
PROGRESS IN 
INORGANIC CHEMISTRY 

EDITED BY 

STEPHEN J. LIPPARD 
DEPARTMENT OF CHEMISTRY 
COLUMBIA UNIVERSITY 
NEW YORK, NEW YORK 

VOLUME 20 

AN I N T E R S  C I E  N C E@ P U B L I C  AT I 0  N 

JOHN WILEY & SONS, INC., New York London Sydney Toronto 





PROGRESS IN 
INORGANIC CHEMISTRY 

Volume 20 



Advisory Board 

THEODORE L. BROWN 
UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 

JAMES P. COLLMAN 
STANFORD UNIVERSITY, STANFORD, CALIFORNIA 

F. ALBERT COTTON 
TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 

RILEY SCHAEFFER 
INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 

GEOFFREY WILKINSON 
IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, 
LONDON, ENGLAND 



PROGRESS IN 
INORGANIC CHEMISTRY 

EDITED BY 

STEPHEN J. LIPPARD 
DEPARTMENT OF CHEMISTRY 
COLUMBIA UNIVERSITY 
NEW YORK, NEW YORK 

VOLUME 20 

AN I N T E R S  C I E  N C E@ P U B L I C  AT I 0  N 

JOHN WILEY & SONS, INC., New York London Sydney Toronto 



An InterscienceB Publication 

Copyright @ 1976, by John Wiley & Sons, Inc. 

All rights reserved. Published simultaneously in Canada. 

No part of this book may be reproduced by any means, nor 
transmitted, nor translated into a machine language with- 
out the written permission of the publisher. 

Library of Congress Catalog Card Number: 59-13035 

ISBN: 0-471-54090-0 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 



Contents 

One-Dimensional Inorganic Complexes 
By Joel S. Miller and Arthur J. Epstein, Webster Research Center, 
Xerox Corporation, Webster, New York ......................... I 

The Study of Electron Distributions in Inorganic Solids: A Survey of Techniques 
and Results 

By B. C. Tofield, Bell Telephone Laboratories, Holmdel, 
New Jersey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 

The Temperature-Dependence of the Apparent Energy of Activation 
By Berta Perlmutter-Hayman, Department of Physical Chemistry, 
The Hebrew University of Jerusalem, Jerusalem, Israel . . . . . . . . . . .  229 

Applications of Carbon-13 NMR in Inorganic Chemistry 
By M. H. Chisholm and S. Godleski, Department of Chemistry, 
Princeton University, Princeton, New Jersey .................... 299 

SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431 

Cumulative Index, Volumes 1-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 5 5 





PROGRESS IN 
INORGANIC CHEMISTRY 

Volume 20 





One-Dimensional 
Inorganic Complexes 

by JOEL S . MILLER and ARTHUR J . EPSTEIN 
Webster Research Center. Xerox Corporation. Webster. New York 

One-Dimensional Inorganic Complexes ........................................ 2 
Part I : Physics of One Dimension . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  4 

I . Electrical Properties in One Dimension ............................... 4 

1 . Tight-Binding Band Theory . ............................. 6 
2 . Properties of Electron Energy Systems ..................... 11 
3 . Peierls Transition ............................................ 16 

B . Limitations of Band Theory ..................................... 20 
1 . Electron-Electron Coulomb Repulsion-Mott Transition 20 
2 . Disorder in One-Dimensional Systems .......................... 25 
3 . Interrupted Strand Model ..................................... 26 

C . Polaron and Exciton ...................... 27 
1 . Polarons ........ ......................................... 27 
2 . Excitons .................................................... 28 

A . Band Theory ................................................... 5 

. . . . . . . . .  

D . Superconductivity ....................... .................... 29 
1 . BCS . Phonon Mechanism for Superconduc ty ................. 29 
2 . W . A . Little . Exciton Mechanism for Superconductivity . . . . . . . . . . .  30 
3 . H . Frohlich . Nonpairing Model for Superconductivity . . . . . . . . . . . .  31 

E . Design of a One-Dimensional Conducting System . . . . . . . . . . . . . . . . . .  33 
I1 . Magnetic Properties in One Dimension ............................... 34 

A . The Dimer Pair . Singlet-Triplet Behavior .......................... 35 
B . Magnetic Chains ............................................... 35 
C . Three-Dimensional Effects . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  38 

Part I1 : One-Dimensional Inorganic Systems . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  40 
I . Columnar Inorganic Systems ........................................ 40 

A . Highly Conducting One-Dimensional Systems ...................... 42 
1 . Tetracyanoplatinate Complexes ................................ 43 

a . Chemical Properties ...................................... 43 
b . Physical Properties ........................ 

2 . Bis(oxa1ato)platinate Complexes ................. 
3 . Iridium Halocarbonyl Complexes . . . . . . . . . . . . . . .  

a . Halotricarbonyliridate complexes ........................... 76 
b . Derivatives of the Halotricarbonyliridate complexes . . . . . . . . . .  78 
c . Dihalodicarbonyliridate Complexes ......................... 79 

4 . Multidimensional One-Dimensional Systems ..................... 83 
a . Mixed Valent Platinum Oxides ............................. 83 
b . Polymercury Cations . . . . .  .............................. 87 

1 



2 JOEL S. MILLER AND ARTHUR J. EPSTEIN 

B. Poorly Conducting One-Dimensional Materials ..................... 90 
I .  Metal Halide and Haloamine Complexes . . . . . . . . . .  

a. Metals in the Same Oxidation State ........... 
b. Metals in Different Oxidation States . . . . . . . . . . . . . . . . . . .  
c. Miscellaneous Platinum Haloamines ........................ 97 

2. Rhodium and Iridium Dicarbonyl tylacetonates .............. 97 
3. a-Diimine Metal Complexes . . . .  
4. Dithiolene Complexes . . . . . . . . .  ........................... 104 
5. Complexes with Macrocyclic Ligands ......................... ,108 

C. Potential One-Dimensional Systems . . . . .  
1. Polyplatinum Anions ............... ....................... 110 
2. Metal Isocyanide Complexes ................................. ,112 
3. Metal Fulminate Complexes ............................. 
4. Platinum Blue .............................................. .113 
5. Miscellaneous Materials ..................................... .114 

D. Conducting Inorganic Polymers .................................. 1 15 
I. Polydentate Ligand Metal Polymers 
2. Ferrocene Polymers ................................ 
3. Metal-Cyano Polymers . . . . . . . . . . .  
4. Poly(su1furnitride) .......................................... .118 

11. One-Dimensional Magnetic Systems ................................ ,124 

..................... 

A. Antiferromagnetically Coupled Systems . . . . . . . . . . . . . . . . . .  
B. Ferromagnetically Coupled Systems .............................. . 1 3  1 

Summary ........................... ................................. 132 
Acknowledgement ..................... ................................ .135 

.......................................................... .135 

ONE-DIMENSIONAL INORGANIC COMPLEXES 

In the past decade there has been considerable interest in the chemical and 
physical properties of one-dimensional materials. Activity has recently in- 
creased due to the demonstration of the existence of a one-dimensional 
metallic state and the observation of phenomena such as metal-insulator transi- 
tion, and cooperative magnetic interaction. This has led to a large impact on 
concepts utilized in chemistry and in solid state physics. The chemistry of mixed 
valent and partially oxidized complexes has come under extensive study. The 
physical properties of one-dimensional conducting and magnetic systems 
have been critically examined both theoretically and experimentally. 

