclassical metal carbonyl. Our coverage of the structural and spectroscopic data and theoretical results for this class of compounds, molecular fragments, and surface-bound species will be comprehensive. However, our coverage of the synthetic strategies that have been used to synthesize or generate nonclassical M-CO and E-CO species will be limited to brief comments and to two in-depth case histories.

B. Importance of Metal Carbonyl Compounds in the Chemical Sciences

Carbon monoxide is one of the most important ligands in transition metal chemistry (1-55). Its uses range from a ligand for fundamental studies of structure and bonding to a chemical feedstock. Many industrial processes, including hydroformylation, Fischer-Tropsch synthesis, methanol synthesis, acetic acid synthesis, and the water-gas shift reaction employ CO as a reagent and transition metal compounds as heterogeneous or homogeneous catalysts and involve the intermediacy of metal carbonyls. Carbon monoxide is used to stabilize transition metals in low, even negative, oxidation states. It is also used as a probe ligand in diverse fields such as surface chemistry, catalysis, solid-state chemistry, organometallic chemistry, and biochemistry. The classical picture of metal-carbonyl bonding, shown in Fig. 1, is well developed and is one of the most enduring paradigms in inorganic chemistry. It involves synergistic bonding, with carbon monoxide acting simultaneously as a σ -donor and π -acceptor ligand for *d*-block metals. The literature of metal carbonyl chemistry is so vast that more than 600 review articles on this subject have appeared since 1967. To provide the reader with an entry point into this literature, most of the important reviews that have appeared in the 1990s are listed

M–CO π bond

Figure 1. The classical description of synergistic bonding in metal carbonyls.

as Refs. 1-50 (for convenience, we have included the titles for these references) (1-50). Two other important references are the important monograph by the Olivés, which was published in 1984 (51), and the equally important monograph by Braterman, which was published in 1975 (52). For a glimpse of the field of metal carbonyl chemistry in its earlier years, the reader can consult some of the oldest available reviews (53–55).

C. Importance of Nonclassical Metal Carbonyls

In addition to their intrinsic interest as "unusual" metal carbonyl species, some nonclassical metal carbonyls, especially those of Groups 10 (VIII), 11 (IB), and 12 (IIB), are of technological importance. Copper(I) and Zn(II) carbonyls may be involved as intermediates in the large-scale industrial transformation of CO to CH₃OH using copper-promoted ZnO catalysts (1, 28, 32, 33, 51, 56). Copper(I) carbonyls may be involved as intermediates in the heterogeneous copper-catalyzed low-temperature water-gas shift reaction (57), and Pd(I), Pd(II), Cu(I), Ag(I), and Au(I) carbonyls may be homogeneous catalysts in the production of carboxylic acids and carbamate esters from alkenes (58-69). Copper(I) carbonyls are formed when CO is absorbed by supported or soluble Cu(I) salts, which are used to remove CO from a variety of industrial gas streams (70-74). In addition, biochemists have long used CO as a probe ligand for the elucidation of structural and dynamic properties of reduced Cu-containing proteins and enzymes, including hemocyanin and cytochrome c oxidase, although in most of these cases $\nu(CO) < 2143 \text{ cm}^{-1} (75-79)$. Perhaps the greatest, if unappreciated, significance of nonclassical metal carbonyls is that they provide a model for a lengthened M-CO bond of a classical metal carbonyl (i.e., an M…CO bond of a classical metal carbonyl). To our knowledge, no one has studied the reactivity of the CO ligand of a classical, catalytic M–CO species as the M–C distance is lengthened from its equilibrium value, thereby decreasing π back-bonding. In the discussion in Section IV, we will demonstrate that many metal carbonyls that are classical at equilibrium are nonclassical during their formation.

D. Historical Perspective

Despite the recent activity in the area of metal carbonyls with ν (CO) > 2143 cm⁻¹ (2, 4, 18–20, 23, 27) it should be noted that metal carbonyls with ν (CO) > 2143 cm⁻¹ have been known almost since the inception of metal carbonyl chemistry. Previous workers noted the "atypical" nature of metal carbonyls of late *d*-block metal ions and suggested that many such compounds have little or no π back-bonding (80–82). The compound Au(CO)Cl, with ν (CO) = 2162 cm⁻¹, was first described in the literature in 1925 (83). Even more striking is *cis*-Pt(CO)₂Cl₂, with ν (CO)_{ave} = 2158 cm⁻¹. The synthesis of this complex, one of only ~250 reported to date with ν (CO) > 2143 cm⁻¹, was reported by Schützenberger in 1870 (84), two decades before Mond (85) reported the synthesis of Ni(CO)₄. History is full of ironies, and the history of chemistry is no exception. The first metal carbonyl complex to be reported in the literature was not the prototype: *cis*-Pt(CO)₂Cl₂ turned out to be categorically different than ~99% of what was to come.

II. THE JUSTIFICATION FOR TWO CATEGORIES OF METAL CARBONYLS

A. What Is a Classical Metal Carbonyl? The Ten Statements

Listed below are five pairs of statements about transition metal carbonyls that most chemists would agree are unambiguous and valid. It may seem at first that each pair of statements is repetitive, that is, that each pair is simply two ways of expressing the same concept. However, the important distinction between the a Statements (1a-5a) and the b Statements (1b-5b) is that the former are true for all metal carbonyls while the latter (with the possible exception of Statement 4b) are not true for all metal carbonyls (2).

- 1a. Carbon monoxide (CO) is a σ -donor and a π -acceptor ligand.
- 1b. M–CO bonds have a significant M–CO σ component and a significant M–CO π component.
- 2a. The π component (π back-bonding) involves the transfer of electron density from metal d_{π} orbitals to CO π^* orbitals.

- 2b. The C–O distances [R(CO)] are longer and $\nu(CO)$ values are lower for metal carbonyls than for the free CO molecule (1.12822 Å and 2143 cm⁻¹, respectively).
- 3a. Adding a donor ligand L to a metal carbonyl complex increases the electron density at the metal center and enhances $M \rightarrow CO \pi$ back-bonding.
- 3b. Adding a donor ligand L to a metal carbonyl complex results in a stronger, shorter M-CO bond and a weaker, longer C-O bond.
- 4a. Substituting an ancillary ligand L with one that is a stronger σ donor enhances M \rightarrow CO π back-bonding.
- 4b. Substituting an ancillary ligand L with one that is a stronger σ donor results in a stronger, shorter M–CO bond and a weaker, longer C–O bond.
- 5a. The transformation $LM(CO)_n \rightarrow LM(CO)_{n-1} + CO$ results in fewer π -acceptor CO ligands competing for the same metal d_{π} electron density.
- 5b. The transformation $LM(CO)_n \rightarrow LM(CO)_{n-1} + CO$ results in weaker, longer C–O bonds and lower $\nu(CO)$ values.

Let us consider typical examples for which the Statements 1b-5b are true. The synergistic nature of M-CO bonding, shown in Fig. 1 and discussed at length in Section IV, is very well accepted. Even before the application of molecular orbital (MO) theory to metal complexes, the unexpectedly (for the time) short Ni-CO distance in Ni(CO)₄ (86) prompted Pauling to suggest partial double-bond character for the nickel-carbon bonds (87). This was followed by the now standard Dewar-Chatt-Duncansen MO model (88-90). A good example with which to demonstrate the validity of Statement 1b is Cr(CO)₆. In 1980, both Sherwood and Hall (91) and Bursten et al. (92) predicted that the amount of Cr \rightarrow CO π back-bonding in $Cr(CO)_6$ was between 33 and 45% of the amount of $Cr \leftarrow CO \sigma$ bonding. The recent predicted value of 35% based on a modern DFT charge decomposition analysis of $Cr(CO)_6$ is consistent with these earlier results (93). A good example to demonstrate the validity of Statement 2b is the tetrahedral complex $Co(CO)_4^-$. The value of $\nu_{asym}(CO)$ for the sodium salt in hexamethylphosphoramide (HMPA) solution is 1890 cm^{-1} (35), more than 250 cm^{-1} below the 2143 -cm^{-1} value for free CO. The R(CO) values for the protonated quinuclidine salt of $Co(CO)_4^-$ ($\pm \sigma$ value shown in parentheses) range from 1.154(3) to 1.165(3) Å (94), >0.025 Å longer than the 1.12822-Å value for free CO. Note that the structure of [H(quinuclidine)][$Co(CO)_4$] is one of very few recent structures of metal carbonyls in which *R*(CO) lengthening was observed to be significant at the $\pm 3\sigma$ level of confidence. In the past, X-ray structures of metal carbonyls were rarely of sufficient precision that derived R(CO) values were significantly different than 1.12822 Å. This is a consequence of the strength of the CO bond, which is one of the strongest known chemical bonds. The depth, and hence the steepness, of its potential energy well requires that even a significant change in CO bond energy upon coordination to a metal center will result in only a modest change in R(CO).

A good example to demonstrate the validity of Statement 3b is the addition of two weak F⁻ ion donors to the linear Pd(CO)₂ moiety, which was studied at the MP2 (Moeller–Plesset perturbation theory terminated at second order) level of theory (95). Even with relatively long Pd–F⁻ distances of 3 Å, the D_{2h} symmetry complex $[Pd(CO)_2F_2]^{2-}$ was predicted to have Pd–C and C–O distances (1.924 and 1.167 Å) that were shorter and longer, respectively, than the corresponding predicted distances in linear Pd(CO)₂ (1.942 and 1.156 Å). In harmony with the longer, weaker C–O bonds in $[Pd(CO)_2F_2]^{2-}$, the predicted value of $\nu_{sym}(CO)$ decreased by 66 cm⁻¹ on going from linear Pd(CO)₂ to D_{2h} $[Pd(CO)_2F_2]^{2-}$. Clearly, the F⁻ σ -donor ligands induce additional π back-bonding in $[Pd(CO)_2F_2]^{2-}$ relative to Pd(CO)₂.

There are many examples that demonstrate the validity of Statement 4b. Two classic examples are the consequences of substituting three CO ligands in $Cr(CO)_6$ with three σ donor ligands. The 1.909(3) Å average Cr–CO distance in $Cr(CO)_6$ decreased to 1.839(4) Å in *fac*–Cr(CO)₃(PH₃)₃ (96) and to 1.816(5) Å in *fac*–Cr(CO)₃(NH(C₂H₄NH₂)₂) (97).

Three examples that demonstrate the validity of Statement 5b are Cr(CO)₆ $[\nu(CO)_{ave} = 2017 \text{ cm}^{-1}]$ versus Cr(CO)₅ $[\nu(CO)_{ave} < 2000 \text{ cm}^{-1}]$ (98), CpMn(CO)₃ $[\nu(CO)_{ave} = 1967 \text{ cm}^{-1}]$ versus CpMn(CO)₂ $[\nu(CO)_{ave} = 1921 \text{ cm}^{-1}]$ (99), and Fe(OEP)(CO)₂ $[\nu(CO)_{ave} \ge 2016 \text{ cm}^{-1}]$ versus Fe(OEP)(CO) $[\nu(CO) = 1951 \text{ cm}^{-1}]$ (100).

B. Violations of Statements 1b–5b: Experimental and Theoretical Observations That Led to the Nonclassical Metal Carbonyl Concept

1.
$$\nu(CO) > 2143 \text{ cm}^{-1}$$
 and $R(CO) < 1.12822 \text{ Å}$

There are now more than 250 M–C \equiv O and E–C \equiv O species with ν (CO) > 2143 cm⁻¹ (101–257). All of them are listed in Tables I–VII and many will be discussed in detail in Sections III and IV. At least nine of these have *R*(CO) values that are significantly < 1.12822 Å. Two examples that violate both criteria of Statement 2b are Pd(CO)₂(SO₃F)₂ [ν (CO)_{ave} = 2218 cm⁻¹; *R*(CO) = 1.102(6), 1.114(6) Å] (176), shown in Fig. 2, and Cu(CO)⁺₄ [ν_{asym} (CO) = 2184 cm⁻¹; *R*(CO) = 1.109(4) – 1.114(3) Å] (212), the structure of which is compared with the structure of Co(CO)⁻₄ in Fig. 3. The data in Tables I–VII provide compelling evidence that the diatomic molecule CO *can respond in two completely different ways* when it binds to a metal center. In the vast majority of cases, the response is that *R*(CO) increases and ν (CO) decreases. This large category of metal carbonyls could be called common, ordinary, or usual; we have chosen to call it classical. Strictly speaking, we should say that metal carbonyls in this category are classical with respect to State-

Figure 2. Structure of *cis*-Pd(CO)₂(SO₃F)₂. [Reprinted with permission from C. Wang, H. Willner, M. Bodenbinder, R. J. Batchelor, F. W. B. Einstein, and F. Aubke, *Inorg. Chem.*, 33, 3521 (1994). Copyright © 1994 American Chemical Society.]

Figure 3. Structures of the Cu(CO)⁺₄ cation in Cu(CO)₄(1-Et-CB₁₁F₁₁) (212) and the Co(CO)⁻₄ anion in [H(quinuclidine)][Co(CO)₄] (94). Selected bond distances (Å) and angles (deg): Cu–C, 1.961(3) -1.968(3); C–O, 1.109(4) – 1.114(3); C–Cu–C, 104.3(1) – 112.1(6); O–C–Cu, 174.8(3) – 178.4(3); Co–C, 1.757(2) – 1.777(2); C–O, 1.150(2) – 1.153(2); C–Co–C, 107.5(2) – 113.6(1).

ment 2b. The other response is that R(CO) decreases and $\nu(CO)$ increases, and we call metal carbonyls in this category nonclassical with respect to Statement 2b.