Both inorganic and organic examples of one-dimensional materials have 
been studied. They have been the subject of a number of recent excellent 
reviews covering specific aspects of this field. The physics of organic one- 
dimensional materials, generally based on 7,7,8,8-tetracyano-p-quinodimeth- 
ane (TCNQ), has been reviewed by Shchegolev (375) and Zeller (433). 
The design and synthesis of organic metals have been detailed by Garito and 
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Heeger (153) and Yagubskii and Khidekel’ (429). A classification scheme for 
organic charge transfer complex has been presented by Soos (563). Heeger and 
Garito (496) have detailed the physical properties and current interpretation 
of the highly conducting tetrathiofulvalenium 7,7,8,8-tetracyano-p-quino- 
dimethanide (TTF)(TCNQ) salts. One-dimensional inorganic systems have 
been reviewed by Krogmann (238) and Thomas and Underhill (398) from a 
chemistry viewpoint as well as by Zeller (433) and Shchegolev (375) from 
a physics viewpoint. Recently several short reviews on one-dimensional 
inorganic complexes by Underhill (569), Gomm (487) and Aderjan et al. 
(441) have appeared. General reviews on mixed valent complexes have been 
comprehensively detailed by Robin and Day (355), Hush (198a) and Allen 
and Hush (198b). Recently Day has written a pair of reviews pertaining to 
mixed valency and one-dimensional complexes (471). Miller (537) has sum- 
marized the properties associated with one-dimensional inorganic complexes. 
The properties of one-dimensional systems which exhibit ferro- and antifer- 
romagnetic couplings have been the subject of two recent reviews (439, 498). 

In light of the recent rapid advances in the field, we feel that a broad review 
of those inorganic materials that form a columnar structure in the solid state 
is useful at this time. Both chemical and physical properties of these materials 
are described. This review is divided into two parts. Part I introduces physical 
concepts useful in describing electrical and magnetic properties of one-dimen- 
sional systems, with emphasis on the former. One electron band theory is re- 
viewed as a framework for discussing cooperative phenomena. The potential 
effects of electron correlation, crystallographic disorder, and crystal mor- 
phology are introduced as are the concepts of polarons and excitons. Known 
and proposed mechanisms for superconductivity are reviewed including the 
concept of charge density waves and its potential applications to one-dimen- 
sional metals. The necessary conditions, as currently understood, for the de- 
sign of a one-dimensional metal are summarized at various points. The po- 
tential cooperative behaviors of insulating one-dimensional magnetic systems 
are surveyed. 

Part I1 surveys the inorganic materials which exhibit or potentially exhibit 
a columnar structure. Emphasis is placed on square planar third-row transition 
metal complexes which exhibit the properties of anisotropic electrical conduc- 
tivity and the first-row transition metal complexes which exhibit anisotropic 
cooperative magnetic behavior. The measured chemical and physical proper- 
ties of the known one-dimensional inorganic complexes are summarized 
and a number of potentially one-dimensional materials are surveyed. The 
known one-dimensional magnetic systems are then presented. An extensive 
reference list including citations through the beginning of 1975 is included 
to make it easy for the reader to go further into areas of his particular interest. 
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PART I: PHYSICS OF ONE DIMENSION 

Classification of materials as “one-dimensional” is somewhat arbitrary. 
The materials included in this review are crystalline solids that are considered 
to have one-dimensional properties because there is a gross anisotropy in the 
value of at least one intensive variable of the system, for example, conductivity 
(resistivity) or magnetic susceptibility. In this context “gross” implies a factor 
of order 100 or greater between the value of a variable along and orthogonal 
to a preferred direction. Because this anisotropy factor is never infinite, three- 
dimensional effects may modify the dominant one-dimensional behavior. This 
is particularly true in the case of one-dimensional insulating magnetic chains 
that show three-dimensional magnetic ordering at sufficiently low temper- 
atures. The presence of anisotropic behavior in a parameter does not imply 
that a system is anisotropic in all variables. For example, lattice vibrations 
usually retain their three-dimensional behavior even when one-dimensional 
electrical behavior is present. 

There are several different types of solid state one-dimensional systems. One 
large category of such materials is covalently bonded polymers. Organic 
examples such as polyethylene or polystyrene are numerous. Inorganic ex- 
amples such as poly(su1furnitride) are fewer in number and are generally not 
as well characterized. Therefore they do not receive a prominent place in this 
review. The physics of one dimension will be discussed in terms of the more 
common configuration of well-defined molecules stacked in linear parallel 
rows or strands to form one-dimensional columns or chains. The shape of 
these molecules, their electronic structure, and their overlap with their neigh- 
bors determine the electrical and magnetic properties of the one-dimensional 
solid. Emphasis will be placed on the electrical properties of these materials. 
Section I introduces physical concepts useful in describing one-dimensional 
conducting systems. Section I1 briefly discusses magnetic effects in one dimen- 
sion. 

I. ELECTRICAL PROPERTIES IN ONE DIMENSION 

The recent experimental confirmation of the existence of one-dimensional 
metallic systems has led to a rapid increase in the experimental and theoretical 
study of these conducting systems. The objective of this section is to acquaint 
the reader with the physical basis of the concepts currently being used to 
explain the experimental results. Emphasis is given to the development of 
one electron band theory because of its central importance in the description 
of metals and understanding the effects of lattice distortion (Peierls transition), 
electron correlation, disorder potentials, and interruptions in the strands. It 
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is becoming increasingly clear, however, that the one electron models are not 
sophisticated enough to represent the detailed behavior of these materials and 
that cooperative interactions (e.g., electron-phonon interaction and electron- 
electron correlation) need to be included. Polarons, excitons, charge density 
waves, and superconductivity are introduced to illustrate cooperative phe- 
nomena. Finally, the necessary conditions, as currently understood, for the 
design of a one-dimensional metal are summarized at various points. 

A. Band Theory 

The important physical properties of simple metals and, in particular, the 
alkali metals can be understood in terms of a free electron model in which the 
most weakly bound electrons of the constituent atoms move freely throughout 
the volume of the metal (231). This is analogous to the free electron model 
for conjugated systems (365) where the electrons are assumed to be free to 
move along the bonds throughout the system under a potential field which is, 
in a first approximation, constant (the particle-in-a-box model). The free 
electron approach can be improved by replacing the constant potential with 
a periodic potential to represent discrete atoms in the chain (365). This cor- 
responds to the nearly free electron model (231) for treating electrons in a 
metal. 

If the delocalized electrons interact strongly with atomic sites, both of these 
approaches for calculation of molecular energy levels are inadequate. In this 
case, a better representation for the electrons on the molecule is obtained if a 
linear combination of atomic orbitals (LCAO) is used to describe the electron 
wavefunction (330). Tight-binding band theory is the analogous approach for 
crystalline solids (1 55a). When the electron-site interaction is large, the atomic 
(or molecular) orbitals localized on each site are combined to represent an 
electron delocalized throughout the crystal. This method has been applied 
with particular success to the d bands of transition metals (437). 

The highly conducting one-dimensional inorganic materials are generally 
based on third-row transition metal complexes stacked with collinear metal 
atoms [e.g., KZP~(CN)~B~O.~(HZO)~] .  Many of their properties are evaluated 
in terms of conduction electrons in a delocalized energy band formed by 
overlap of the d,Z orbitals. One-electron tight-binding band theory has been 
used as a starting point for evaluating measurements on both the highly con- 
ducting one-dimensional inorganic and organic systems (8, 349). This theory 
is reviewed to illustrate and emphasize the dependence of electron energy 
bandwidth on the distance between molecules and the role of the electron 
wavevector k ( I  55a, 543). In individual systems, if the band formed through 
molecular overlap is sufficiently wide and the electron density sufficiently 
uniform in space (e.g., sigma type overlap giving almost constant electron 
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density), the electronic properties may be better described by the free electron 
model. Some of the characteristic properties of free electron metals are 
enumerated in Section I.A.2. 

1.  Tight-Binding Band Theory 

Tight-binding band theory is described first for the case of distinct 
molecules uniformly stacked with equivalent separation, u, between each site, 
Fig. 1. The potential in which the electron moves, V(r), is periodic, V(r + 
a) = V(r). Here r is the vector coordinate for electrons and u is the vector 
length between equivalent sites in the chain. Vector notation is used because 
of the three-dimensional extent of the individual molecules. Assuming the 
chain axis is parallel to the z-axis, I = at (z is a unit vector along the z-axis). 

Fig. 1. Uniform chain of molecules with separation u. 

The periodic potential may be viewed as a sum of the potentials at each site 
in the chain, V(r )  = Z V’(r - nu) where V’(r - nu) is the potential of a single 
molecule at site nu (n is an integer). The Hamiltonian for the electrons in such 
a system is 

where ti is Planck’s constant divided by 2rr, m the electron mass and V2 is the 
Laplacian operator. The first term on the right is the kinetic energy of the 
electrons moving through the lattice. The second term, V(r),  is the periodic 
potential mentioned above. The electrons are represented by the wave- 
function, ty, which is a solution to the Schrodinger equation, Eq. 2: 

The operator within the parentheses remains the same if ( r  + nu) is substituted 
for r .  The Bloch theorem (231, 437) states that because of this periodicity, 
y(r + u) must be the same as ty(r) to within a phase factor, that is y(r + u) = 
eikeQ ty(r). Each eigenfunction that satisfies Eq. (2) has a wavevector k associ- 
ated with it such that translation by a lattice vector nu is equivalent to multi- 
plying the eigenfunction, tyYk(r), by the phase factor exp(ik.nu). 
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For an isolated molecule, electrons are assumed to be in molecular orbitals, 
rp,(r), of energy E,. If the molecule is located at site I ,  then the electrons are in 
orbitals rp,(r - I ) .  Now consider N of these molecules to be stacked into a 
uniform chain with a separation, u, between each site (i.e., I = nu), Fig. 1 .  
Movement of the electrons along this chain is described by the Schrodinger 
equation, Eq. 2. It is seen that 

is an electron wavefunction that satisfies the Bloch theorem. This function 
extends over the entire chain and is a sum of localized molecular orbitals 
multiplied by aphasefactorexp(ik.I), Fig. 2. While yak(r) is not an exact eigen- 

f 

3 

Fig. 2. Electron wavefunction in a tight-binding solid (solid line). The dashed line is the 
rnultipkative phase factor used in obtaining y (437). 

function of Eq. 2, it is often a good approximation and, as such, may be used 
to calculate the energy levels for electrons in the periodic chain. This may 
be done for each value of k. As shown below, each isolated molecular energy 
level leads to a band of allowed energies in the solid. In this approximation, 
the energy E,(k) of an electron of wavefunction yak is 

where H i s  the total Hamiltonian (energy) for an electron in the periodic chain 
Eq. 1. The denominator of Eq. 4 is the normalization factor and is approx- 
imately equal to one, assuming the molecular orbitals centered at different 
sites have very small overlap. 

Using Eq. 3, the integrals in Eq. 4 may now be written as: 
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s ( 5 )  
1 Ea(k) = -x eik*(I-I') q*,(r - Z')Hy,(r - Z)d3r 
N 1.1' 

or 
Ea(k) = C Ea(h) 

h 

where h = (Z - 1') and Ea(h) is given by 

Ea(h) = Jp*,(r + h)Hya(r)d3r (7) 

Equation 7 is the matrix element of the full Hamiltonian, Eq. 1 ,  between the 
molecular orbitals centered about sites (Z - Z') = h and ( I  - Z') = 0 (Z = Z'). 
Because the molecular orbitals qa(r f h) fall off exponentially with distance 
from site h, Ea(h) becomes exponentially small for all but the on-site [h = 0, 
Ea(h = 0)  = Ell] and nearest neighbor [h = t- a, E,(h)= E:] integrals. There- 
fore, including only nearest neighbor interactions, Eq. 6 becomes 

Ea(k) = E," + EA + EAe-",' = E: + 2Ei cos (kea) . (8) 

This is analogous to the simple Huckel approximation in molecular orbital 
calculations (365). Since it is assumed that the electrons are constrained to a 
single chain, i.e., k is parallel to a, k - a  is equal to ka. Vector notation is 
therefore discontinued. Because of the very small overlap assumed it is 
seen from Eq. 7 (with h = 0)  that 

E," = E, (9) 

where E, is the energy associated with the isolated molecular orbital q,. The 
transfer integral or transfer matrix element t ,  associated with molecular 
orbital qa is defined as 

t ,  EE - EA (10) 

Equation 8 can now be written as 

Ea(k) = Ea - 2ta COS(~U)  G E,(k) . (1 1) 

This is the fundamental result of this tight-binding band theory calculation. 
Hence, as N molecules are brought together, their orbitals overlap and the al- 
lowed energy levels spread out from that of the isolated molecule E,. A band 
of N states is formed from each molecular orbital qa with energies given by 
Eq. 11. As each state can accommodate up to two electrons (of opposite spin), 
each band may accommodate up to 2N electrons. The width of this band of 
electron states, W,, is equal to 4t ,  and is directly related to and very sensitive to 
the degree of overlap of the molecular orbitals. Figure 3 schematically illus- 
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> 
c 
LI 
2 

--+ 
SEPARATION BETWEEN MOLECULES 

ENERGY 
LEVELS OF 
ISOLATED 
MOLECULES 

Fig. 3. Schematic illustration of the energy levels of isolated molecules spread into 
bands as the molecules are brought closer together. 

trates the energy bands forming in the solid from the molecular levels as isolated 
molecules are brought closer together. 

The energy versus wavevector k curve for a single energy band in the solid 
is shown in Fig. 4. The allowed values of k are quantized, limited to N values 

- T / O  0 + f / O  

WAVEVECTOR. k 

Fig. 4. Energy versus wavevector for electrons in a one-dimensional tight-binding band 
(from Eq. 11). 

(because there are N molecules in the chain) evenly distributed between -n/a 
and +x/a ,  and have a density, p(k)  = Na/2n, called adensity of states ink space 
per spin. (The Pauli exclusion principle allows only one electron of each spin 
value to have a particular k value.) The density of states per unit energy per 
spin, p ( ~ ) ,  is obtained from p(k) through 
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Using Eq. 11 one can evaluate the density of states per unit energy per spin 
for a tight-binding energy band of width 4t: 

The energy, E, is measured with respect to the center of the band (Ea defined as 
zero). This is schematically shown in Fig. 5. The value of P ( E )  for the highest 
occupied energy in a partially filled band is directly related to measurable pa- 
rameters (e.g., susceptibility). 

+2t -21 0 
ENERGY.€ - 

Fig. 5. Schematic illustration of the density of states per unit energy for a one-dimensional 
tight-binding band. p(e1)de is the number of electrons of the same spin which can be accom- 
modated in an energy range AS centered at E L .  The bandwidth, W, is 4t. 

A tight-binding calculation (570) of the allowed energy bands may be per- 
formed for the case where the molecules in the chain have alternate spacings 
(dimerized chain) of a1 and a2 (a1 < a~), Fig. 6. In this case one derives two 
allowed energy bands from each molecular orbital va. Referring to Eqs. 7 and 
10, one may now distinguish two transfer matrix elements t,l and ta2 ,  given by 

... t+i 0 . .  

Fig. 6 .  Dimerized chain of molecules with alternate separation a1 and UZ. 
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(14) fur = - Jq:(r + ac)Hq,(r)d3r 

Assuming E,  = 0, the allowed electron energies are now given by 

Ea(k) = t ( t h  + t,22 + 2 t q  fuz cos [(a1 + 4kl)’’’ (15) 

E,(k) is shown in Fig. 7 in a reduced zone scheme (231). There are a total of 
N / 2  states in each of two bands of width Eb = 2 I t,z I and an energy gap be- 
tween them of Eg = 2(ltu11 - Itazl). Each state may accommodate two 
electrons (of opposite spin), allowing N electrons per band or 2N electrons for 
both bands together. Examining Eq. 15, when a1 equals QZ (or equivalently, 
when t,l equals t a z ) ,  the energy bands for the “dimer” case become identical 
with the results derived for the uniform chain, Eq. 1 1 .  

WAVEVECTOR, K 

Fig. 7. Energy bands for a dimerized chain in a reduced zone scheme (231); 
Eb = 21fnz l ,  E, = 2(l t , ,  I - ItuZ 1). 

Summarizing these tight-binding band theory results, when N molecules 
form a uniform chain, each molecular orbital q, of energy E, forms a band of 
states of width 4ta capable of holding 2N electrons; if these N molecules 
formed a dimerized chain, two bands of states would be formed with each 
band capable of holding N electrons. Similarly if the N molecules in the 
chain group as N / z  z-mers, each molecular orbital qa will form z bands of 
states capable of holding 2 N / z  electrons. The z bands are separated from each 
other by energy gaps. 