2. Sign of $\Delta R(CO)$ Upon Lengthening R(MC) from $R(MC)_{eq}$

Figure 4 shows the results of recent computational work on $Cu(CO)^+$ and $Ag(CO)^+$ (257). It can be seen that an infinitesimal increase in R(MC) from its equilibrium position results in a shortening of the C–O bond in $Cu(CO)^+$ but a lengthening of the C–O bond in $Ag(CO)^+$. The same perturbation has produced two different responses, classical, $Cu(CO)^+$, and nonclassical, $Ag(CO)^+$.

3. Sign of $\Delta \nu(CO)$ Upon Dissociation of One CO Ligand from a Polycarbonyl Complex

Experimental $\nu_{asym}(CO)$ values for Cu(CO)₃(AsF₆) and Cu(CO)₂(AsF₆) are 2179 and 2164 cm⁻¹, respectively, in harmony with Statement 5b (200). In contrast, $\nu_{asym}(CO)$ values for Ag(CO)₃(Nb(OTeF₅)₆) and Ag(CO)₂(Nb(OTeF₅)₆) are 2191 and 2198 cm⁻¹, respectively, in violation of Statement 5b (148, 220). In this case too, the same perturbation, loss of a ligand, has produced two different responses, classical (Cu⁺) and nonclassical (Ag⁺). Note that the copper complexes behave classically with respect to Statement 5b but nonclassically with respect to Statement 2b.

Figure 4. Plots of $\Delta R(CO)$, the change in carbon–oxygen distance, versus R(MC), the metal–carbon distance, for the monocarbonyls Cu(CO)⁺ and Ag(CO)⁺ (MP2 level of theory). The open data points represent the equilibrium geometry. Note that at the equilibrium geometry, the C–O bonds in both Cu(CO)⁺ and Ag(CO)⁺ are predicted to be –0.009 Å shorter than in free CO. The data are from (256).

LUPINETTI ET AL.

4. $M(CO)_n^+$ versus $M(CO)_n F_2^-$

When M⁺ is Cu⁺, the addition of two F⁻ ions at 3 Å along the perpendicular to the bond axis through Cu⁺ in linear Cu(CO)⁺₂ resulted in a ν (CO) decrease of 32 cm⁻¹ and a *R*(CuC) *decrease* of 0.034 Å, in harmony with Statement 3b (95). In contrast, when M⁺ is Ag⁺, the addition of two F⁻ ions resulted in a *R*(AgC) *increase* of 0.036 Å (95). Once again, the same perturbation has produced two different effects, classical (Cu⁺) and nonclassical (Ag⁺), as shown in Fig. 5. Interestingly, the addition of two F⁻ ions to Ag(CO)⁺₂ also resulted in a ν (CO) decrease of 32 cm⁻¹. As above, the copper complexes behave classically with respect to Statement 3b but nonclassically with respect to Statement 2b [i.e., the ν (CO) values and the *R*(CO) values for both copper complexes are higher than and smaller than, respectively, the corresponding parameters for gaseous CO].

C. What Is a Nonclassical Metal Carbonyl

Some of the results listed above for copper(I) carbonyls might be thought of as confusing, at least at first glance. For example, are $Cu(CO)_3(AsF_6)$ and $Cu(CO)_2(AsF_6)$ classical or nonclassical? The answer is that it depends on which statement about metal carbonyls is being considered. These two complexes are nonclassical with respect to Statement 2b, but they are classical with respect to Statement 5b. This apparent confusion does not, in our opinion, diminish the use-fulness of the classical–nonclassical distinction. That the phrase *with respect to* is needed to answer the question should be no more disconcerting than the fact that this three-word phrase is also needed to answer questions unambiguously about the

Figure 5. The predicted effects of adding two F⁻ ions to the linear d^{10} complexes Cu(CO)⁺₂ and Ag(CO)⁺₂. The data are from (95).

stability of compounds. For example, a compound might be thermodynamically *stable* with respect to its constituent elements but *unstable* with respect to disproportionation or with respect to another set of products. As far as a simple question of stability is concerned, the most sensible approach is to designate a compound as unstable if it is unstable with respect to *at least one* set of products, even if it is stable with respect to other possible sets of products. Accordingly, we believe that the most sensible way to label metal carbonyls is as follows: metal carbonyls that conform to Statements 1b–5b are classical metal carbonyls; any metal carbonyl. Even if a complex violates only one of the five statements, its designation as nonclassical serves to alert other scientists that it is an unusual compound and that careful scrutiny of it might be rewarded with new chemical insights and discoveries.

III. SURVEY OF NONCLASSICAL METAL CARBONYLS AND RELATED SPECIES

In this section, we list in Tables I–VII all known species with M–C \equiv O or E– C \equiv O linkages for which ν (CO) is >2143 cm⁻¹ (101–257). Our coverage of CO adducts of metal oxides and halides is representative, not exhaustive. For example, there are more than a dozen papers reporting vibrational spectra of CO on MgO crystallites, but only two are listed in Table I. The reader should consult the excellent and up-to-date review by Zecchina et al. (1) for a comprehensive treatment of this important literature.

We also list in Table VIII those species that have also been characterized by ¹³C NMR spectroscopy (258–263). We have included a few relevant species with $\nu(CO) < 2143 \text{ cm}^{-1}$ for comparison. The E–CO entries include species with CO bonded to nonmetallic electrophiles such as H⁺, HF, BH₃, CH₃⁺, N⁺, and Cl⁺. There are now >250 carbonyl species with average ν (CO) values >2143 cm⁻¹. This can be compared with the very large number of metal carbonvls that have been reported in the literature between the years 1870 and 1999. In 1985, there were 10,022 R(CO) values in the Cambridge Structural Database (CSD) for which the M–C–O bond angle was $\geq 173^{\circ}$ (264). The "average" metal carbonyl complex in the database undoubtedly has more than one CO ligand. However, considering that the CSD analysis included only terminal carbonyls and only metal carbonyl complexes that had been structurally characterized and that contain one or more C-H bonds, the total number of metal carbonyl species that have been studied to date is probably >10,000 and may be as high as 20,000. Hence, nonclassical metal carbonyls probably number ~1-2% of the total.

LUPINETTI ET AL.

TABLE I

s-Block M-CO Species With ν (CO) > 2143 cm⁻¹

	Species		$\nu(CO)^a$	
М	without CO	Conditions	(cm^{-1})	References
H+	H^{+}	Gas phase	2184	101,102
	HF/SbF ₅	Superacid soln	2110	103
	HF	Photofragmentation of matrix isolated FCHO, 20 K	2162	104
	HF	14 K; Ar/CO matrix	2159	105
	HCI	20 K; Ar/CO matrix	2156	106
	X ₃ SiOH	100 K; Na- and Al-free silicalite S	2156	107
	H(ZSM-5)	226 K; zeolite–ZSM-5	2173	108
Li ⁺	LiF	10 K; Ar/CO matrix	2185	109
		77 K; 100 face, two sites	2177, 2155	111
	Li_2F_2	10 K; Ar/CO matrix	2176, 2173, 2168	109
	Li(ZSM-5)	226 K (77 K); zeolite-ZSM-5	$2185(2188)^{b}$	108,112,113
Na ⁺	NaF	10 K; Ar/CO matrix	2172	109
	Na_2F_2	10 K; Ar/CO matrix	2155	109
	NaCl	5 K; 100 face	2155	115,116
		77 K; 100 face	2159	111
	NaI	77 K; 100 face	2160	111
	Na(MOR)	77 K; MOR = zeolite-mordenite	2177	118
	Na(ZSM-5)	226 K (77 K); zeolite-ZSM-5	$2170(2178)^{b}$	108,118
	Na(Y)	77 K; Y = Union Carbide zeolite- LZY-52	2170	119
	Na,Rb(Y)	110 K; $Y =$ Enichem zeolite (Si/Al = 2.7)	2166	120
	Na(L)	77 K; $L = zeolite - LTL$, two sites	2174, 2157	121
	Na(A)	130 K; $A = Linde 4 Å zeolite - A$	2155	122
	Na(ETS-10)	100 K; ETS-10 = titanosilicate molecular sieve	2176	123
	Na(CO)(ETS-10)	100 K; ETS-10 = titanosilicate molecular sieve	2164	123
K+	KC1	77 K; 100 face, low coverage	2153	111
	K(MOR)	77 K; MOR = zeolite-mordenite	2163	118
	K(ZSM-5)	226 K (77 K); zeolite-ZSM-5	2161 $(2162)^{b}$	108,118
	K(L)	77 K; $L = zeolite-LTL$, two sites	2161, 2150	121
	K(ETS-10)	100 K; ETS-10 = titanosilicate molecular sieve	2168, 2162	123
Rb ⁺	Rb(MOR)	77 K; MOR = zeolite-mordenite	2159	118
	Rb(ZSM-5)	226 K (77 K); zeolite-ZSM-5	2158 $(2162)^{b}$	108,118
	Na,Rb(Y)	111 K; Y = Enichem zeolite (Si/Al = 2.7)	2157	120
Cs ⁺	Cs(MOR)	77 K; MOR = zeolite-mordenite	2155	118
	Cs(ZSM-5)	226 K (77 K); zeolite-ZSM-5	$2145(2157)^{b}$	108,118
Be ²⁺	BeO	77 K	2207, 2200, 2188	124
Mg ²⁺	MgF_2	10 K; Ar/CO matrix	2176, 2173, 2168	109
	MgO	77 K; 001 face, low coverage, three sites	2203, 2170, 2157	125
		77 K; 100 face, low coverage, two site	2170, 2157	111
	Mg(Y)	77 K; zeolite–Y	2213	126 (continues)

	Species witho	ut	$\nu(CO)^a$	
М	́ со	Conditions	(cm^{-1})	References
	Mg(X)	77 K; zeolite–X	2205	126
Ca ²⁺	CaF ₂	matrix isolated	2187, 2180	105,109
	$Ca(\bar{Y})$	77 K; zeolite–Y	2197, 2198	112,113,126
	Ca(X)	77 K; zeolite–X	2192	126
	CaO/Al ₂ O ₃	3% CaO, 300 K	2182	110
	$Ca(Cp^*)_2$	Toluene soln	2158	127
Sr ²⁺	SrF ₂	10 K; Ar/CO matrix	2181, 2174, 2166	109
	$Sr(\tilde{Y})$	77 K; zeolite-Y	2186	126
	$Sr(Cp^*)_2$	Toluene soln	2159	127
Ba ²⁺	BaF ₂	10 K; Ar/CO matrix	2173, 2164, 2160	109
	$Ba(\tilde{Y})$	77 K; zeolite-Y	2178	126
	Ba(X)	77 K; zeolite-X	2172	126

TABLE I (Continued)

^{*a*}The ν (CO) values are from IR spectra.

^bThe value in parentheses corresponds to the temperature in parentheses in the conditions column.

A. s-Block Species

1. H⁺

The gas-phase linear triatomic cation HCO⁺ [ν (CO) = 2184 cm⁻¹] (101, 102) has not yet been isolated as a simple salt, probably because its superacidic nature is not compatible with any anion used to date. Nevertheless, a great deal is known about this important species, the first polyatomic ion detected in interstellar space (265, 266) and possibly the most abundant ion in hydrocarbon flames (267). There is a recent report of the IR spectrum of solvated HCO⁺ in the neat superacid HF/SbF₅, with ν (CO) = 2110 cm⁻¹ (103). This value seems rather low, considering the ν (CO) values of matrix isolated FH–CO and ClH–CO, which are ≥2156 cm⁻¹ (104–106). There is a report of a Si–O–H–CO species that was formed in a sodiumand aluminum-free silicalite with ν (CO) = 2173 cm⁻¹, which was formed when the acidic zeolite H(ZSM-5) was placed under a CO atmosphere (108).