2. Properties of Electron Energy Band Systems 

Figure 8 schematically illustrates the distinction between various electrical 
behaviors possible for ideal materials where a band description applies : 



12 

t 

W z 
W 

a 

JOEL S. MILLER AND ARTHUR J. EPSTEXN 

n 
I- 

METAL SEMI- 1 NSULATOR - 
CONDUCTOR SEMI -METAL 

Fig. 8. Schematic illustration of the occupation of the allowed energy bands (rectangles) for 
a metal, semiconductor, insulator, and semimetal. 

1. Metal: A material with a partially filled energy band. 
2. Semiconductor and Insulator: A material with filled and empty energy 

bands (at T = OOK), and an energy gap Eg between highest filled and lowest 
empty bands. 

3. Semimetal: A material which formally has only completely filled and 
completely empty bands, but which has, due to overlap of a formally filled 
and a formally empty band, two or more partially filled bands and behaves 
as a metal instead of as a semiconductor or insulator. 

Note that these formal definitions do not involve the conductivity (= re- 
sistivity-1) of the materials, only their energy bands and relative occupation. 
A short description of the distinguishing properties (231, 232, 436, 437) of 
each follows: 

It is the partially filled electron energy band that 
gives a metal its distinguishing features. A partially filled energy band implies 
that there are unoccupied energy levels infinitesimally separated in energy and 
wavevector k from the occupied levels. This allows a net change in electron 
momentum (Ak) when an electric field is applied. Hence, metals are good 
conductors. Their conductivity is limited by scattering of the electrons with 
lattice vibrations (phonons) and impurities, defects, and surfaces. In an 
ideal metal the resistivity decreases as the temperature is lowered (fewer lattice 
vibrations are present to scatter the electrons) until a residual value of the re- 
sistivity due to imperfections and impurities is reached. This is clearly seen for 
the three-dimensional metal, sodium, in Fig. 9. For such one-dimensional 
metals as the partially oxidized tetracyanoplatinate systems, the resistivity 
is also seen to drop as the temperature is lowered from room temperature, 
but a transition to an insulating state occurs because of effects not included 
in the one-electron band picture presented above. 

Simple (free electron theory) metals have a number of other characteristic 
properties, including : 

1. Pauli spin susceptibility. Unlike free spin systems, the magnetic suscep- 

a. Metals and Semimetals. 
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Fig. 9. Temperature dependence of the relative resistance of sodium (278), a three-dimen- 
sional metal. The three curves are for three different samples. The plots show how theresid- 
ual resistivity may vary from sample to sample. 

tibility of ideal metals is temperature independent and is given by x = 2@- 
~ ( E F ) ,  where p~ is the Bohr magneton and ~ ( E F )  is the density of states per unit 
energy per spin at the maximum occupied energy (Fermi energy, E F ) .  

2. A specific heat C that includes a term linear in temperature in addition 
to the T3 lattice term, that is, C = aT + pT3. This term is most readily observ- 
ed at liquid helium temperatures (< 4.2"K) by plotting C/T versus T2 and 
evaluating the intercept at T = 0°K. 

3. A characteristic frequency dependence of reflectivity, conductivity, and 
dielectric constant. Each of these quantities is dependent in turn upon the 
plasma frequency cop, 

4nNe2 
= [=I 

where N is the electron density per unit volume, e the charge on an electron, 
m the electron mass and ee the frequency independent core dielectric constant 
( E ~  = 1 for ideal free electron metal with no core electrons). An electron effec- 
tive mass m* determined by the details of the electron energy band replaces m 
in Eq. 16 for nonfree electron metals. The response of the conduction electrons 
to an applied alternating electric field can be calculated using a Drude model 
where the electrons are presumed to have a single frequency independent colli- 
sion time or relaxation time z. Within the simple model the frequency depen- 
dent electrical conductivity, a(o), and dielectric constant, &(a), are 
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&cWp% 

4741 - i o z )  
a(o) = 

and 

02 + iw/z 
&(W) = Ec [ 1- 

These expressions can be used to derive the nearly total reflectance of metals 
below their plasma frequency. A similar characteristic frequency dependence 
of a(o) and &(a) may be seen in semiconductors where up depends the electron 
density in the filled valence band. The conduction electrons can oscillate as a 
collective mode (plasma oscillation). A plusmon is a quantized plasma oscilla- 
tion. The frequency and wavevector dependence of plasmons in one-dimen- 
sional metals have been predicted (458, 576) to be qualitatively different from 
those of three-dimensional metals. Recent direct measurements (552) of plas- 
mons in the one-dimensional organic metal tetrathiofulvalinium-tetracyano- 
quinodimethanide (TTF)(TCNQ) are qualitatively consistent with some of the 
predictions assuming a tight-binding band (576). 

b. Semiconductors and Insulators. Semiconductors and insulators are ma- 
terials with an energy gap Eg between filled and empty energy bands. If this 
energy gap is small enough to allow thermal excitation of a significant number 
of “free” electrons into the lowest empty band, the material is characterized 
as a semiconductor; otherwise it is termed an insulator. Semiconductors 
are understood (23 1) to have electrical conductivities at room temperature 
of lo2 to lov9 L2-l cm-I. At the upper end the conductivity is of the order of 
that of a poor metallic conductor. Systems with conductivities below this 
range are usually termed insulators. Conductivity in insulators is frequently 
interpreted in terms of models other than the band model. 

Semiconductor properties are dominated by the number of free charge car- 
riers. Intrinsic semiconductors are those whose free carriers are predominantly 
electrons thermally excited across the energy gap from the filled valence band 
and holes (empty states in the otherwise filled valence band) thereby created. 
In the simplest approximation the conductivity, CT, is a function of Eg:  

where k B  is Boltzman’s constant. A plot of log a (-log p)  versus T-1 may be 
used to determine Eg. Equation 19 is often used to phenomenologically param- 
etrize the measured conductivity of a material with an activation energy, 
Ea = Eg/2. 

Changes in free electron and hole concentrations can arise from impurities, 
defects, and variations in stoichiometry. When the number of free carriers from 
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these contributions exceeds the number of “intrinsic” free electrons and holes, 
the material is termed in impurity or extrinsic semiconductor. The more general 
expression for conductivity is then used : 

CT = (neepe + m e m )  (20) 

where e is the electron charge, ne and nh are the concentration of free electrons 
and holes, respectively, and pe and ,uh are their respective mobilities. (The 
mobility is the drift velocity per unit electric field.) Semiconductor properties 
can be dominated by intrinsic free carriers at high temperatures and determin- 
ed by other free carrier contributions at low temperatures, as shown in Fig. 
10. In the region where the intrinsic free carriers dominate, the number of free 
carriers is a function of exp( - Eg/2ksT). This exponential factor usually 

- 0.1 
P 
t 
t 

i5 
a w 

0.8 1.2 1.6 2.0 2.4 2.8 3.2 : 
TEMPERATURE-1, IO~/T;K-~ 
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Fig. 10. Log resistivity versus inverse temperature for three crystals of germanium with 
different impurity concentrations. The conductivity is intrinsic at high temperatures (at the 
left) and impurity dominated at low temperatures (at the right). From the slope in the intrin- 
sic regime, E, = 0.72 eV (230). 
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dominates the temperature dependence of the mobility so that for intrinsic 
semiconductors Eq. 20 often reduces to Eq. 19. The properties of semicon- 
ductors have been extensively studied and have led to the development of a 
large number of interesting and useful devices (532). 

c. Design of a Metallic Band System. Utilizing the band theory presented 
above, a system with an even number of electrons per repeat unit has filled 
electron energy bands and will be a semiconductor or insulator unless there 
is an overlapping of filled and unfilled bands (semimetals). The approach to 
preparing a one-dimensional metal is therefore to obtain partially filled 
bands by using a system that has a noneven number of electrons per crystal- 
lographic repeat unit along the direction of interest. An example is KzPt(CN)4 
where without partial oxidation there is an even number of electrons per 
repeat unit and thus no metallic state. After partial oxidation to K2Pt(CN)4- 
Bro.a(HzO)s, a partially filled band is formed and a metallic state (at least at  
room temperature) is observed. An example where the overlapping of energy 
bands possibly is important in obtaining a more highly conducting system is 
observed in the high pressure study on [PtBrz(NH3)2] [PtBr4(NH&], see Part 
11. 