2. Li^+ to Cs^+

There are no molecular MCO⁺ species known for $M^+ = Li^+ - Cs^+$. All of the species listed in Table I were generated by adding CO to alkali metal halide surfaces or to alkali metal substituted zeolites. Note that for the mordenite (MOR) and ZSM-5 series of zeolites, ν (CO) decreases as the ionic radius of the alkali metal increases, as shown in Fig. 6. Note also that ν (CO) decreases as the Si/Al content of

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			p-Block M-CO Spec	ties With ν (CO) > 2143 cr	n ⁻¹	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W	Compound or Species	$ u(CO)^a$ (cm^{-1})	R(MC) (Å)	R(CO) (Å)	References
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B	$BH_3(CO)$	2167 (Ne matrix, 10 K)	1.53(1)	1.135(10)	128-130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$B_2H_4(CO)$,	2153	1.52(1)	1.125(7)	131
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{B}_{2}\mathbf{H}_{7}(\mathbf{CO})$	2203	1.54(1)	1.11(1)	132
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B ₄ H ₆ (CO)	2150	k.		133
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B ₄ F ₆ (CO)	2162			134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1,10-B _{In} Cl ₈ (CO),	2203			135
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1,10-B ₁₀ H _s (CO),	2147			135
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1-SMe_{7}-6-B_{10}H_{8}(CO)$	2157			135
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[PMePh ₃][2-B ₁₀ H ₆ (CO)]	2129	1.484(6)	1.130(5)	137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1,7-B_{12}H_{10}(CO),$	2223			135
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1,12-B ₁ ,H ₁₀ (CO),	2210	1.543(2)	1.119(2)	135,136
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		1-NMe ₂ -12-B ₁₂ H ₁₀ (CO)	2204			135
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		[NMe4][B ₁₃ H ₁₁ (CO)]	2178			135
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al^{3+}	AlMe ₃ (CO) (neat CO matrix)	2185			138
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$AI_{2}O_{3} + CO$	2238-2150			110, 124, 139–142
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{R}^+	CH ₃ CO ⁺ /H ₂ SO ₄	2309			143
$ \begin{array}{c cccc} [CH_3CO[SbCI_6] & 2295 & 1.45(2) & 1.109(30) & 146, 147 \\ [(CH_3)_2CHCO][SbCI_6] & 2257 & 1.45(4) & 1.101(4) & 148 \\ [1.4-C_0H_4(CH_3)CO][SbCI_6] & 2257 & 1.460(1) & 1.097(9) & 149 \\ Sn^{2+} & Sn(OC)C_2 (Ar matrix) & 2176 & 1.40(1) & 1.097(9) & 124 \\ Pb^{2+} & Pb(CO)F_2 (Ar matrix) & 2176 & 1.40(1) & 1.097(9) & 150 \\ Pb^{2+} & Pb(CO)F_2 (Ar matrix) & 2176 & 1.40(1) & 1.097(9) & 150 \\ Pb(CO)F_2 (Ar matrix) & 2176 & 1.40(1) & 1.097(9) & 150 \\ Pb(CO)F_2 (Ar matrix) & 2176 & 1.1166 & 150 \\ Pb(CO)F_2 (Ar matrix) & 2176 & 1.118(4), 1.114(5) & 150 \\ Pb(CO)Sh_F_{5n+1}] (n \geq 2) & 2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 151 \\ Cr^{+} & [CICO][Sh_F_{5n+1}] (n \geq 2) & 2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 151 \\ \end{array} $		[CH ₃ CO][SbF ₆]	2294	1.38(2)	1.116(21)	144, 145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[CH ₃ CO][SbCl ₆]	2295	1.45(2)	1.109(30)	146, 147
$ \begin{array}{cccccc} Si^4 & [1,4-C_6H_4(CH_3)CO][SbCI_6] & 1.40(1) & 1.097(9) & 149 \\ Sn^{2+} & SiO_2(CO) & 2158 & 1.40(1) & 1.097(9) & 124 \\ Sn^{2+} & Sn(CO)CI_2 (Ar matrix) & 2176 & 150 \\ PbCO)CI_2 (Ar matrix) & 2176 & 150 \\ Pb(CO)I_2 (Ar matrix) & 2161 & 150 \\ Pb(CO)I_2 (Ar matrix) & -2149 & 150 \\ Pb(CO)I_2 (Ar matrix) & -2140 & 150 \\ Pb(C$		[(CH ₃),CHCO][SbCl ₆]	2257	1.458(4)	1.101(4)	148
$ \begin{array}{cccc} Si^{4}_{1} & SiO_{2}(CO) \\ Sn^{2}_{2} + & SiO_{2}(CO) \\ Pb^{2}_{2} + & Pb(CO)F_{2}(Ar matrix) & 2176 & 124 \\ Pb(CO)C_{2}(Ar matrix) & 2176 & 150 \\ Pb(CO)I_{2}(Ar matrix) & 2175 & 150 \\ Pb(CO)I_{2}(Ar matrix) & 2161 & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2149 & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2266 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 150 \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C & Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C \\ Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C & Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C & Pb(CO)I_{2}(Ar matrix) & -2256 & C-N-C \\ Pb(CO)I_{2}(Ar matrix) & -2256$		[1,4-C ₆ H ₄ (CH ₃)CO][SbCl ₆]		1.40(1)	1.097(9)	149
$ \begin{array}{ccccc} Sn^2+ & Sn(CO)Cl_2 (Ar matrix) & 2176 & 150 \\ Pb^{2+} & Pb(CO)F_2 (Ar matrix) & 2176 & 150 \\ Pb(CO)Cl_2 (Ar matrix) & 2175 & 150 \\ Pb(CO)I_2 (Ar matrix) & 2161 & 150 \\ Pb(CO)I_2 (Ar matrix) & -2149 & 150 \\ Pb(CO)I_2 (Ar matrix) & -2149 & 150 \\ Cl^+ & [N(CO)_2][Sb_7F_{5n+1}] (n > 2) & 2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 151 \\ 152, 153 & 152, 153 & 152, 153 \\ \end{array} $	Si ⁴⁺	SiO ₂ (CO)	2158			124
$ \begin{array}{cccc} Pb^{2+} & Pb(CO)F_2 (Ar matrix) & 2176 & 150 \\ Pb(CO)C_2 (Ar matrix) & 2175 & 150 \\ Pb(CO)I_2 (Ar matrix) & 2161 & 150 \\ Pb(CO)I_2 (Ar matrix) & -2149 & 150 \\ CI^+ & [N(CO)_2][Sb_3F_{16}] & 2366, 2287 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 151 \\ CI^+ & [CCO][Sb_3F_{5n+1}] (n > 2) & 2256 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 151 \\ 152, 153 & 152, 153 & 152, 153 \\ \end{array} $	Sn^{2+}	Sn(CO)Cl ₂ (Ar matrix)	2176			150
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb^{2+}	Pb(CO)F ₂ (Ar matrix)	2176			150
$ \begin{array}{c cccc} Pb(CO)Br_2 (Ar matrix) & 2161 & 150 \\ Pb(CO)I_2 (Ar matrix) & -2149 & 150 \\ N^+ & [N(CO)_2][Sb_3F_{16}] & 2366, 2287 & C-N-C = 130.7(3) & 1.118(4), 1.114(5) & 151 \\ CI^+ & [CICO][Sb_nF_{5n+1}] (n > 2) & 2256 & 152.86 \\ \end{array} $		Pb(CO)Cl ₂ (Ar matrix)	2175			150
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$Pb(CO)Br_2$ (Ar matrix)	2161			150
N ⁺ [N(CO) ₂][Sb ₃ F ₁₆] 2366, 2287 C–N–C = 130.7(3) 1.118(4), 1.114(5) 151 Cl ⁺ [ClCO][Sb _n F _{5n+1}] (n > 2) 2256 152, 153		Pb(CO)I ₂ (Ar matrix)	~2149			150
Cl ⁺ [ClC0][Sb _n F _{5n+1}] (n > 2) 2256 152, 153	⁺z	[N(CO),][Sb ₃ F ₁₆]	2366, 2287	C-N-C = 130.7(3)	1.118(4), 1.114(5)	151
	CI⁺	$[CICO][Sb_nF_{5n+1}] (n > 2)$	2256			152, 153

TABLE II

14

TABLE III

		ν(CO)	
М	Species (conditions)	(cm^{-1})	References
Sc ³⁺	Sc(CO)O ⁺ (12 K, Ar matrix)	2222	154a
	$Sc(CO)F_3$ (10 K; Ar/CO matrix)	2212, 2208	109
	$Sc_2(CO)F_6$ (10 K; Ar/CO matrix)	2204	109
Y ³⁺	$Y(CO)O^+$ (12 K, Ar matrix)	2206	154a
	Y(CO)F ₃ (10 K; Ar/CO matrix)	2198	109
	$Y_2(CO)F_6$ (10 K; Ar/CO matrix)	2184	109
La ³⁺	$La(CO)F_3$ (10 K; Ar/CO matrix)	2182	109
	$La_2(CO)F_6$ (10 K; Ar/CO matrix)	2119 ^a	109
	$La_2O_3 + CO(77 \text{ K})$	2170	255, 256
Ti ³⁺	Ti(CO)O ⁺ (Ar matrix, 12 K)	2188	154b
Ti ⁴⁺	TiO_2 (rutile) + CO	2182	156
	TiO_2 (anatase) + CO	2212-2178	124, 157, 158
	$TiO_2/SiO_2 + CO$	2188-2180	158
Zr^{4+}	$ZrO_2 + CO$	~2190	159
	sd-ZrO ₂ (H ₂ SO ₄ surface loading)	2220-2170	159
	O-outside-Zr(CO)(Cp [*]) ₂ (COCH ₃)(Z)/CH ₂ Cl ₂ ^b	2105	160
	O-inside-Zr(CO)(Cp [*]) ₂ (COCH ₃)(Z)/CH ₂ Cl ₂ ^b	2152	160
	O-outside-Zr(CO)(Cp) ₂ (COCH ₃)(Z)/CH ₂ Cl ₂ ^b	2123	160
	O-inside-Zr(CO)(Cp) ₂ (COCH ₃)(Z)/CH ₂ Cl ₂ ^b	2176	160
V^{3+}	$V(CO)O^+$ (12 K; Ar matrix)	2205	154b
Cr ²⁺	$Cr(CO)F_2$ (matrix isolated)	2185	105
Cr ³⁺	$Cr(CO)O^+$ (12 K; Ar matrix)	2176	155
	$Cr_2O_3 + CO$	2184	156
	Cr_2O_3 (0112 face) + CO	2181	125, 161
	Cr_2O_3 (1120 face) + CO	2158	125, 161
Mn ²⁺	$Mn(CO)F_2$ (matrix isolated)	2183	105
	Mn(zeolite-Y) + CO	2208	126
	Mn(zeolite-X) + CO	2203	126
Mn ³⁺	Mn(CO)O ⁺ (12 K; Ar matrix)	2173	155

Groups 3 (IIIB)-7 (VIIB) M-CO Species With ν (CO) > 2143 cm⁻¹

^aThis may be a typographical error in the original report.

^bHere $Z^- = B(CH_3)(C_6F_5)_3^-$.

the zeolite increases (the Si/Al content increases in the order zeolite–MOR < zeolite–ZSM-5 < zeolite–Y < zeolite–L < zeolite–A), as shown in Fig. 7. In most cases, there is a 5–15 cm⁻¹ shift to lower energy as coverage increases. For this reason, the ν (CO) values listed in Table I are, whenever possible, for low coverage or are extrapolated to zero coverage. With one exception, all of the carbonyl species in Table I are monocarbonyls. The exception is the recently reported sodium dicarbonyl, Na(CO)₂(ETS-10), species, where ETS-10 is a titanosilicate molecular sieve (121).

		11.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
		$\nu(CO)^{a}$	R(MC)	R(CO)	
Μ	Compound or Species	(cm^{-1})	(ỷ)	(ų)	References
Fe ²⁺	Fe(CO)(zeolite-Y)	2198			126
	$Fe(CO)_6(Sb_2F_{11})_2$	2241(s), 2220(m), 2204	1.910(5)-1.912(5)	1.102(5)-1.107(5)	162,163
Fe^{3+}	$Fe_2O_3 + CO(77 K)$	2165			125
Ru ²⁺	$Ru(CO)_6(Sb_2F_{11})_2$	2254(s), 2222(m), 2199			164
Os^{2+}	$Os(CO)_6(Sb_2F_{11})_2$	2259(s), 2218(m), 2190			164
C0†	Co(CO) ⁺ in Ne/CO matrix	2166			165,166
	Co(CO) [†] in Ne/CO matrix	2169			165,166
	$Co(CO)_4(L)^+/HSO_3F^{b,c}$	2194(s), 2155(m), 2139, 2122			167
$C0^{2+}$	Co(CO)O	2179			168
	Co(CO)(zeolite-Y)	2208			126
	Co(CO)(zeolite-X)	2204			126
\mathbf{Rh}^{+}	Rh(CO) ⁺ in Ne/CO matrix	2174			165,166
	Rh(CO) [‡] in Ne/CO matrix	2185			165,166
	Rh(CO) [‡] in Ne/CO matrix	2168			165,166
	Rh(CO) [‡] in Ne/CO matrix	2162			165,166
	Rh(CO) ₄ (zeoliteY)	2152, 2135, 2124, 2112			251
	Rh(CO) ₂ (NO)(zeolite-Y)	$2162, 2128 [\nu(NO) = 1786]$			252
	Rh(CO) [‡] /HSO ₃ F ^b	2216, 2178, 2141			167,172
	$[Rh(CO)_4][1-Et-CB_{11}F_{11}]$	2215, 2176, 2138	1.947(6)-1.958(6)	1.109(7) - 1.124(7)	171
Rh^{3+}	Rh(CO)(polystyrenesulfonate)	2178			253
	NaRh(CO)(zeolite-Y)	2172, 2138			254
	Rh(CO)(zeolite-Y)	2172, 2138			254
	Rh(CO)(zeolite-mordenite)	2175, 2140			254
	Rh(CO)(zeolite-ZSM-34)	2188, 2140			254
	Rh(CO)(zeolite-ZSM-11)	2184, 2150			254
Rh^{4+}	Rh(CO)(O),/Al,O ₃	2156			169
	0 4				(continue

TABLE IV Grouns & (VIII) 9 (VIII) and 10 (VIII) M–CO Species With v(CO) > 2143 cm⁻¹

Jr ⁺	Ir(CO) ⁺ in Ne/CO matrix	2157			165,166
	$Ir(CO)_2^+$ in Ne/CO matrix	2154			165,166
	[Ir(CO)4][AlCl4]	2216, 2170, 2125			172
Ir ³⁺	IrCl(CO) ₅ (Sb ₂ F ₁₁) ₂		2.02(2)	1.08(2)	173
	$Ir(CO)_6(Sb_2F_{11})_3$	2295(s), 2276(m), 2254			173
	mer-Ir(CO) ₃ (SO ₃ F) ₃	2249(w), 2208(s), 2198(s)	1.937(7), 1.999(6), 2.006(6)	1.094(8), 1.108(8), 1.114(8)	174
	mer-Ir(CO) ₃ (SO ₃ F) ₃ /HSO ₃ F	2253(s), 2208(m), 2197(m)			174
	fac-Ir(CO) ₃ (SO ₃ F) ₃ /HSO ₃ F	2233(s), 2157(w)			174
Ni ²⁺	Ni0 + CO	2152			111
	Ni(CO)F ₂ (matrix isolated)	2200			105
	Ni ₂ (CO)F ₄ (matrix isolated)	2179			105
	Ni(CO)Cl ₂ (matrix isolated)	2189			105
	Ni(CO)(zeolite-Y)	2217			126
	Ni(CO)(zeolite-X)	2211			126
Pd⁺	$Pd_{2}(CO)^{2+}_{5}M_{2}SO_{4}^{b}$	2167, 2144			63
Pd ²⁺	[N(n-Bu) ₄][Pd(CO)Cl ₃]/CH ₂ Cl ₂	2146			178
	cis-Pd(CO) ₂ (C ₆ Cl ₅) ₂	2173, 2152			180
	cis-Pd(CO) ₂ (C ₆ F ₅) ₂	2186, 2163			180
	cis-Pd(CO) ₂ (SO ₃ F) ₂	2228, 2208	1.945(5), 1.919(5)	1.102(6), 1.114(6)	176,177
	trans-Pd(CO) ₂ (SO ₃ F) ₂	2212, 2166			177
	$Pd_2(\mu-CO)_2(CO)_2(SO_3F)_4$	2179 (terminal), 1967 (bridging)			176
	$Pd_2(CO)_2(\mu-CI)_2CI_2/toluene$	2167, 2160			178 - 180
	$Pd(CO)_4(Sb_5F_{11})_2$	2279(s), 2263(m), 2248	ave = 1.992(2)	ave = 1.106(6)	181,182
Pt ⁺	$P_{t_2(CO)_6^2+M_2SO_4^d}$	2233, 2209, 2195, 2186, 2174			183
Pt^{2+}	$Pt_2(CO)_2CI_4$	2146			178,179
	cis-Pt(CO) ₂ I ₂ /C ₂ H ₂ Cl ₄	2150, ~2111			184
	cis-Pt(CO) ₂ Br ₂ /C ₂ H ₂ Cl ₄	2170, 2130			184
	cis-Pt(CO) ₂ Cl ₂ /C ₂ H ₂ Cl ₄	2179, 2136	1.901(5), 1.893(5)	1.110(7), 1.121(6)	178,184,185
	cis-Pt(CO) ₂ Cl ₂ /SOCl ₂	2177, 2136			178
	cis-Pt(CO) ₂ (C ₆ Cl ₅) ₂	2160, 2126			180
	cis-Pt(CO) ₂ (C ₆ F ₅) ₂	2174, 2143			180 (co

(continues)

17

		$\nu(CO)^{a}$	R(MC)	R(CO)	
М	Compound or Species	(cm^{-1})	(Ŷ)	(Å)	References
	cis-Pt(CO) ₂ (SO ₃ F) ₂	2219, 2185			177
	trans-Pt(CO) ₂ Cl ₂ /SOCl ₂	2160			184
	trans-Pt(CO) ₂ (SO ₃ F) ₂	2191, 2145			177
	$Pt(CO)_4(Sb_2F_{11})_2$	2289(s), 2267(m), 2244	ave = 1.982(9)	ave = 1.110(9)	181,182
	$Pt(CO)_4(Pt(SO_3F)_6)$	2281(s), 2267(m), 2235			186
	Pt(CO)(dfepe)(CF ₃ SO ₃)+/CF ₃ SO ₃ H ^e	2210			187
	Pt(CO)(dfepe)(SO ₃ F) ⁺ /HSO ₃ F ^{ef}	2212			187
	Pt(CO)(dfepe)(CH ₃) ⁺ /CF ₃ SO ₃ H ^e	2174			187
	$Pt(CO)_2(dfepe)^+/CF_3SO_3H^e$	2235, 2221			187
Pt^{4+}	$[N(n-Bu)_4][Pt(CO)CI_5]$	2184			188
^{<i>a</i>} The $\nu(CO)$	values in italics are from Raman spectra	t; all other ν (CO) values are fro	om IR spectra.		

TABLE IV (Continued)

^bThe counteranion is probably $H(SO_3F)_2^{\sim}$.

 c This carbonyl species apparently has a five-coordinate trigonal bipyramidal structure with one equatorial position occupied by a weak ligand L (solvent or anion); the Raman band at 2155 cm⁻¹ was also observed in the IR spectrum: the two IR bands were also observed in the Raman spectrum.

 d The counteranion is probably H(HSQ₄)^{$\overline{}$}, the Raman spectrum also exhibited bands at 2195 and 2174 cm⁻¹.

^e1,2-bis(bis(pentafluoroethyl)phosphino)ethane = dfepe; the counteranion is probably $H(CF_3SO_3)_{\overline{2}}$.

^fThe counteranion is probably $H(SO_3F)_2^{\sim}$.

Μ	Compound or Species b	$ u(\mathrm{CO})^{a} $ (cm^{-1})	R(MC) (Å)	R(CO) (Å)	Referen	ces
Cu⁺	Cu(CO) ⁺ in Ar/CO matrix	2174	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		189	
	Cu(CO) ⁺ in Ne/CO matrix	2234			189	
	$Cu(CO)_2^+$ in Ne/CO matrix	2230			189	
	$Cu(CO)_{3}^{+}$ in Ne/CO matrix	2211			189	
	$Cu(CO)_4^{+}$ in Ne/CO matrix	2202			189	
	Cu(CO)(Tp')	2137	1.808(4)	1.110(5)	190	
	Cu(CO)CI	2127	1.86(2)	1.11(2)	191,192	
	Cu(CO)Cl (matrix isolated)	2157			193	
	(Cu(CO)) ₂ O	2127			194	
	$(Cu(CO)_2)_2O$	2158(m), 2113(s)			194	
	$(Cu(CO))_2O/SiO_2$	2132			194	
	$(Cu(CO)_2)_2O/SiO_2$	2162, 2120			194	
	(Cu(CO)) ₂ O/zeolite-MCM-41	2159			195	
	(Cu(CO) ₂) ₂ O/zeolite-MCM-41	2180, 2152			195	
	(Cu(CO) ₃) ₂ O/zeolite-MCM-41	$2194, 2171, 2138^{c}$			195	
	Cu(CO)(SO ₃ F)/HSO ₃ F soln	2149, 2152			196,198	
	Cu(CO) ₄ (SO ₃ F)/HSO ₃ F soln	2181, 2183			196,198	
	Cu(CO)(AsF ₆)	2178			199,200	
	$Cu(CO)_2(AsF_6)$	2177, 2164			200	
	Cu(CO) ₃ (AsF ₆)	2206(s), 2183(m), 2179			200	
	Cu(CO)(CF ₃ SO ₃)	2133			201	
	$Cu(CO)_2(CF_3SO_3)$	2171(m), 2143(s)			201b	
	$Cu(CO)(N(SO_2CF_3)_2)$	2162			202	
	$Cu(CO)_2(N(SO_2CF_3)_2)$	2184(m), 2158(s)	1.895(6), 1.906(6)	1.130(7), 1.115(7) 202	
	$Cu(CO)_3(N(SO_2CF_3)_2)$	2190(m), 2172(s)			202	
	Cu(CO)(zeolite-Y)	2160			203,204	
	$Cu(CO)_2(\text{zeolite}-Y)$	2178(m), 2150(s)			203,204	
	Cu(CO)(zeolite-M)	2157			204	(continues)

TABLE V Group 11 (IB) M-CO Species With μ(CO) > 2143 cm⁻¹

		TABLE V (Con	ntinued)		
		ν(CO) ^a	R(MC)	R(CO)	
M	Compound or Species ^{b}	(cm^{-1})	(ỷ)	(Ý)	References
1	Cu(CO) ₂ (zeolite-M)	2177(m), 2150(s)		50	34
	Cu(CO)(zeolite-L)	2148		20	24
	Cu(CO)(zeolite-ZSM-5)	2157		20	05
	Cu(CO),(zeolite-ZSM-5)	2178(m), 2151(s)	1.95(5)	20	35, 206
	Cu(CO) ₂ (zeolite–ZSM-5)	2192(m), 2167(s)	1.93(2)	20	05, 207
	Cu(CO)(NH _a)(zeolite-ZSM-5)	2098		20	06
	Cu(CO),(NH ₃)(zeolite-ZSM-5)	2158(m), 2128(s)		20	06
	Cu(CO)(H,O)(zeolite-ZSM-5)	2130		20	06
	Cu(CO)(zeolite-MFI)	2158		30	08
	Cu(CO),(zeolite–MFI)	2177(m), 2151(s)		30	08
	Cu(CO)(zeolite-MOR)	2160		20	09,210
	Cu(CO),(zeolite-MOR)	2177(m), 2153		50	09,210
	Cu(CO) ₂ (zeolite–MOR)	2190(sh, m), 2165(sh, s)		21	10
	$Cu(CO)_{2}(OC(CF_{3})_{3})$	2156(m), 2132(s)		21	11
	$Cu(CO)(Al(OCPh(CF_3)_2)_4)$	2155		21	11
	$Cu(CO)_{2}(Al(OCPh(CF_{3})_{2})_{4})$	2178(m), 2151(s)		21	11
	$Cu(CO)(12-CB_{11}H_{11}F)$	2168(s), 2163(s)		21	11
	Cu(CO) ₂ (12-CB ₁₁ H ₁₁ F)	2183(m), 2163(s)		21	11
	$Cu(CO)_{2}(1-Bn-CB_{11}F_{11})$	2184(m), 2166(s)	1.915(3), 1.916(3)	1.109(3), 1.115(3) 21	12
	$Cu(CO)_3(1-Bn-CB_{11}F_{11})$	2190(m), 2172(s)		21	12
	$Cu(CO)_4(1-Bn-CB_{11}F_{11})$	2185		21	12
	$Cu(CO)(1-Et-CB_{11}F_{11})$	2178		21	12
	$Cu(CO)_{2}(1-Et-CB_{11}F_{11})$	2187(m), 2173(s)		21	12
	$Cu(CO)_3(1-Et-CB_{11}F_{11})$	2189(m), 2168(s)		21	12
	$Cu(CO)_4(1-Et-CB_{11}F_{11})$	2184	1.961(3) - 1.968(3)	1.109(4)-1.114(3) 2]	12
	$Cu(CO)F^d$	2146		21	13
Cu ²⁺	Cu(CO)F ₂ (matrix isolated)	2210		11	05
	Cu ^{II} (CO)(ZSM-5)	2175		5(04

TABLE V (Continued)

20

(continues)

Ag(CO)(CoCp(POEt ₃) ₁)	2125			214
Ag(CO)(O ₂)	2165			215
Ag(CO)(Tp')/hexane soln	2162	2.037(5)	1.116(7)	216
Ag(CO)(SbF ₆)	2185			217
Ag(CO)(OTeF ₅)	2193, 2189			148
Ag(CO)(B(OTeF ₅) ₄)	2204	2.10(1)	1.077(16)	148,218
$Ag(CO)_2(B(OTeF_5)_4)$	2198	2.06(5) - 2.20(4)	1.07(5) - 1.09(6)	148,219
Ag(CO)(Nb(OTeF ₅) ₆)	2206, 2204			148
$Ag(CO)_2(Nb(OTeF_5)_6)$	2220, 2198			148
Ag(CO) ₃ (Nb(OTeF ₅) ₆)	2191			220
$(Ag(CO))_2(Zn(OTeF_5)_4)$	2203			148
$(Ag(CO)_2)_2(Zn(OTeF_5)_4)$	2197			148
$(Ag(CO))_2(Ti(OTeF_5)_6)$	2207			148
$(Ag(CO)_2)_2(Ti(OTeF_5)_6)$	2197			148
Ag(CO) ₂ (SO ₃ F)/HSO ₃ F soln	2190			196-198
Ag(CO)(zcolite-X)	2195			221
Ag(CO)(zeolite-Y)	2195, 2170			221
Ag(CO)(zeolite-Y)	2170			222
Ag(CO)(zeolite-Y)	2174			223
Ag(CO)(zeolite-ZSM-5)	2185			224
Ag(CO)(zeolite-ZSM-5)	2192			225,226
Ag(CO)(H ₂ O)(zeolite-ZSM-5)	2181			226
Ag(CO) ₂ (zeolite-ZSM-5)	2186			225
Ag(CO) ₂ (zeolite-ZSM-5)	2190(m), 2184(s)			226
Ag(CO)(zeolite-A)	2188			227
Ag(CO) ⁺ /SiO ₂	2169			225
Ag(CO) ⁺ /SiO ₂	2180-2175			228
Ag(CO) ⁺ /TiO ₂	XXX			229
Au(CO)(SO ₃ F)	2195			230
Au(CO)(SO ₃ F)/HSO ₃ F soln	2198			231
Au(CO) ₂ (SO ₃ F)/HSO ₃ F soln	2246, 2211			231
Au(CO)(HSO ₄)/H ₂ SO ₄ soln	2194			63
Au(CO) ₂ (HSO ₄)/H ₂ SO ₄ soln	2208			63
Au(CO)(OTeF ₅)	2178			217

 Ag^{+}

		$\nu(CO)^{a}$	R(MC)	R(CO)	
M	Compound or Species ^b	(cm^{-1})	(ỷ)	(Å)	References
	Au(CO)Br/CH,Cl,	2159			233
	Au(CO)CI/CH,CI,	2162	1.93(2)	1.11(3)	233–236
	Au(CO)Cl/Na(zeolite-Y)	2188			237
	Au(CO)(Tp')	2144	1.862(9)	1.13(1)	238
	Au(CO)(AuCl ₄)	2180			233,239
	$Au(CO)_2(Sb_2F_{11})$	2254, 2217	1.972(8)	1.11(1)	231,232
	$Au(CO)_3(Sb_2F_{11})$	2212			217
	$Au(CO)_2(UF_6)$	2200			240
^a Ahhrev	initial initial function $Tn' = BH(3.5-(CF_2), P_7), (n_7 = n_2)$	vrazolvl)		-	

TABLE V (Continued)

²Abbreviations: Ip = BH(5,2-(CF₃)₂PZ₃) (pz = pyrazolyl). ^bThe ν (CO) values in italics are from Raman spectra; all other ν (CO) values are from IR spectra. ^oThe peak at 2138 cm⁻¹ may be due to uncomplexed CO. ^dThe formulation of this species as Cu(CO)F may be incorrect. Copper(I) fluoride has not been shown to exist in a condensed phase, despite numerous attempts to prepare it.