Equations 7, 10, and 11 show that overlap of the molecular orbitals of ad- 
jacent molecules determines the bandwidth. A very narrow bandwidth may lead 
to the breakdown of the one-electron band theory and the formation of poorly 
conducting systems as discussed in Section I. B. 1. Therefore, to obtain a me- 
tallic system, one requires molecules that stack in one-dimensional chains, 
have a close approach to their nearest-neighbors in the chain (for large over- 
lap), and possess as well a noneven number of electrons per crystallographic 
repeat unit. This is best accomplished with planar molecules that can attain 
a close approach to nearest neighbors. In addition, partial occupation of the 
n-molecular orbital and/or the d,z orbital would greatly benefit one-dimen- 
sional band formation for two reasons: ( I )  larger extension of the molecular 
orbital in the chain direction, increasing the value of the transfer matrix ele- 
ment t ,  and (2) small molecular orbital extension in directions perpendicular to 
the chain, reducing overlap in the transverse direction and enhancing the aniso- 
tropy. These favorable features are illustrated by the highly conducting par- 
tially oxidized K Z P ~ ( C N ) ~ B ~ O . ~ ( H Z O ) ~  system. Here it is believed that the or- 
bital from which an electron is removed through partial oxidation is of mostly 
d.2 character. A delocalized electron energy band, based on the overlap of this 
molecular orbital throughout the chain, is then believed to be formed. 

3. Peierfs Transition 

In 1955, R. E. Peierls (334) pointed out the inherent instability of a one-di- 
mensional metal such as K ~ P ~ ( C N ) ~ B ~ O . ~ ( H Z O ) ~ .  In analogy with the Jahn- 
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Teller effect (102), distortion of the symmetry (periodicity) of a chain which 
has a partially filled electron energy band lowers the total energy of the system. 
For example, consider a linear chain of equidistant sites of separation a, as in 
Fig. 1. Band theories yield a range of electron energy levels as a function of 
the wavevector k (cf. Eq. 11 and Fig. 4 for the tight-binding result). If the 
chain is now distorted by displacing groups of r sites in the same manner, a 
new unit cell of the chain containing r sites is formed. The new energy spec- 
trum has gaps introduced at k = +sn/ra(s = 1, 2, . . ., r ) .  The effect of a 
lattice distortion with r = 3 on the energy bands is illustrated in Figs. Ila 
and 1 Ib. The effect is to separate the energy values near k = +sn/ra (s = 1 ,  
2, . . ., r )  leaving the mean of the energies above and below the energy gaps 
essentially unchanged. If such a gap coincides exactly or very nearly with the 
wavevector of the highest occupied state determined by the number of elec- 
trons in the band, k F  (the Fermi wavevector), the occupied states are displaced 

I+ 
- - - I  I I I I I I I I I I I I I I I - - -  
- - - I  I I  I I I  I I I  I I I  I I I  I - - -  

( b )  

Fig. 11. (a) Uniform chain (upper line) and distorted chain for r = 3 (lower line). The new 
repeat unit is 3a. (b) Allowed energy levels for the uniform chain (dashed line) and the dis- 
torted chain (solid line) for r = 3. The energy bands for the distorted chain are in the extend- 
ed zone scheme. 



18 JOEL S. MILLER AND ARTHUR J. EPSTEIN 

downwards and the empty states are raised upwards in energy, resulting in a 
net reduction of energy. The reduction in energy is greatest when r is small. 
This distortion of the lattice is known as a Peierls distortion. 

Theoretical studies of the Peierlsdistortion show that within mean field theory 
its presence can be a function of temperature (261, 347, 349). This leads to a 
transition from a band metal to a band semiconductor/insulator as the tem- 
perature is lowered below the transition temperature, Tp,  termed the Peierls 
transition. The characterization of the metal-insulator transition in K2Pt(CN)4- 
Bro.~(H20)3 as a Peierls transition has triggered much of the increased work on 
the theory of the Peierls transition. 

The transition arises dynamically through the interaction between the elec- 
trons and the quantized lattice vibrations of the solid, phonons (437). The 
phonons, in a manner similar to electrons, are assigned a wavevector q = 2n/1 
where 1 is the wavelength of the lattice vibration. There is an energy associated 
with each phonon of wavevector q, RR,, as indicated schematically in Fig. 12. 
The actual dispersion relation is a function of the mass of the atoms in a 

0 
WAVEVECTOR, q 

Fig. 12. Schematic phonon energy versus reciprocal lattice wavevector for a linear chain. 
The actual dispersion curve depends upon the masses of and forces between the constituent 
atoms. 

0 n/3a 2W3a r / o  
WAVEVECTOR, q 

Fig. 13. Phonon energy spectrum with soft mode (Kohn anomaly) at q = 2n/3a ( k ~  = 
n/3a). 
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unit cell and the restoring forces which arise for small displacements in the 
relative positions of the atoms. W. Kohn (236) in 1959 pointed out that phon- 
ons of wavevector q = 2 k ~  strongly interact with the electrons of wavevector 
kF. This strong interaction results in a reduction in the energy of the q = 2 k ~  
phonons in a metal. Figure 13 schematically shows the phonon energy spectrum 
for the case where kF = 4 3 a .  The presence of the dip in the phonon spectrum 
of a metal is termed the Kohn anomaly (236); the phonons of lowered energy 
are termed soft phonon modes. A Kohn anomaly in the phonon spectrum 
has been observed at 2 k ~  in K ~ P ~ ( C N ) ~ B T O . ~ ( H ~ O ) ~  using neutron scattering 
(342), Fig. 14. 

i s  
W 
K 
W 

-0 0.25 0.5 

WAVEVECTOR, q, n / 2 ~  

Fig. 14. The Kohn anomaly in the phonon spectrum of K z P ~ ( C N ) ~ B ~ O . ~ O ( H ~ O ) ~  as observ- 
ed by neutron scattering (342). 

The value of kQq=2kF decreases as the temperature is lowered resulting in 
greater thermal occupation of this mode (more phonons of q = 2 k ~ ) .  A tem- 
perature, T,, is ultimately reached at which Rq-2kF = 0. Within mean field 
theory there then occurs a periodic distortion of the previously uniform lattice 
of period I = 274q = n/k,. In turn, Peierls energy gaps A appear in the electron 
energy bands at k = t- kF and multiples of kF. The energy gap A increases from 
A = Oat Tp toafixed value at T = 0°K. The insulating state is termed a Peierls 
insulator. Figure 15 is a schematic illustration for a one-dimensional system 
of the mean field temperature dependence of A and RRp=2kF. 

There has been speculation that anomalous electrical behavior may accom- 
pany a Peierls transition. In particular, the presence of a soft phonon mode at 
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KOHN 
PEIERLS METAL 
INSULATOR 

- 
0 TP 

TEMPERATURE, T 

Fig. 15. Schematic illustration of the temperature dependence of the Peierls transition in 
mean field theory for a one-dimensional metal. Above Tp the temperature dependence of the 
energy of the UC, phonon is illustrated. Below Tp, the temperature dependence of the 
energy gap A is illustrated. The energy scale above and below Tp is not the same. 

q = 2 k ~  has been discussed as a mechanism for enhancing the BCS-type 
superconducting transition temperature (97, 494). Other recent theoretical 
work challenges this (1 la,  348, 522). In a separate approach, Bardeen (28) and 
co-workers (8) have indicated that a new type of superconductivity may be 
introduced via the soft phonon mode whereby the formation of charge density 
waves can lead to collective charge transport. This theory, based on work in- 
itially published by Frohlich (152) in 1954, is described in Section I. D. 3. 