TABLE VI

М	Compound or Material	$\nu(CO)^a$ (cm ⁻¹)	R(MC) (Å)	R(CO) (Å)	References
Zn^{2+}	Zn(zeolite-Y) + CO	2218 (2214)		-	126,241
	ZnO + CO	2212-2169			241-246
	ZnO (1010 face) + CO	2202		1.10	247
	$Zn(CO)F_2$	2185			105
Cd ²⁺	Cd(zeolite-Y) + CO	2209			126
Hg_{2}^{2+}	$Hg_{2}(CO)_{2}(Sb_{2}F_{11})_{2}$	2248, 2247			248,249
Hg ²⁺	$Hg(CO)_2(Sb_2F_{11})_2$	2281, 2278	2.08(1)	1.104(12)	248,249

Group 12(IIB) M–CO Species With ν (CO) > 2143 cm⁻¹

^aThe ν (CO) values in italics are from Raman spectra; all other ν (CO) values are from IR spectra.

3. Be^{2+} to Ba^{2+}

Carbon monoxide adsorbed to the 001 face of MgO at 77 K resulted in three ν (CO) bands (125). These were attributed to three different sites, corner Mg(CO)O₃ sites (2203 cm⁻¹), edge or step Mg(CO)O₄ sites (2170 cm⁻¹), and face Mg(CO)O₅ sites (2157 cm⁻¹), as shown in Fig. 8. Magnesium(II) ions intercalated into zeolite–Y and zeolite–X form carbonyl complexes with ν (CO) values of 2213 and 2205 cm⁻¹, respectively. Matrix isolated Ca(CO)F₂ exhibited ν (CO) at 2178 cm⁻¹ (105). Like magnesium, Ca(zeolite–Y) (2197 cm⁻¹) and Ca(zeolite–X) (2192 cm⁻¹) also adsorb CO but exhibit lower ν (CO) values. Calcium oxide supported on alumina adsorbs CO and has a ν (CO) value of 2182 cm⁻¹. The ions Sr²⁺ and Ba²⁺ form complexes similar to those above. While the matrix isolated M(CO)F₂ species have similar ν (CO) values, the M–Y show a decrease in ν (CO) from Mg²⁺ down

			$\nu(CO)^a$	
М	Compound	Conditions	(cm^{-1})	References
Nd ³⁺	Nd(CO)F ₃	Ar/CO matrix, 10 K	2187	109
	$Nd_2(CO)F_6$	Ar/CO matrix, 10 K	2183	109
Gd ³⁺	$Gd(CO)F_3$	Ar/CO matrix, 10 K	2194	109
	$Gd_2(CO)F_6$	Ar/CO matrix, 10 K	2190	109
Ho ³⁺	Ho(CO)F ₃	Ar/CO matrix, 10 K	2198	109
	$Ho_2(CO)F_6$	Ar/CO matrix, 10 K	2194	109
Lu ³⁺	Lu(CO)F ₃	Ar/CO matrix, 10 K	2205	109
	$Lu_2(CO)F_6$	Ar/CO matrix, 10 K	2195, 2103	109
U ⁴⁺	U(CO)F ₄	Ar/CO matrix, 12 K	2182	250

TABLE VII f-Block M-CO Species With ν (CO) > 2143 cm⁻¹

^{*a*}All ν (CO) values are from IR spectra.

LUPINETTI ET AL.

TABLE VIII

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compound	Medium	$\delta(^{13}C)^b$	$^{1}J_{\rm MC}$	v(CO) _{ave}	$^{1}K_{\rm MC}$	References
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO	HSO ₃ F or CD ₂ Cl ₂	184		2143		230,231
$\begin{split} & \text{N}(\text{CO})_2(\text{Sb}_3\text{F}_{16}) & \text{CF}_3\text{CH}_2\text{CF}_3 & 122 & 2330 & 151 \\ & \text{CCO}^+ & \text{CO}\text{CJ}_5\text{Sb}\text{F}_5\text{J} & 134 & 2256^\circ & 152,153,270 \\ & \text{SO}_2\text{CIF} & & & & & & & & & & & & & & & & & & &$	CH ₂ CO ⁺	H ₂ SO ₄	150		2309		143.257
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N(CO)_2(Sb_2F_{12})$	CF ₂ CH ₂ CF ₂	122		2330		151
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ClCO ⁺	COCl ₂ /SbF ₅ / SO ₂ ClF	134		2256 ^c		152,153,270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BrCO ⁺	Br ₂ /SbF ₅ /SO ₂ ClF	127				270
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICO ⁺	I ₂ /SbF ₅ /SO ₂ ClF	100				270
$\begin{split} & \text{Na}_{\text{Ta}}^{1} \text{a}(\text{CO})_{6}^{6} & 211 & 1850^{d} & 35 \\ & \text{Cr}(\text{CO})_{6} & \text{Solid} & 212 & 2029 & 260,261 \\ & \text{Mo}(\text{CO})_{6} & \text{Solid} & 204 & 2007 & 260,261 \\ & \text{W}(\text{CO})_{6} & \text{Solid} & 192 & 2014 & 260,261 \\ & \text{Re}(\text{CO})_{6}(\text{Sb}_{2}F_{11}) & \text{Solid} & 171 & 2116 & 262,263 \\ & \text{Fe}(\text{CO})_{6}(\text{Sb}_{2}F_{11})_{2} & \text{Solid} & 179 & 2216 & 164 \\ & \text{Os}(\text{CO})_{6}(\text{Sb}_{2}F_{11})_{2} & \text{Solid} & 179 & 2216 & 164 \\ & \text{Os}(\text{CO})_{6}(\text{Sb}_{2}F_{11})_{2} & \text{Solid} & 121 & 2268 & 173 \\ & \text{cis-Pt}(\text{CO})_{2}\text{I}_{2} & \text{C}_{6}\text{D}_{6} & 154 & 1521 & 2131 & 23.5 & 184 \\ & \text{cis-Pt}(\text{CO})_{2}\text{I}_{2} & \text{CH}_{2}\text{Cl}_{2}\text{CD}_{2}\text{Cl}_{2} & 153 & 1563 & 2150^{d} & 24.1 & 184 \\ & \text{cis-Pt}(\text{CO})_{2}\text{I}_{2} & \text{CH}_{2}\text{Cl}_{2}\text{CD}_{2}\text{Cl}_{2} & 153 & 1563 & 2150^{d} & 24.1 & 184 \\ & \text{trans-Pt}(\text{CO})_{2}\text{I}_{2} & \text{Ch}_{2}\text{Cl}_{2}\text{CD}_{2}\text{Cl}_{2} & 153 & 1576 & 2142^{d} & 22.7 & 184 \\ & \text{trans-Pt}(\text{CO})_{2}\text{I}_{2} & \text{Ch}_{2}\text{Cl}_{2}\text{CD}_{2}\text{Cl}_{2} & 153 & 1576 & 2142^{d} & 24.3 & 184 \\ & \text{trans-Pt}(\text{CO})_{2}\text{I}_{2} & \text{Ch}_{2}\text{Cl}_{2}\text{CD}_{2}\text{Cl}_{2} & 153 & 1576 & 2142^{d} & 24.3 & 184 \\ & \text{trans-Pt}(\text{CO})_{2}\text{I}_{2} & \text{Ch}_{2}\text{Cl}_{2} & 153 & 1771 & 2089 & 26.2 & 235 \\ & \text{INR}_{4} \text{Pt}(\text{CO} _{3}] & \text{CH}_{2}\text{Cl}_{2} & 152 & 1732 & 2098 & 25.2 & 235 \\ & \text{INR}_{4} \text{Pt}(\text{CO} _{3}\text{I}_{3}) & \text{CH}_{3}\text{Cl}_{2} & 152 & 1732 & 2098 & 25.2 & 235 \\ & \text{Pt}(\text{CO})_{4}(\text{Pt}(\text{SO}_{3}\text{F})_{0} & \text{HSO}_{3}\text{F} & 141 & 1576(2) & 2269 & 24.3 & 186 \\ & \text{Pt}(\text{CO})_{4}(\text{SO}_{3}\text{F})_{0} & \text{Unknown} & 144 & 2267 & 4,181 \\ & \text{cis-Pt}(\text{CO})_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4,181 \\ & \text{cis-Pt}(\text{CO})_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4,181 \\ & \text{cis-Pt}(\text{CO})_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4,181 \\ & \text{cis-Pt}(\text{CO})_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4,181 \\ & \text{cis-Pt}(\text{CO})_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & -18.8 & 148 \\ & \text{Ag}(\text{CO})^{T} & \text{HS}_{3}\text{H}_{2}\text{O} & 173$	Na ₂ Hf(CO) ₆	2 0 2	244		1757 ^d		35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NaTa(CO)		211		1850^{d}		35
$\begin{array}{c ccccc} Mo(CO)_6 & Solid & 204 & 2007 & 260,261 \\ W(CO)_6 & Solid & 192 & 2014 & 260,261 \\ Re(CO)_6(Sb_2F_{11}) & Solid & 171 & 2116 & 262,263 \\ Fe(CO)_6(Sb_2F_{11}) & Solid & 179 & 2216 & 162 \\ Ru(CO)_6(Sb_2F_{11}) & Solid & 166 & 2216 & 164 \\ Os(CO)_6(Sb_2F_{11}) & Solid & 147 & 2211 & 164 \\ Ir(CO)_6(Sb_2F_{11}) & Solid & 121 & 2268 & 173 \\ cis-Pt(CO)_2Br_2 & Cf_2Cl_2/CD_2Cl_2 & 153 & 1563 & 2150^e & 24.1 & 184 \\ cis-Pt(CO)_2Br_2 & Cf_2Cl_2/CD_2Cl_2 & 153 & 1563 & 2150^e & 24.1 & 184 \\ cis-Pt(CO)_2Br_2 & Cf_2Cl_2/CD_2Cl_2 & 152 & 1569 & 2156^e & 24.2 & 184 \\ trans-Pt(CO)_2Br_2 & Cf_2Cl_2/CD_2Cl_2 & 153 & 1574 & 2142^e & 24.3 & 184 \\ trans-Pt(CO)_2Br_2 & Cf_2Cl_2/CD_2Cl_2 & 153 & 1575 & 2150 & 24.2 & 184 \\ nrans-Pt(CO)_2Cl_2 & SOCl_2/CDCl_3 & 157 & 1565 & 2150 & 24.2 & 184 \\ (NR_4][Pt(CO)I_3] & CH_2Cl_2 & 153 & 1701 & 2089 & 26.2 & 235 \\ NR_4][Pt(CO)Cl_3] & CH_2Cl_2 & 152 & 1732 & 2098 & 25.2 & 235 \\ NR_4][Pt(CO)Cl_3] & CH_2Cl_2 & 152 & 1732 & 2098 & 25.2 & 235 \\ NR_4][Pt(CO)_2(SO_3F)_2 & Unknown & 144 & 2267 & 4.181 \\ cis-Pt(CO)_2(SO_3F)_2 & Unknown & 144 & 2267 & 4.181 \\ cis-Pt(CO)_2(SO_3F)_2 & Unknown & 144 & 2267 & 4.181 \\ cu(CO)^* & BF_3 \cdot H_2O & 169 & 2160 & 196 \\ Cu(CO)^*_3 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 169 & 2177 & 196 \\ Cu(CO)^*_4 & BF_3 \cdot H_2O & 170 & 2185 & 196 \\ Ag(CO)(O(TeF_5) & Solid & 171 & 284(12) & 2203 & -20.2 & 148 \\ Ag(CO)_2(S) & Solid & 171 & 265(12) & 2189 & -18.8 & 148 \\ Ag(CO)^*_2 & NSOlid & 172 & 203(12) & 2197 & -14.4 & 148 \\ Ag(CO)^*_2 & NSOlid & 172 & 203(12) & 2197 & -13.5 & 148 \\ Ag(CO)^*_2 & NSOlid & 172 & 203(12) & 2197 & -13.5 & 148 \\ Au(CO)Br & CD_2Cl_2 & 174 & 2180^f & 233,239 \\ Au(CO)Cl & CD_2Cl_2 & 172 & 2162 & 233-235 \\ Au(CO)Cl & CD_2Cl_2 & 172 & 2162 & 233-235 \\ Au(CO)Cl & CD_2Cl_2 & 172 & 2164 \\ Au(CO)ACL_1 $	Cr(CO)	Solid	212		2029		260.261
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo(CO)	Solid	204		2007		260,261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W(CO)	Solid	192		2014		260,261
$\begin{aligned} & \text{Re}(CO_{6}(\text{Bb}_{2}F_{11})_{1}) & \text{Solid} & 171 & 2110 & 205, 205 \\ & \text{F}(CO_{6}(\text{Sb}_{2}F_{11})_{2} & \text{Solid} & 179 & 2216 & 162 \\ & \text{Ru}(CO_{6}(\text{Sb}_{2}F_{11})_{2} & \text{Solid} & 147 & 2211 & 164 \\ & \text{Ir}(CO_{6}(\text{Sb}_{2}F_{11})_{3} & \text{Solid} & 121 & 2268 & 173 \\ & \text{cis-Pt}(CO_{2}\text{I}_{2} & C_{6}D_{6} & 154 & 1521 & 2131 & 23.5 & 184 \\ & \text{cis-Pt}(CO_{2}\text{I}_{2} & CH_{2}Cl_{2}/CD_{2}Cl_{2} & 153 & 1563 & 2150^{e} & 24.1 & 184 \\ & \text{cis-Pt}(CO_{2}\text{Br}_{2} & CH_{2}Cl_{2}/CD_{2}Cl_{2} & 152 & 1569 & 2156^{e} & 24.2 & 184 \\ & \text{trans-Pt}(CO)_{2}\text{I}_{2} & C_{4}D_{6} & 164 & 1470 & 2126^{e} & 22.7 & 184 \\ & \text{trans-Pt}(CO)_{2}\text{L}_{2} & \text{CH}_{2}Cl_{2}/CD_{2}Cl_{2} & 153 & 1574 & 2142^{e} & 24.3 & 184 \\ & \text{trans-Pt}(CO)_{2}\text{L}_{2} & \text{SOC}l_{2}/CDC_{1}_{3} & 157 & 1565 & 2150 & 24.2 & 184 \\ & \text{trans-Pt}(CO)_{2}\text{L}_{2} & \text{SOC}l_{2}/CDC_{1}_{3} & 157 & 1565 & 2150 & 24.2 & 184 \\ & \text{trans-Pt}(CO)_{2}\text{Br}_{2} & CH_{2}Cl_{2} & 153 & 1701 & 2089 & 26.2 & 235 \\ & \text{INR}_{4}][\text{Pt}(CO)\text{Br}_{3}] & \text{CH}_{2}\text{Cl}_{2} & 152 & 1732 & 2098 & 25.2 & 235 \\ & \text{INR}_{4}][\text{Pt}(CO)_{4}(\text{SO}_{5}\text{F})_{6}) & \text{HSO}_{3}\text{F} & 141 & 1576(2) & 2269 & 24.3 & 186 \\ & \text{Pt}(CO)_{4}(\text{SD}_{5}\text{F})_{1})_{2} & \text{Unknown} & 137 & 1550 & 2244 & 23.9 & 186 \\ & \text{Pt}(CO)_{4}(\text{SD}_{5}\text{F})_{1})_{2} & \text{Unknown} & 144 & 2267 & 4, 181 \\ & \text{cis-Pt}(CO)_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4, 181 \\ & \text{cis-Pt}(CO)_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4, 181 \\ & \text{cis-Pt}(CO)_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4, 181 \\ & \text{cis-Pt}(CO)_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & 4, 181 \\ & \text{cis-Pt}(CO)_{2}(\text{SO}_{3}\text{F})_{2} & \text{Unknown} & 145 & 2218 & -18.8 & 148 \\ & \text{Ag}(CO)_{1}^{*} & \text{BF}_{3}\text{H}_{2}O & 170 & 2185 & 196 \\ & \text{Ag}(CO)(\text{RO}(\text{FF}_{5}) & \text{Solid} & 171 & 284(12) & 2203 & -20.2 & 148 \\ & \text{Ag}(CO)(2)_{1}^{*} & \text{HS}_{3}\text{H}_{2}O & 170 & 2185 & 196 \\ & \text{Ag}(CO)_{1}(\text{CD}_{5})_{2} & \text{Solid} & 171 & 263(12) & 207 & -18.7 & 148 \\ & \text{Ag}(CO)_{2}^{*} & \text{HS}$	$Re(CO)_{c}(Sb_{c}E_{c})$	Solid	171		2116		260,261
$\begin{aligned} & (CO)_{6}(Sb_{2}F_{11})_{2} & Solid & 173 & 2216 & 164 \\ & Os(CO)_{6}(Sb_{2}F_{11})_{2} & Solid & 166 & 2216 & 164 \\ & Ir(CO)_{6}(Sb_{2}F_{11})_{3} & Solid & 121 & 2268 & 173 \\ & cis-Pt(CO)_{2}I_{2} & C_{6}D_{6} & 154 & 1521 & 2131 & 23.5 & 184 \\ & cis-Pt(CO)_{2}I_{2} & CH_{2}CI_{2}/CD_{2}CI_{2} & 153 & 1563 & 2150^{e} & 24.1 & 184 \\ & cis-Pt(CO)_{2}CI_{2} & CH_{2}CI_{2}/CD_{2}CI_{2} & 153 & 1566 & 24.2 & 184 \\ & trans-Pt(CO)_{2}CI_{2} & CH_{2}CI_{2}/CD_{2}CI_{2} & 153 & 1574 & 2142^{e} & 24.3 & 184 \\ & trans-Pt(CO)_{2}I_{2} & SOCI_{2}/CDCI_{3} & 157 & 1565 & 2150 & 24.2 & 184 \\ & trans-Pt(CO)_{2}I_{2} & SOCI_{2}/CDCI_{3} & 157 & 1565 & 2150 & 24.2 & 184 \\ & trans-Pt(CO)_{2}I_{2} & SOCI_{2}/CDCI_{3} & 157 & 1565 & 2150 & 24.2 & 184 \\ & INR_{4}[Pt(CO)Br_{3}] & CH_{2}CI_{2} & 156 & 1636 & 2078 & 26.7 & 235 \\ & INR_{4}[Pt(CO)Br_{3}] & CH_{2}CI_{2} & 152 & 1732 & 2098 & 25.2 & 235 \\ & INR_{4}[Pt(CO)GI_{3}] & CH_{2}CI_{2} & 152 & 1732 & 2098 & 25.2 & 235 \\ & Pt(CO)_{4}(Pt(SO_{3}F)_{6}) & HSO_{3}F & 141 & 1576(2) & 2269 & 24.3 & 186 \\ & Pt(CO)_{4}(SO_{2}F)_{1}) & Unknown & 137 & 1550 & 2244 & 23.9 & 186 \\ & Pt(CO)_{4}(SO_{2}F)_{1}) & Unknown & 144 & 2267 & 4,181 \\ & cis-Pd(CO)_{2}(SO_{3}F)_{2} & Unknown & 145 & 2218 & 4,181 \\ & cis-Pd(CO)_{2}(SO_{3}F)_{2} & Unknown & 145 & 2118 & 4,181 \\ & Cu(CO)^{+} & BF_{3}H_{2}O & 169 & 2177 & 196 \\ Cu(CO)^{+} & BF_{3}H_{2}O & 169 & 2177 & 196 \\ Cu(CO)^{+} & BF_{3}H_{2}O & 170 & 2185 & 196 \\ & Ag(CO)(D(TF_{5}) & Solid & 173 & 265(12) & 2189 & -18.8 & 148 \\ & Ag(CO)(2)(X) & Solid & 171 & 263(12) & 2207 & -18.7 & 148 \\ & Ag(CO)_{2}(X) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ & Ag(CO)_{2}(X) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ & Ag(CO)_{2}(Y) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ & Ag(CO)_{2}(Y) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ & Ag(CO)_{2}(Y) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ & Ag(CO)_{2}(Y) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ & Au(CO)Br & CD_{2}CI_{2} & 174 & 2180^{f} & 233,239 \\ & Au(CO)CI & CD_{2}CI_{2} & 172 & $	$Fe(CO)_6(Sb_2F_1)$	Solid	170		2216		162
$\begin{aligned} & Rd(CO)_6(Sb_2F_{11})_2 & Solid & 147 & 2211 & 164 \\ & Ir(CO)_6(Sb_2F_{11})_3 & Solid & 121 & 2268 & 173 \\ & cis-Pt(CO)_2I_2 & C6D_6 & 154 & 1521 & 2131 & 23.5 & 184 \\ & cis-Pt(CO)_2I_2 & CH_2CI_2/CD_2CI_2 & 153 & 1563 & 2150^e & 24.1 & 184 \\ & cis-Pt(CO)_2L_2 & CH_2CI_2/CD_2CI_2 & 152 & 1569 & 2156^e & 24.2 & 184 \\ & trans-Pt(CO)_2I_2 & CH_2CL_2/CD_2CI_2 & 153 & 1574 & 2142^e & 24.3 & 184 \\ & trans-Pt(CO)_2I_2 & SOCI_2/CDCI_3 & 157 & 1565 & 2150 & 24.2 & 184 \\ & trans-Pt(CO)_2CI_2 & SOCI_2/CDCI_3 & 157 & 1565 & 2150 & 24.2 & 184 \\ & trans-Pt(CO)_2I_2 & SOCI_2/CDCI_3 & 157 & 1565 & 2150 & 24.2 & 184 \\ & trans-Pt(CO)_2I_3 & CH_2CL_2 & 153 & 1701 & 2089 & 26.2 & 235 \\ & INR_4][Pt(CO)I_3] & CH_2CL_2 & 152 & 1732 & 2098 & 25.2 & 235 \\ & Pt(CO)_4(Pt(SO_3F_{6}) & HSO_3F & 141 & 1576(2) & 2269 & 24.3 & 186 \\ & Pt(CO)_4(Sb_2F_{11})_2 & Unknown & 137 & 1550 & 2214 & 23.9 & 186 \\ & Pd(CO)_4(Sb_2F_{11})_2 & Unknown & 144 & 2267 & 4,181 \\ & cis-Pd(CO)_2(SO_3F)_2 & Unknown & 145 & 2118 & 4,181 \\ & cis-Pd(CO)_2(SO_3F)_2 & Unknown & 145 & 2218 & 4,181 \\ & Cu(CO)^{\dagger} & BF_3H_2O & 169 & 2177 & 196 \\ & Cu(CO)^{\dagger}_3 & BF_3H_2O & 169 & 177 & 284 \\ & Ag(CO)(B(OTeF_5) & Solid & 173 & 265(12) & 2189 & -18.8 & 148 \\ & Ag(CO)(B(OTeF_5) & Solid & 171 & 284(12) & 203 & -20.2 & 148 \\ & Ag(CO)_2(X) & Solid & 171 & 263(12) & 203 & -20.2 & 148 \\ & Ag(CO)_2(X) & Solid & 171 & $	$P_{1}(CO)_{6}(SU_{2}P_{11})_{2}$	Solid	166		2210		164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{0}(CO)_{6}(SU_{2}\Gamma_{11})_{2}$	Solid	147		2210		164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{6}(SU_{2}\Gamma_{11})_{2}$	Solid	147		2211		104