There has been some speculation (97) concerning the means of forestalling 
a Peierls transition and stabilizing the one-dimensional metallic state down to 
very low temperatures. The ideas include (1) making it very difficult for the 
uniform one-dimensional structure to distort because of the presence of bulky 
side groups, (2) introducing a controlled amount of disorder into the system 
(e.g., utilizing asymmetric molecules) to remove the exact periodicity, and (3) 
intentionally generating some two- or three-dimensional character to the sys- 
tem to make a Peierls transition less energetically favorable. These approaches 
have not been fully explored (97). 

B. Limitations of Band Theory 

The tight-binding band theory and the accompanying Peierls instability 
discussion assumed that all electrons move independently of each other in a 
perfect uniform lattice. Electron-electron Coulomb repulsion, disorder, and 
interruptions in the strands alter the band theory results. These effects are im- 
portant for the understanding of one-dimensional metals and are now in- 
troduced. 

1 .  Electron-Electron Coulomb Repulsion-Mott Transition 

In 1949, Sir Neville Mott (15, 320) addressed himself to a paradoxical result 
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(SEPARATION BETWEEN ADJACENT SITES)-’, 110 

Fig. 16. The Mott metal-insulator transition as a function of separation between lattice 
sites, a. Curve A is the conductivity versus the inverse of the lattice spacing predicted by 
Mott. Curve B is conductivity versus the inverse of the lattice spacing predicted by one elec- 
tron band theory, assuming a finite mean free path for electrons in the metallic phase. 

of the one electron band theory. Suppose a large number of equally spaced 
molecules, each with an odd number of electrons, were brought together from 
infinity. One electron band theory predicts that the electron wavefunction on 
each molecule would overlap, electron energy bands would be formed, and the 
solid would immediately become a conductor, no matter how far apart the 
molecules might be, Fig. 3. Mott pointed out the crucial role of electron-elec- 
tron interaction (Coulomb repulsion). The determinantal wavefunction of all 
the occupied band states places two electrons on some sites and leaves other 
sites empty. The excess Coulomb repulsion resulting from two electrons on a 
single site may more than outweigh the energy gained in band formation (an 
amount of order f per site, see Eq. ll), especially for narrow energy bands. 
The electron-electron Colomb repulsion and the resulting electron correla- 
tion have been shown to have a major role in the conducting one-dimensional 
organic material, N methylphenazinium-tetracyanoquinodimethanide (NMP)- 
(TCNQ) (138). 

As originally conceived by Mott, a transition (the Mott transition) would 
occur from a localized to a delocalized electronic state as the molecules were 
brought closer together than some critical value (320). This is illustrated sche- 
matically in Fig. 16. Later work suggested that such a transition could also 
occur for a fixed intersite spacing as a function of temperature, from a localiz- 
ed low temperature state to a delocalized high temperature state (126). The 
importance of Coulomb repulsion between electrons and the reduction of this 
effect through electron correlation is illustrated by reviewing the familiar 
“simple” two electron systems, atomic helium, He, and molecular hydrogen, 
H2 (330). 

For atomic helium, the total Hamiltonian, H, is given by 

H = Hi + Hz + Vz 
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where 

and 

HI and HZ are the one-electron energies for electrons one and two, Z the 
nuclear charge in units of the electron charge e ( Z  = 2 for helium), and VZ 
is the interaction potential (Coulomb repulsion) between two electrons 
separated by r12 = I rl - r2 I .  

The experimental value for the total ground state energy of the two electrons 
in helium is given in Table I, along with the values calculated by various theore- 
tical techniques. A comparison of (1) and (2) shows the extreme importance 
of VZ, the Coulomb repulsion. Techniques (2) through (4) are increasingly 
sophisticated means of treating VZ in the calculation. In particular, the Hartree- 
Fock technique (4) assumes that each electron responds to the average posi- 
tion of the other electron. However, none of these methods take into account 
the ability of two electrons to actively correlate to stay apart. The energy gained 
through correlation Ecorr is defined as 

Ecorr Ecxp - EH-F = 1.13 eV/per pair of electrons 

where Eexp is (1) and EH-F is (4). The electrons can gain a significant amount of 
energy through correlation. 

A similar result is obtained for the Hz molecule. In this case Ecorr = Eezp - 
EH-F = 1 . 1  eV per pair of electrons, again indicating the importance of correla- 
tion. It is convenient, within the framework of the hydrogen molecule, to il- 
lustrate the difference between an uncorrelated (band picture) and a correlat- 

TABLE I 

EXPERIMENTAL AND CALCULATED VALUES OF THE 
TOTAL GROUND STATE ELECTRON ENERGY FOR He (330) 

Technique Ground State Energy E - Eszp 

(ev) (eV) 

( I )  Experiment -78.98 
(2) Ignoring V, -108.80 
(3) Variational -77.47 
(4) Hartree-Fock -77.85 

Effective Field 

- 
-29.82 
+1.51 
+1.13 
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ed (localized picture) electron state. The molecular orbital (MO) formulation 
assumes no correlation between electrons and delocalizes them over both 
sites : 

Wavefunction #A( 1) represents electron 1 in the atomic orbital centered at site 
A and so on; C1 is a normalization constant. Each electron is assumed delocal- 
ized over both nuclei thereby lowering its kinetic energy and allowing it to 
strongly interact with both positive charges. The disadvantage of this uncor- 
related picture is that there is a large ionic contribution when both electrons 
are centered at the same nucleus [terms +A(1)$A(2) and iB( l)iB(2) in Eq. 231. 

The ionic contribution (Coulomb repulsion) can be reduced by dropping 
these last two terms. In the resulting formulation the electrons are highly cor- 
related and remain apart. This is the Heitler-London or valence bond picture, 

The advantage of this description is the reduction of mutual Coulomb repul- 
sion between the electrons. The disadvantage is that the electrons do not pile 
up between sites A and B is in tyMo and hence do not feel the full Coulomb 
attraction of nuclei A and B. 

The difference between experimental and calculated values for the total 
ground state energy of the two electrons in the hydrogen molecule is given in 
Table IT for various theoretical approaches. The Hartree-Fock picture, which 
has each electron responding to an average of the Coulomb repulsion of the 
other electron, overestimates the total energy by 1 . 1  eV (Eezp is negative). The 
MO approach, which ignores correlation, gives an even poorer agreement with 
experiment. The Heitler-London wavefunction, which constrains the elec- 
trons to remain apart, comes closer to predicting the experimental energy 
value. A better approach is to continuously vary between localized (Heitler- 

TABLE I1 

DIFFERENCE BETWEEN EXPERIMENTAL AND CALCULATED VALUES OF 
THE TOTAL GROUND STATE ELECTRONIC ENERGY FOR H2 (330) 

Technique E - Eo, (eV) Comment 

(1) Hartree-Fock (H-F) 1.1 No correlation 
(2) Molecular Orbital (MO) 1.3 N o  correlation (delocalized) 
(3) Heitler-London (H-L) 1 .o High correlation (localized) 
(4) Linear Combination, v’ 0.7 Some correlation 
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London) and delocalized (molecular orbital) approaches. The wavefunction 
y' does this through a linear combination of the two extremes: 

V' = ~ w H - L  + by/, (25) 

By adjusting a and b to minimize the energy, one can calculate a ground state 
energy for Hz that differs from the experimental result by only 0.7 eV. This 
implies that some correlation between electrons is necessary to minimize the 
system energy. The important lessons gained from examining the He and HZ 
systems are: (1) the central role of the Coulomb repulsion between the two 
electrons, and (2) the best approximation to the experimental energy is ob- 
tained by varying the amount of correlation in the electron wavefunction. 