$\begin{array}{c} \mathrm{cls} -\mathrm{Pt}(\mathrm{CO})_{212} & \mathrm{Cd}_{0} & \mathrm{Ch}_{0} & \mathrm{IS4} & \mathrm{IS21} & \mathrm{2131} & \mathrm{25.5} & \mathrm{I84} \\ \mathrm{cls} -\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{Br}_{2} & \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{CD}_{2} \mathrm{Cl}_{2} & \mathrm{I53} & \mathrm{I563} & \mathrm{2150}^{e} & \mathrm{24.2} & \mathrm{I84} \\ \mathrm{cls} -\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{L}_{2} & \mathrm{Cd}_{0} \mathrm{Ch}_{0} & \mathrm{I64} & \mathrm{I470} & \mathrm{2126}^{e} & \mathrm{22.7} & \mathrm{I84} \\ \mathrm{trans} -\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{Br}_{2} & \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2} & \mathrm{I53} & \mathrm{I574} & \mathrm{2142}^{e} & \mathrm{24.3} & \mathrm{I84} \\ \mathrm{trans} -\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{Cl}_{2} & \mathrm{SOC}_{1} / \mathrm{CD} \mathrm{Cl}_{3} & \mathrm{I57} & \mathrm{1565} & \mathrm{2150} & \mathrm{24.2} & \mathrm{I84} \\ \mathrm{INR}_{4} [\mathrm{IPt}(\mathrm{CO})_{4}] & \mathrm{CH}_{2} \mathrm{Cl}_{2} & \mathrm{I53} & \mathrm{I701} & \mathrm{2089} & \mathrm{26.2} & \mathrm{235} \\ \mathrm{INR}_{4} [\mathrm{IPt}(\mathrm{CO}) \mathrm{I}_{3}] & \mathrm{CH}_{2} \mathrm{Cl}_{2} & \mathrm{I53} & \mathrm{1701} & \mathrm{2089} & \mathrm{26.2} & \mathrm{235} \\ \mathrm{Pt}(\mathrm{CO})_{4} (\mathrm{Pt}(\mathrm{SO})_{5} \mathrm{H} & \mathrm{H30}_{3} \mathrm{F} & \mathrm{I41} & \mathrm{I576}(2) & \mathrm{2269} & \mathrm{24.3} & \mathrm{I86} \\ \mathrm{Pt}(\mathrm{CO})_{4} (\mathrm{Pt}(\mathrm{SO}_{5} \mathrm{F}_{1}) \mathrm{H} \mathrm{O0}_{3} \mathrm{F} & \mathrm{I41} & \mathrm{1576}(2) & \mathrm{2269} & \mathrm{24.3} & \mathrm{I86} \\ \mathrm{Pt}(\mathrm{CO})_{4} (\mathrm{Pt}(\mathrm{SO}_{5} \mathrm{F}_{1}) \mathrm{U} & \mathrm{Unknown} & \mathrm{I37} & \mathrm{I550} & \mathrm{2244} & \mathrm{23.9} & \mathrm{I86} \\ \mathrm{Pt}(\mathrm{CO})_{4} (\mathrm{Sb}_{5} \mathrm{F}_{1})_{2} & \mathrm{Unknown} & \mathrm{I44} & \mathrm{2267} & \mathrm{4.181} \\ \mathrm{cls} \mathrm{cls} \mathrm{Pd}(\mathrm{CO})_{2} (\mathrm{SO}_{3} \mathrm{F}_{2} & \mathrm{Unknown} & \mathrm{I37} & \mathrm{I550} & \mathrm{2160} & \mathrm{196} \\ \mathrm{Cu}(\mathrm{CO})_{4} (\mathrm{Sb}_{2} \mathrm{F}_{1})_{2} & \mathrm{Unknown} & \mathrm{I45} & \mathrm{2218} & \mathrm{4.181} \\ \mathrm{cls} \mathrm{cls} \mathrm{Pd}(\mathrm{CO})_{2} (\mathrm{SO}_{3} \mathrm{F}_{2} & \mathrm{Unknown} & \mathrm{I45} & \mathrm{2218} & \mathrm{4.181} \\ \mathrm{cls} \mathrm{cls} \mathrm{CO}_{1} (\mathrm{CO})_{5}^{4} & \mathrm{BF}_{3} \mathrm{H}_{2} \mathrm{O} & \mathrm{I70} & \mathrm{2185} & \mathrm{196} \\ \mathrm{Ag}(\mathrm{CO})_{1} (\mathrm{Pl}') & \mathrm{CD}_{2} \mathrm{Cl}_{2} & \mathrm{I77} & \mathrm{196} \\ \mathrm{Ag}(\mathrm{CO})(\mathrm{TP}') & \mathrm{CD}_{2} \mathrm{Cl}_{2} & \mathrm{I74} & \mathrm{2031} & \mathrm{2203} & -\mathrm{20.2} & \mathrm{148} \\ \mathrm{Ag}(\mathrm{CO})_{1} (\mathrm{Y}') & \mathrm{Solid} & \mathrm{I71} & \mathrm{263} (\mathrm{12} & \mathrm{203} & -\mathrm{20.2} & \mathrm{148} \\ \mathrm{Ag}(\mathrm{CO})_{2} (\mathrm{X}) & \mathrm{Solid} & \mathrm{I71} & \mathrm{2031} (\mathrm{2} & \mathrm{2197} & -\mathrm{18.7} & \mathrm{148} \\ \mathrm{Ag}(\mathrm{CO})_{1} (\mathrm{Y}') & \mathrm{Solid} & \mathrm{I72} & \mathrm{203} (\mathrm{12} & \mathrm{2197} & -1$	$II(CO)_6(SO_2r_{11})_3$	Solid	121	1501	2208	00 E	1/3
$\begin{array}{c} cls-Pt(CO)_2Br_2 & CH_2Cl_2/CD_2Cl_2 & 153 & 1563 & 2150^* & 24.1 & 184 \\ cls-Pt(CO)_2Cl_2 & CH_2Cl_2/CD_2Cl_2 & 152 & 1569 & 2156^* & 24.2 & 184 \\ trans-Pt(CO)_2L_2 & C_6D_6 & 164 & 1470 & 2126^* & 22.7 & 184 \\ trans-Pt(CO)_2Br_2 & CH_2Cl_2/CD_2Cl_2 & 153 & 1574 & 2142^* & 24.3 & 184 \\ trans-Pt(CO)_2Cl_2 & SOCl_2/CDCl_3 & 157 & 1565 & 2150 & 24.2 & 184 \\ [NR_4][Pt(CO)I_3] & CH_2Cl_2 & 156 & 1636 & 2078 & 26.7 & 235 \\ [NR_4][Pt(CO)Br_3] & CH_2Cl_2 & 153 & 1701 & 2089 & 26.2 & 235 \\ [NR_4][Pt(CO)I_3] & CH_2Cl_2 & 152 & 1732 & 2098 & 25.2 & 235 \\ Pt(CO)_4(Pt(SO_3F)_6) & HSO_3F & 141 & 1576(2) & 2269 & 24.3 & 186 \\ Pt(CO)_4(Sb_2F_{11})_2 & Unknown & 137 & 1550 & 2244 & 23.9 & 186 \\ Pd(CO)_4(Sb_2F_{11})_2 & Unknown & 144 & 2267 & 4.181 \\ cls-Pt(CO)_2(SO_3F)_2 & Unknown & 145 & 2218 & 4.181 \\ cls-Pd(CO)_2(SO_3F)_2 & Unknown & 145 & 2218 & 4.181 \\ cls-Pd(CO)_2(SO_3F)_2 & Unknown & 145 & 2160 & 196 \\ Cu(CO)^{\pm} & BF_3 \cdot H_2O & 169 & 2160 & 196 \\ Cu(CO)^{\pm} & BF_3 \cdot H_2O & 177 & 196 \\ Cu(CO)^{\pm} & BF_3 \cdot H_2O & 170 & 2185 & 196 \\ Ag(CO)(OTeF_5) & Solid & 173 & 265(12) & 2189 & -18.8 & 148 \\ Ag(CO)(DF_5) & Solid & 171 & 284(12) & 2203 & -20.2 & 148 \\ Ag(CO)_2(X) & Solid & 171 & 263(12) & 2207 & -18.7 & 148 \\ Ag(CO)_2(X) & Solid & 171 & 263(12) & 2207 & -18.7 & 148 \\ Ag(CO)_2(X) & Solid & 171 & 263(12) & 2197 & -13.5 & 148 \\ Ag(CO)_2(X) & Solid & 171 & 203(12) & 2197 & -14.4 & 148 \\ Ag(CO)_2(X) & Solid & 172 & 203(12) & 2197 & -13.5 & 148 \\ Au(CO)Br & CD_2Cl_2 & 174 & 2159 & 233 \\ Au(CO)(CI = CD_2Cl_2 & 174 & 2162 & 233-235 \\ Au(CO)(CI = CD_2Cl_2 & 172 & 2162 & 233-235 \\ Au(CO)(CI = CD_2Cl_2 & 174 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(CI = CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(AuCl_4) & CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(AuCl_4)$	$cis-Pt(CO)_2I_2$		154	1521	2131	23.5	184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-Pt(CO) ₂ Br ₂	CH_2CI_2/CD_2CI_2	155	1503	2150°	24.1	184
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$cis-Pt(CO)_2Cl_2$	CH_2CI_2/CD_2CI_2	152	1569	2156	24.2	184
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	trans-Pt(CO) ₂ 1 ₂	C_6D_6	164	1470	2126°	22.7	184
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$trans-Pt(CO)_2Br_2$	CH_2Cl_2/CD_2Cl_2	153	1574	2142 ^e	24.3	184
$ \begin{bmatrix} NR_4 \end{bmatrix} [Pt(CO)I_3] & CH_2 CI_2 & 156 & 1636 & 2078 & 26.7 & 235 \\ [NR_4] [Pt(CO)Br_3] & CH_2 CI_2 & 153 & 1701 & 2089 & 26.2 & 235 \\ [NR_4] [Pt(CO)CI_3] & CH_2 CI_2 & 152 & 1732 & 2098 & 25.2 & 235 \\ Pt(CO)_4 (Pt(SO_3F)_6) & HSO_3F & 141 & 1576(2) & 2269 & 24.3 & 186 \\ Pt(CO)_4 (Sb_2F_{11})_2 & Unknown & 137 & 1550 & 2244 & 23.9 & 186 \\ Pd(CO)_4 (Sb_2F_{11})_2 & Unknown & 131 & 2011 & 2200 & 31.0 & 4,181 \\ cis-Pt(CO)_2 (SO_3F)_2 & Unknown & 144 & 2267 & 4,181 \\ cis-Pd(CO)_2 (SO_3F)_2 & Unknown & 145 & 2218 & 4,181 \\ Cu(CO)^+ & BF_3 \cdot H_2O & 169 & 2160 & 196 \\ Cu(CO)_3^+ & HSO_3F/H_2SO_4 & 169 & 2177 & 196 \\ Cu(CO)_4^+ & BF_3 \cdot H_2O & 170 & 2185 & 196 \\ Ag(CO) (CTP') & CD_2CI_2 & 175 & 2178 & 216 \\ Ag(CO) (CTF_5) & Solid & 173 & 265(12) & 2189 & -18.8 & 148 \\ Ag(CO) (B(OTEF_5) & Solid & 171 & 284(12) & 2203 & -20.2 & 148 \\ (Ag(CO))_2 (X) & Solid & 171 & 263(12) & 2207 & -18.7 & 148 \\ Ag(CO)_2 (X) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ (Ag(CO))_2 (X) & Solid & 172 & 190(12) & 2197 & -13.5 & 148 \\ Au(CO)Br & CD_2CI_2 & 174 & 2159 & 233 \\ Au(CO)CI & CD_2CI_2 & 174 & 2159 & 233 \\ Au(CO)CI & CD_2CI_2 & 174 & 2160 & 233.239 \\ Av(CO)(CTF) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCI_4) & CD_2CI_2 & 171 & 2180^f & 233.239 $	$trans-Pt(CO)_2Cl_2$	SOCI ₂ /CDCI ₃	157	1565	2150	24.2	184
$ \begin{bmatrix} NR_4 \end{bmatrix} [Pt(CO)Br_3] & CH_2 Cl_2 & 153 & 1701 & 2089 & 26.2 & 235 \\ [NR_4] [Pt(CO)Cl_3] & CH_2 Cl_2 & 152 & 1732 & 2098 & 25.2 & 235 \\ Pt(CO)_4 (Pt(SO_3F)_6) & HSO_3F & 141 & 1576(2) & 2269 & 24.3 & 186 \\ Pt(CO)_4 (Sb_2F_{11})_2 & Unknown & 137 & 1550 & 2244 & 23.9 & 186 \\ Pd(CO)_4 (Sb_2F_{11})_2 & Unknown & 131 & 2011 & 2200 & 31.0 & 4,181 \\ cis-Pt(CO)_2 (SO_3F)_2 & Unknown & 145 & 2218 & 4,181 \\ Cu(CO)^+ & BF_3 \cdot H_2O & 169 & 2160 & 196 \\ Cu(CO)^{\frac{1}{5}} & HSO_3F/H_2SO_4 & 169 & 2177 & 196 \\ Cu(CO)^{\frac{1}{5}} & HSO_3F/H_2SO_4 & 169 & 2177 & 196 \\ Cu(CO)^{\frac{1}{5}} & BF_3 \cdot H_2O & 170 & 2185 & 196 \\ Ag(CO) (OTeF_5) & Solid & 173 & 265(12) & 2189 & -18.8 & 148 \\ Ag(CO) (B(OTeF_5)) & Solid & 171 & 284(12) & 2203 & -20.2 & 148 \\ (Ag(CO))_2 (X) & Solid & 171 & 263(12) & 2107 & -18.7 & 148 \\ Ag(CO)_2^{\frac{1}{5}} & HSO_3F & 172 & 2190 & 196-198 \\ (Ag(CO))_2 (X) & Solid & 172 & 203(12) & 2197 & -14.4 & 148 \\ (Ag(CO)_2)_2 (X) & Solid & 172 & 190(12) & 2197 & -13.5 & 148 \\ Au(CO)Br & CD_2 Cl_2 & 174 & 2159 & 233 \\ Au(CO)CI & CD_2 Cl_2 & 174 & 2159 & 233 \\ Au(CO)CI & CD_2 Cl_2 & 174 & 2159 & 233 \\ Au(CO)CI & CD_2 Cl_2 & 174 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 & 171 & 2180^f & 233.239 \\ Av(CO)(AuCl_4) & CD_2 Cl_2 $	$[NR_4][Pt(CO)I_3]$	CH_2Cl_2	156	1636	2078	26.7	235
$ \begin{bmatrix} NR_4 \\ Pt(CO)(L_3) \\ Pt(CO)_4 (Pt(SO_3F)_6) \\ HSO_3F \\ Pt(CO)_4 (Sb_2F_{11})_2 \\ Unknown \\ 137 \\ 1550 \\ 2244 \\ 23.9 \\ 186 \\ 24.3 \\ 23.9 \\ 186 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 186 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ 23.9 \\ 24.3 \\ $	$[NR_4][Pt(CO)Br_3]$	CH_2Cl_2	153	1701	2089	26.2	235
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[NR ₄][Pt(CO)Cl ₃]	CH_2Cl_2	152	1732	2098	25.2	235
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pt(CO)_4(Pt(SO_3F)_6)$	HSO ₃ F	141	1576(2)	2269	24.3	186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pt(CO)_4(Sb_2F_{11})_2$	Unknown	137	1550	2244	23.9	186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pd(CO)_4(Sb_2F_{11})_2$	Unknown	144		2267		4,181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-Pt(CO) ₂ (SO ₃ F) ₂	Unknown	131	2011	2200	31.0	4,181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$cis-Pd(CO)_2(SO_3F)_2$	Unknown	145		2218		4,181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(CO) ⁺	BF ₃ ⋅H ₂ O	169		2160		196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(CO) ⁺ ₃	HSO ₃ F/H ₂ SO ₄	169		2177		196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Cu(CO)_4^+$	BF ₃ ·H ₂ O	170		2185		196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag(CO)(Tp')	CD_2Cl_2	175		2178		216
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ag(CO)(OTeF_5)$	Solid	173	265(12)	2189	-18.8	148
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ag(CO)(B(OTeF_5)_4)$	CD_2Cl_2	174		2204		148,219
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(Ag(CO))_{2}(X)$	Solid	171	284(12)	2203	-20.2	148
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Ag(CO))_2(Y)$	Solid	171	263(12)	2207	-18.7	148
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag(CO) [†]	HSO₃F	172		2190		196-198
$ \begin{array}{c cccc} (Ag(CO)_2)_2(Y) & Solid & 172 & 190(12) & 2197 & -13.5 & 148 \\ Au(CO)Br & CD_2Cl_2 & 174 & 2159 & 233 \\ Au(CO)Cl & CD_2Cl_2 & 172 & 2162 & 233-235 \\ Au(CO)(AuCl_4) & CD_2Cl_2 & 171 & 2180^f & 233,239 \\ Au(CO)(Tr') & CD_2Cl_2 & 173 & 2144 & 228 \\ \end{array} $	$(Ag(CO)_2)_2(X)$	Solid	172	203(12)	2197	-14.4	148
Au(CO)Br CD_2Cl_2 1742159233Au(CO)Cl CD_2Cl_2 1722162233-235Au(CO)(AuCl_4) CD_2Cl_2 1712180 f233,239Au(CO)(Tr(-)) CD_2Cl_2 1712180 f233,239	$(Ag(CO)_2)_2(Y)$	Solid	172	190(12)	2197	-13.5	148
Au(CO)Cl CD_2Cl_2 172 2162 233-235 Au(CO)(AuCl_4) CD_2Cl_2 171 2180 ^f 233,239 Au(CO)(Tr(2)) CD_2Cl_2 171 2180 ^f 233,239	Au(CO)Br	CD_2Cl_2	174	. ,	2159		233
Au(CO)(AuCl ₄) CD ₂ Cl ₂ 171 2180 ^f 233,239 Au(CO)(T_{2}) CD ₂ Cl ₂ 171 2180 ^f 233,239	Au(CO)Cl	CD ₂ Cl ₂	172		2162		233-235
$A_{\rm ext}(C)/(T_{\rm ext})$ CD (1.172) 2144 229	Au(CO)(AuCl ₄)	CD ₂ Cl ₂	171		2180^{f}		233.239
$Au(CO)(1D) = CD_{2}CD_{2} = 1/3 = 7.144 = 7.18$	Au(CO)(Tp')	CD_2Cl_2	173		2144		238
$Au(CO)^{+}$ HSO ₂ F/SbF ₅ 1:1 158 231	Au(CO) ⁺	HSO ₂ F/SbF ₅ 1:1	158				231
$Au(CO)(SO_{2}F)$ HSO ₂ F 162 2198 231	Au(CO)(SO ₂ F)	HSO₂F	162		2198		231
(continues)		· 3					(continues)