Hubbard (194-196) has postulated a model Hamiltonian to apply these 
physical concepts to electron motion in crystalline solids utilizing two adjust- 
able parameters, the transfer matrix element, t, and the effective on-site Cou- 
lomb repulsion, U :  

where (in second quantized notation (232)) ci', is a creation operator for an 
electron of spin CJ at site i, c p  is a destruction operator for an electron of spin 
0 at sitej, and ni + is the number of electrons of spin up ( t  ) at site i and so forth. 
The first sum on the right extends over nearest neighbor pairs of sites and elec- 
tron spin 0. This term lowers the total energy of the system by allowing the 
electron to transfer to its neighboring site when the Pauli exclusion principle 
allows it. The second term on the right of Eq. 26 adds an energy U to the total 
energy of the system for each doubly occupied site (a site with two electrons, 
one of spin up, one of spin down). A large number of calculations (37,448,467) 
have been performed using this Hubbard Hamiltonian, but few exact results 
are known (264). An important feature is that for t > U, the electrons will 
delocalize into a single band and act metallic. When t < U and there is one 
electron per repeat unit, the electrons stay apart (one on each site to reduce the 
Coulomb repulsion) forming a semiconductor (Mott-Hubbard insulator). 
For those materials where t = U, metal-insulator transitions may be ob- 
servable as the temperature is lowered. Experimental systems for which ob- 
served metal-insulator transitions have been attributed to this effect include 
several transition metal oxides (4, 15) and the organic ion radical salt NMP- 
TCNQ (138). A Mott-Hubbard insulator with one unpaired electron per site 
behaves as an antiferromagnetically coupled insulator when T + 0°K (138). 

Though the Mott-Hubbard picture is still under theoretical and experi- 
mental investigation, it is clear that materials with an odd number of electrons 
per repeat unit may be either metals or semiconductors, depending on the rel- 
ative size of the bandwidth (- 4t) and the effective on-site electron-electron 
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Coulomb repulsion, U. Therefore, to achieve a metallic state in a one-di- 
mensional chain it is necessary to have: (1) Large overlap between repeat 
units. This is aided by using planar molecules which can closely approach their 
neighbors. The overlap is enhanced if the unpaired electron is in an orbital 
with a large extension perpendicular to the molecular plane (e.g., dzz, pz, a). (2)  
Reduced on-site electron-electron Coulomb repulsion. This may be achieved 
by arranging strong electron-withdrawing groups, for example CN (153), 
at opposite ends of a planar molecule. This would tend to keep two excess 
electrons on a single molecule apart, reducing U. In addition, if the chain of 
molecules is imbedded in a highly polarizable medium, the polarization of the 
medium adjacent to a doubly occupied site may reduce the effective Coulomb 
repulsion (138, 153) through an attractive interaction with the polarization 
induced in the medium. 

2. Disorder in One-Dimensional Systems 

The lattice potential within which the electrons move has been assumed to 
this point to be rigorously periodic along the chain. However, the x-ray cry- 
stal structure of the highly conducting, partially oxidized tetracyanoplatinate 
systems and the structures of some of the highly conducting one-dimensional 
organic materials based on TCNQ indicate that all chain sites are not rigor- 
ously equivalent. In the K z P ~ ( C N ) ~ B ~ O . ~ ( H Z ~ ) ~  case, the bromide sites are 
not fully occupied. This leads to a random contribution to the potential within 
which the electrons move along the Pt chain. 

Several authors (50, 51,336) have noted that structural disorder is common 
to many of these conducting one-dimensional systems. They invoked exact 
theorems (61, 321) which state that in the presence of any disorder in the one- 
dimensional periodic potential, the electron wavefunctions will be localized to 
some finite length instead of extending throughout the chain. Using this disorder 
model, attempts were made to explain the experimental data available on 
these systems with the assumption that the electrons are “localized” in a state 
extending over several lattice sites by the disorder potential Va (random po- 
tential introduced by the disorder). Electrical conductivity can then occur only 
by phonon assisted hopping (319) of electrons between these localized states. 
Three temperature regimes were then identified : 

1. Low temperatures. The tunneling between electron states was predicted 
to dominate and be isotropic, and the conductivity, 0, to vary as 

In (T cc T-”4 (27) 

2. Intermediate temperatures. Activated phonon assisted hopping was 
predicted to dominate, and the conductivity along the chain to vary as 

In Q cc T-112 (28) 
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3. High temperatures. The conductivity along the chain was predicted to 
be diffusive: 

(29) 
1 
T 

CTX- 

A plot of the early conductivity data available for a number of one-dimen- 
sional materials revealed some of these temperature dependencies ( 5  1). A 
more detailed comparison of the theoretical predictions of this model with 
experiments have shown major disagreements, especially with respect to more 
recent experimental work (96, 99, 132, 342, 343, 518). It has been suggested 
(132) that thephysically relevant parameter is the ratio of the disorder potential 
v d  to the otherwise unperturbed, delocalized, one electron bandwidth W. Two 
important limits can then be distinguished. For w / v d  > 1, the electrons are 
delocalized over such a large number of sites that the disorder has only a 
peripheral role. In this limit, scattering of the band electrons by defects and 
phonons determines the electrons’ mean free path and the system would ap- 
pear as a delocalized band material without disorder. In the opposite limit, 
w / v d  < 1,. the disorder potential is much greater than the one electron 
bandwidth and the electrons become localized over a few sites in the chain. 

Recent experimental work indicates that the w / v d  > 1 regime is more rel- 
evant for many of the disordered materials. In particular, the observation (99, 
342) of soft phonon modes in K Z P ~ ( C N ) ~ B ~ O . ~ ( H ~ O ) ~  shows the dominance of 
the band formation in this partially oxidized material. In some of the organic 
materials, the previously published conductivity data used to demonstrate In 0 

oc T-l12 behavior has been shown to be due to poor quality materials (60,96). 
In addition, recent x-ray analysis (513a) of the organic ion radical salt (NMP)- 
(TCNQ) indicates that the potential exerted by the assymmetric cation on the 
TCNQ sites is not random as had been previously reported (513b). Thus it 
appears that structural disorder in the crystal structure does not dominate the 
electron transport properties for several structurally disordered materials al- 
though it may lead to a reduction in the Peierls transition temperature for a 
disordered one-dimensional conductor (97, 562). The implication for the de- 
sign of a highly conducting one-dimensional system is that structural disorder 
may not destroy the metallic band formation but it is necessary that the dis- 
order potential be small as compared with the bandwidth. 

3. Interrupted Strand Model 

A particular frailty of one-dimensional systems is the effect of a defect or 
impurity within the chain itself. The interrupted strand model was developed 
for the situation where the blockages dominate the electron motion (253, 345, 
346). The model was originally applied to KzPt(CN)4Bro.3(H20)3 and was also 
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suggested for other systems (434). After the experimental establishment of a 
Kohn anomaly (342) and crystallographic distortion (99) in the K2Pt(CN)4- 
Br0.3(H20)3 system, this model was deemphasized in favor of a delocalized band 
system exhibiting a metal-insulator transition. However, the model is useful for 
demonstrating the importance of sample purity and good crystal morphology. 

The interrupted strand model assumes the crystal to be comprised of par- 
allel linear metallic strands with each strand being interrupted within itself by 
perfectly insulating defects. The electrons are assumed to be delocalized over 
and confined to each strand segment. This “particle in a box” arrangement 
leads to a discrete splitting of allowed energy values for electrons with a split- 
ting of the order of 10-2 eV for electrons localized in a chain 300 8, long. The dc 
electrical conductivity for the crystal is then thermally activated with the ac- 
tivation energy related to the energy required to add another electron to a 
strand. The conductivity is given by 

l n a  cc T-’ 

This differs qualitatively from a conductivity increasing with decreasing tem- 
perature for uninterrupted strands. Similarly, it was shown (120, 342) that the 
specific heat and magnetic susceptibility for the interrupted strands can differ 
greatly both in magnitude and temperature dependence from that expected 
for continuous strands. The predicted optical conductivity and dielectric con- 
stant for the interrupted strand model (120,173,344) is more complicated than 
that for the continuous strands. 

Thus good crystal morphology is of crucial importance for experimentally 
establishing the intrinsic nature of highly conducting one-dimensional materi- 
als. Impurities, disorder, and defects can drastically change the measured 
material properties. 

C. Polaron and Exciton 

The discussion so far has assumed that electrons are the quanta that move 
through the one-dimensional system. In materials where there are ions and/or 
low-lying electronic states available, the electron charge can distort the sur- 
rounding medium and propagate with its induced distortion through the 
crystal as a “quasiparticle”. Two types of quasiparticles are now discussed, 
polarons and excitons (12, 192, 251). Their large role in the one-dimensional 
organic materials has been demonstrated (19, 85). 

1. Polarons 

The polaron concept was developed to treat the electron moving through an 
ionic crystal. The negatively charged electron attracts the positive ions and 
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repels the negative ions. These ions in their displaced positions change the 
periodic potential of the crystalline lattice and provide a potential well of lower 
energy for the electron. If this well is sufficiently attractive, the electron will 
be in a bound state of the well and thus “self-trapped.’’ This combination of 
the electron with its induced lattice deformation is defined as a polaron. In its 
bound state, the electron cannot move to the next crystalline site without tak- 
ing the well with it; that is, the polaron must move as a unit. The most immedi- 
ate effect is that the electron moving through the crystal with the lattice de- 
formation (the ions at each site distort as the electron passes) acts as if its 
mass were increased. Two physically meaningful limits are: (1) the large 
polaron, where the distortion extends over many lattice sites, and (2) the small 
polaron, whose dimensions are of the order of the lattice spacing. The small 
polaron, in particular, and its application to molecular crystals has been 
extensively studied (192, 193). Polarization of the solid by an electron has two 
contributions : distortion of the lattice and the electronic polarization (30, 85, 
400). The latter effect can be especially large in molecular systems containing 
highly polarizable molecules where an excess electron can polarize the elec- 
trons on the individuaI moIecules. The term excitonicpoiaron is applied in this 
case (85). 

Studies (85, 448) of the effects of increased polarization on an electron mov- 
ing in a narrow tight-binding electron band have shown two major features: 
(1) the tight-binding transfer integral t is reduced in value (the bandwidth 
decreases), and (2) the binding between electrons and the solid increases, 
reducing the effective Coulomb repulsion between two electrons. 

This concept of polarons and, in particular, excitonic polarons has been 
used to explain observed features of the one-dimensional conducting organic 
materials based on 7,7,8,8-tetracyano-p-quinodimethane, TCNQ (85). It in- 
dicates that a way to reduce the Coulomb repulsion between electrons in the 
chain is to surround each chain by a highly polarizable medium. However, a 
limit may be reached beyond which, if the surrounding medium were made 
more polarizable, the effects due to band narrowing would outweigh the benefits 
of reduced Coulomb repulsion (85). 

2. Excitons 

A crystalline solid has a definite charge distribution throughout the crystal. 
When an electron is removed from a site, the site appears as if it has a net posi- 
tive charge (hole). If the electron remains in close proximity to the hole, it 
may form a bound electron-hole pair (similar to the electron-proton pair of 
a hydrogen atom) called an exciton. The bound electron-hole pair may move 
through the crystal transporting excitation energy but not charge (251). As 
for polarons, there are two limiting types of excitons, one which is considered 
tightly bound, with the electron and hole separated by less than a lattice spac- 
ing (Frenkel exciton) (251), and the other in which the electron-hole separa- 
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tion is large in comparison to the lattice spacing (Mott or Wannier exciton) (251). 
Molecular crystals frequently exhibit Frenkel excitons, a particular example 

being an isolated molecule with a singlet ground state and a low lying triplet 
excited state (triplet exciton). In some solids triplet excitons can migrate 
through a crystal and form energy bands. These excitons are important in un- 
derstanding the physics of insulating systems. In particular, a number of the 
TCNQ anion radical salts (for example, triphenylmethylphosphonium+ 
(TCNQ);(87)) form one-dimensional magnetic insulators whose excitations 
are delocalized triplet excitons (19, 140, 227). Recently the optical excitation 
associated with the metallic luster of the poorly conducting rhodium and 
iridium dicarbonylacetylacetonates has been identified with the excitation of 
Frenkel excitons (474). 

D. Superconductivity 

Superconductivity was first discovered in mercury by H. Kamerlingh Onnes 
in 1911 (329) and eluded attempts at explanation until, in 1957, Bardeen, 
Cooper, and Schrieffer formulated the BCS theory (29) based on an electron- 
lattice-electron interaction. This theory and two others [by W. A. Little (268) 
and H. Frohlich (152)] are briefly described; a full review is beyond the scope 
of this article. Interest in this area has been heightened by the report of super- 
conducting fluctuations in the one-dimensional organic material, tetrathio- 
fulvalenium tetracyanoquinodimethanide, ("TF)(TCNQ) (97). 

1 .  BCS. Phonon Mechanism for  Superconductivity 

Extensive study of many three-dimensional superconductors has shown that 
the superconducting state is actually an ordered state of the conduction elec- 
trons in the metal (371) and not simply the absence of dc electrical resistivity 
due to a reduction in scattering of electrons. The order occurs through an 
association of pairs of electrons, with the lattice vibrations (phonons) provid- 
ing the means of communication. Because the electronic state is different be- 
low (ordered) and above (unordered) the superconducting transition tempera- 
ture Tc, other properties of the system, such as magnetic susceptibility and 
specific heat, also change at Tc (231). Experimentally, care must be taken to 
eliminate foreign magnetic impurities which can break the pairing of electrons. 
For example one atomic percent gadolinium in lanthanium lowers the transi- 
tion temperature from 5.6 to 0.6"K (389). The presence of a sufficiently strong 
magnetic field will also suppress the onset of superconductivity (231, 371). 

Many of the properties of the BCS superconductor are consequences of the 
formation of an energy gap Eg in the electron energy band at the Fermi 
energy EF when the temperature is reduced below Tc. The magnitude of this 
gap and Te are related by (Eg/kgTC) 2 4 where kg is Boltzman's constant. This 
energy gap arises from an effective attractive interaction between paired elec- 
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trons (with the lattice acting as the intermediary in this mechanism) allowing 
the electrons to overcome their Coulomb repulsion. The attractive interaction 
occurs schematically as follows: A spin up (t) electron of wavevector 
moves through the lattice and deforms it slightly (with a periodicity unique to 
k). The electron of wavevector - k& can now adjust to the deformed lattice 
potential, reducing the system’s energy. The superconducting transition tem- 
perature is related to the strength of the electron-phonon interaction Vand the 
electron density of states per spin at the Fermi energy ~ ( E F ) .  The BCS model 
predicts that 

TC = 1.140exp - LFfvl 
The Debye temperature, 0, (436) is a measure of the maximum energy of the 
allowed vibration (phonon) modes of the solid. It is related to an effective 
maximum frequency of lattice vibration, no, through 0 = f i h / k B  and can be 
measured by evaluating the lattice contribution to the low temperature 
specific heat. For example, the Debye temperature for K ~ P ~ ( C N ) ~ C I O . ~ ~ ( H ~ O ) ,  
is 246°K (171), while the Debye temperature of the conducting one-dimen- 
sional tetracyanoquinodimethane salts is of order 90°K (141). The inorganic 
polymer (SN), has a Debye temperature of 170°K (490) intermediate between 
those of the organic ion radical salts and the platinum chain compounds. 
The BCS model provides a framework for more detailed treatment of specific 
types of superconducting metals (371). 

Theoretically and experimentally the transition from a normal metal to su- 
perconductor is preceded (above Tc) by a rapid rise in the conductivity (13, 
332), termed paraconductivity or superconducting fluctuations. The tempera- 
ture dependence of the paraconductivity depends upon the system being one-, 
two-, or three-dimensional (392). 

There has been considerable theoretical discussion concerning the role of 
the Peierls soft phonon mode with wavevector 2 k ~  in the indirect coupling of 
electrons into pairs to form the superconducting state in a one-dimensional 
metal. It has been suggested that this phonon could lead to an anomalously 
large attractive indirect electron-electron interaction (6, 97, 392). In contrast, 
some theoretical work shows that phonons of energy less than kBTc (such as 
the soft phonon mode near the Peierls transition) tend to suppress the super- 
conducting transition (6, 333,348). Further theoretical and experimental work 
is necessary to fully resolve this point. 

2. W.A. Little. Exciton Mechanism for  Superconductivity 

Equation 31 shows that the maximum superconducting transition tem- 
perature expected in the BCS theory is limited by the Debye temperature. This 
temperature plays a central role because the distortion of the lattice in response 