Carbon-13 NMR Data of Carbonyl Complexes With High Carbonyl Stretching Frequencies^a

Compound	Medium	δ(¹³ C) ^b	${}^{1}J_{\rm MC}$	v(CO) _{ave}	$^{1}K_{\rm MC}$	References
$Au(CO)_n^+$ (n = 1, 2)	HSO ₃ F/SbF ₅	167				231
$\operatorname{Au}(\operatorname{CO})_2(\operatorname{Sb}_2 F_{11})$	Solid ^g	174		2236		231,232
$Hg_2(CO)_2(Sb_2F_{11})_2$	Solid	189	$3350(20)^{h}$	2248	61.9	248,249
$Hg(CO)_2(Sb_2F_{11})_2$	Solid	169	5219(5)	2280	96.5	248,249
	Magic acid	171		2280		248,249
$Co(CO)_4^+$	HSO ₃ F	182		2153		167
$Rh(CO)_4^+$	HSO ₃ F	172		2169		167
$Pt_2(CO)_6^{2+}$	H_2SO_4	$166 (a)^{i}$	200	2197	3.1	418
		$159 (e)^{i}$	-26		-0.40	
$Pd_2(CO)_2^{2+}$	$H_2SO_4/1$ -hexene	177		2156		63

TABLE VIII (Continued)

^aThe units: $\delta({}^{13}C)$, ppm from SiMe₄; ${}^{1}J_{MC}$, Hz; $\nu(CO)_{ave}$, cm⁻¹; ${}^{1}K_{MC}$, $\times 10^{21}$ N A⁻² m⁻³. Abbreviations: Tp' = HB[3,5-(CF₃)₂Pz]₃ (Pz = pyrazolyl); X = [Zn(OTeF₅)₄]²⁻; Y = Ti(OTeF₅)₆²⁻. ^bError ≤ 1 ppm.

 $^{c}(Sb_{n}F_{5n+1}) (n > 2).$

^dThe T_{1u} values.

 $e_{sym-C_2H_2Cl_4}$.

^fSOCl₂.

^gThe same $\delta(^{13}C)$ was observed in HSO₃F, 1:1 HSO₃F/SbF₅, and SO₂.

 ${}^{h2}J_{\rm MC} = 850(50)$ Hz.

 i Axial - a, equatorial = e.

Figure 6. The ν (CO) values for two alkali metal substituted zeolites, mordenite and ZSM-5. The lines are linear least-squares fits to the data.

Figure 7. Dependence of ν (CO) for Na(CO)⁺-zeolite materials on the Si/Al ratio of the zeolite. Only those values from Table I that correspond to near-zero coverage are included in this plot.

the group to Ba^{2+} (2178 cm⁻¹). The only *s*-block metal carbonyls that can be generated in fluid solution are Ca(CO)(Cp*)₂ and Sr(CO)(Cp*)₂ (127). Both of these were generated by treating toluene solutions of the corresponding M(Cp*)₂ compounds with elevated pressures of gaseous CO.

B. *p*-Block Species

1. Boranes

All of the compounds with $\nu(CO) > 2143 \text{ cm}^{-1}$ listed in this category in Table II are neutral compounds (128–150). Both BH₃(CO) and B₂H₄(CO)₂, the latter with an ethane-like structure, contain tetrahedral boron atoms with four 2c-2e bonds. The remaining compounds contain boron atoms with more than four bonds,

Figure 8. Idealized relaxed 001 surface of MgO, showing three different Mg²⁺ sites.

Figure 9. Structure of 1,12-B₁₂H₁₀(CO)₂ (50% probability ellipsoids except for H atoms). Selected interatomic distances (Å) and angles (deg): C–O, 1.119(2); C–B, 1.543(2); O–C–B, 179.1(1).

that is, with some 3c-2e bonds. The structure of one of these, $1,2-B_{12}H_{10}(CO)_2$ [$\nu(CO) = 2210 \text{ cm}^{-1}$], is shown in Fig. 9 (135, 136). Note that the anionic cluster $2-B_{10}H_9(CO)^-$ has a $\nu(CO)$ value 18 cm⁻¹ below the similar but neutral cluster $B_{10}H_8(CO)_2$.

2. Al^{3+}

The Lewis acid AlMe₃ forms a complex with CO in a neat CO matrix. The resultant species, AlMe₃(CO) (138), has a ν (CO) value of 2185 cm⁻¹, 18 cm⁻¹ higher than BH₃(CO). Carbon monoxide also interacts with Al³⁺ ions in various aluminas. In many cases, more than one Al–CO species is observed for a given sample, which is commensurate with different types of Al³⁺ sites and is similar to what was observed for CO adsorbed on MgO (see above). The range of ν (CO) values given in Table II for Al₂O₃ + CO, 2238–2150 cm⁻¹, demonstrates the range of Al–CO interactions that are possible at different aluminum sites within a given alumina and for different aluminas that have been studied (e.g., α -Al₂O₃, γ -Al₂O₃, and δ , θ -Al₂O₃).

Acylium ions such as CH₃CO⁺ and (CH₃)₂CHCO⁺ are important reaction intermediates in a number of organic reactions and have been studied by a variety of techniques (268). These two ions are the only ones for which structural data *and* ν (CO) values are available. During our investigation of Ag(I) carbonyls (148), we decided to redetermine the structure of [CH₃CO][SbCl₆] so that, with modern Xray diffraction equipment and low-temperature data collection, the *R*(CO) value for at least one acylium ion would be known with good precision. We discovered that earlier investigators (147) had overlooked the alternative, and more appropriate,

LUPINETTI ET AL.

space group that would require that the CH₃CO⁺ cation be disordered about a crystallographic inversion center. We did not reinvestigate the structure of [CH₃CO][SbF₆], but it is possible that the cation in this structure is disordered as well. Instead, we reinvestigated the structure of [(CH₃)₂CHCO][SbCl₆] (143 K data collection) (148), which had been reported in 1972 (room temperature data collection) (147), and found the *R*(CO) value to be 1.101(4) Å [the *R*(CO) value reported in 1972 was 1.116(10) Å]. The structure of the isopropylium cation is shown in Fig. 10. This is one of the few cases where it is has been demonstrated that a ν (CO) value > 2143 cm⁻¹ results in a *R*(CO) value < 1.12822 Å.

No molecular species of Si(IV) with ν (CO) > 2143 cm⁻¹ have been reported. Silicon dioxide, however, adsorbs CO; the resulting species exhibits a ν (CO) stretch of 2158 cm⁻¹ (124).

5.
$$Sn^{2+}$$
 and Pb^{2+}

Monomeric Sn(II) and Pb(II) halides were cocondensed with CO in an argon matrix at 10 K (150). The species $M(CO)X_2$ all exhibited $\nu(CO)$ values > 2143 cm⁻¹. For the Pb(CO)X₂ species, $\nu(CO)$ decreased in the order F (2176 cm⁻¹) > Cl (2175 cm⁻¹) > Br (2161 cm⁻¹) > I (~2149 cm⁻¹).

Figure 10. Structure of the $(CH_3)_2CHCO^+$ cation. Selected distances (Å) and angles (deg): C1–O, 1.101(4); C1–C2, 1.458(4); C2–C3, 1.538(3); C2–C1–O, 1.774(3). [Reprinted with permission from P. K. Hurlburt, J. I Rack, J. S. Luck, S. F. Dec, J. D. Webb, O. P. Anderson, and S. H. Strauss, *J. Am. Chem. Soc.*, 116, 10003 (1994). Copyright © 1994 American Chemical Society.]

6. N⁺

The remarkable salt $[N(CO)_2][Sb_3F_{16}]$ was recently reported by Seppelt and coworkers (151). The $N(CO)_2^+$ cation, which is isoelectronic with the equally remarkable N₅⁺ cation recently reported by Christe et al. (269), is bent, with a C–N–C bond angle of 130.7(3)° and nearly linear N–C \equiv O linkages. The C–O bond distances are 1.118(4) Å and 1.114(5) Å and the average ν (CO) value is 2340 cm⁻¹ (151). As far as we know, this is the highest ν (CO) value reported for any chemical species.

The ClCO⁺ cation, generated in superacid solution in 1991 (270), was recently characterized by infrared (IR) spectroscopy [ν (CO) = 2256 cm⁻¹) (152, 153). This species is believed to be important in Friedel–Crafts reactions of carbonyl halides and also as a gas-phase species in plasma etching processes.

C. Groups 3 (IIIB)-7 (VIIB) d-Block Species

1.
$$Sc^{3+}$$
, Y^{3+} , and La^{3+}

A number of argon matrix isolated group 3 (IIIB) metal carbonyl complexes exist. The complex with the highest ν (CO) value is Sc(CO)O⁺, with ν (CO) = 2222 cm⁻¹. Many of the other species in this group are fluorides of the form M(CO)F₂ or M₂(CO)F₆. In each case, the mononuclear species have a higher ν (CO) value than the dinuclear species; for La³⁺ the ν (CO) difference is 63 cm⁻¹. For both series, there is a ν (CO) trend: Sc³⁺> Y³⁺> La³⁺. In addition, CO forms an adduct with La₂O₃ with ν (CO) = 2170 cm⁻¹ at low coverage (255, 256).

2. Ti^{3+} , Ti^{4+} , and Zr^{4+}

Carbonyl complexes of titanium with $\nu(CO) > 2143 \text{ cm}^{-1}$ existing in two different oxidation states have been reported. The cationic complex [Ti(CO)O]⁺ (argon matrix) has been isolated and exhibits a $\nu(CO)$ value of 2143 cm⁻¹. Titanium(IV) carbonyl species are limited to CO adsorbed on TiO₂ or on modified TiO₂ surfaces. The carbonyl stretching frequency is dependent on the form of TiO₂ used. The rutile form of TiO₂ has $\nu(CO) = 2182 \text{ cm}^{-1}$, while the anatase form exhibits $\nu(CO)$ values in the range 2178–2184 cm⁻¹ (156–158). Silicon doped TiO₂ (TiO₂/SiO₂) shows a range of $\nu(CO)$ values, 2178–2184 cm⁻¹, which is comparable to the range for the anatase form of TiO₂ (2180–2188 cm⁻¹) (158). Zirconium(IV) oxide also forms surface carbonyl complexes that have an intense, broad $\nu(CO)$ band centered at ~2190 cm⁻¹ (159). Sulfate-loaded ZrO₂ (sd-ZrO₂) also takes up CO, with multiple $\nu(CO)$ peaks in the range 2170–2220 cm⁻¹ (159). In the

LUPINETTI ET AL.

doped materials, the degree of sulfate loading affected peak positions and intensities, except for the highest frequency peak, 2220 cm⁻¹, the position of which remained constant at different sulfate loadings. The nonclassical molecular carbonyl cations *O*-inside- $Zr(CO)(Cp^*)_2(COCH_3)^+$ and *O*-inside- $Zr(CO)(Cp)_2(COCH_3)^+$ have $\nu(CO)$ values of 2152 and 2176 cm⁻¹, respectively (160). The structure of the *O*-outside- $Zr(CO)(Cp^*)_2(COCH_3)^+$ cation is shown in Fig. 11.

3.
$$V^{3+}$$

Only one high stretching frequency V(III) carbonyl complex has been reported. The cationic complex $[V(CO)O]^+$ has been isolated in an argon matrix at 12 K and has a $\nu(CO)$ value of 2205 cm⁻¹.

Carbonyl complexes of chromium in two different oxidation states have been reported. The Cr(II) complex Cr(CO)F₂, ν (CO) = 2185 cm⁻¹, has been generated in an Ar/CO matrix (105). No molecular forms of Cr(III) carbonyls are known to exist. Three different species of CO adsorbed onto Cr₂O₃ are known: bulk Cr₂O₃

Figure 11. Structure of the "O-outside" isomer of the $Zr(Cp^*)_2$ (η^2 -CH₃CO)(CO)⁺ cation.