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PREFACE

Two-dimensional X-ray diffraction is the ideal, nondestructive, analytical method for

examining samples of many types, such as metals, polymers, ceramics, semiconduc-

tors, thin films, coatings, paints, biomaterials and composites for material science

researches, molecular structure determination and polymorphism study for drug

discovery and processing, and samples with microvolume or microarea for forensic

analysis, archeological analysis, and many emerging applications. In the long history

of powder X-ray diffraction, data collection and analysis have been based mainly on

one-dimensional diffraction profilesmeasured with scanning point detectors or linear

position-sensitive detectors. Therefore, almost all X-ray powder diffraction applica-

tions, such as phase identification, texture, residual stress, crystallite size, and percent

crystallinity are developed in accord with the diffraction profiles collected by

conventional diffractometers. A two-dimensional diffraction pattern contains abun-

dant information about the atomic arrangement, microstructure, and defects of a solid

or liquid material. Because of the unique nature of the data collected with an area

detector, many algorithms and methods developed for conventional X-ray diffraction

are not sufficient or accurate to interpret and analyze the data from two-dimensional

X-ray diffraction. New concepts and approaches are necessary to design a two-

dimensional diffractometer and to understand and analyze two-dimensional diffrac-

tion data. In addition, the new theory should also be consistent with conventional

theory because two-dimensional X-ray diffraction is also a natural extension of

conventional X-ray diffraction.

The purpose of this book is to give an introduction to two-dimensional X-ray

diffraction. Chapter 1 gives a brief introduction to X-ray diffraction and its extension

to two-dimensional X-ray diffraction. Content on the general principles of diffraction

is kept to a minimum since many books on the subject are available. The geometry

xiii



conventions and diffractionvector analysis inChapter 2 provide the foundation for the

subjects discussed in the following chapters. Chapters 3 to 6 focus on the instru-

mentation technologies, including the critical components, system configurations,

and basic data collection and process algorithms. Chapters 7–13 introduce the basic

concepts, diffractometer configurations, data collection strategy, data analysis algo-

rithm, and experimental examples for various applications, such as phase identifica-

tion, texture, stress, microstructure analysis, crystallinity, thin film analysis, and

combinatorial screening.

Writing my first book in my second language is like swimming without knowing

the depth of the water. I am glad that the struggle in my heart between the desire and

hesitation towrite this book is finally over, thanks somuch for the encouragement and

help from many colleagues and friends. I would like to express my sincere apprecia-

tion to Professors Mingzhi Huang, Huijiu Zhou, Jiawen He, Charles Houska,

Guoquan Lu, and Robert Hendricks for their guidance, assistance, and encourage-

ment in my education and career development. I wish to acknowledge the support,

suggestions, and contributions from my colleagues, especially from Kingsley Smith,

Uwe Preckwinkel, Roger Durst, Yacouba Diawara, John Chambers, Gary Schmidt,

Mike Mott, Kerry Klitzke, Dave Teasdale, James Neuenfeldt, Sue Byram, Chuck

Campana, Michael Ruf, Joerg Kaercher, Pete MaDonald, Randy Heimann, Beth

Beutler, Bruce Becker, Brian Michell, Jerry Schwarz, Greg Wachter, Kline Wilkins,

Heiko Ress, Peter LaPuma, Lutz Br€ugemann, Frank Burg€azy, Hannes Jakob, Kurt
Helming, Arnt Kern, Alexander Ulyanenkov, Jens Brechbuehl, Keisuke Saito, Detlef

Bahr, and Kurt Erlacher. I am grateful to those who have so generously contributed

their ideas, inspiration, and insights through many thoughtful discussions and

communications, particularly to Thomas Blanton, Davor Balzar, Camden Hubbard,

James Britten, Joseph Reibenspies, Ralph Tissot, Herbert Goebel, Joseph Formica,

Richard Ortega, Brian Litteer, Jian Lu, Xun-Li Wang, John Anzelmo, Brian Toby,

Ting Huang, Alejandro Navarro, Kewei Xu, Berthold Scholtes, Gregory Stephenson,
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XiaolongChen,WeiminMao, KunTao, Dulal Goldar, Vincent Ji, Peter Lee, YanGao,

Fangling Needham, Timothy Fawcett, JamesKaduk, and John Faber. I am indebted to

my wife Judy for her patience, care, and understanding and my son Mike for his

support.

Serving as Director of R&D for Bruker AXS, an industry leader in X-ray

diffraction instrumentation, gives me the opportunity to meet many scientists,

engineers, professors, and students working in the field of X-ray diffraction, and

the resources to put many ideas into practice. The many pictures and experimental

data in this book are collected from the diffractometersmanufactured byBruker AXS,

Inc. This should not be considered as an endorsement of a particular vendor, rather a

convenient way to express the ideas. The approaches and algorithms suggested in this

book are not necessarily the best alternatives and some errors may exist due to my

mistakes. I welcome any comments, suggestions, and criticisms.

BOB BAOPING HE
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1
INTRODUCTION

1.1 X-RAY TECHNOLOGY AND ITS BRIEF HISTORY

X-ray technology has more than a hundred years of history and its discovery

and development has revolutionized many areas of modern science and technol-

ogy [1]. X-rayswere discovered by theGerman physicistWilhelmConradR€ontgen in
1895, who was honored with the Nobel Prize for Physics in 1901. In many languages

today, X-rays are still referred to as R€ontgen rays or R€ontgen radiation. The mysteri-

ous light was found to be invisible to human eyes, but capable of penetrating opaque

objects and exposing photographic films. The density contrast of the object is revealed

on the developed film as a radiograph. Since then, X-rays have been developed for

medical imaging, for example, for detection of bony structures and diseases in soft

tissues such as pneumonia and lung cancer. X-rays have also been used to treat

diseases. Radiotherapy employs high-energy X-rays to generate a curative medical

intervention to the cancer tissues. A recent technology, tomotherapy, combines the

precision of a computerized tomography scan with the potency of radiation treatment

to selectively destroy cancerous tumors while minimizing damage to surrounding

tissue. Today, medical diagnoses and treatments are still the most common use of

X-ray technology.

The phenomenon of X-ray diffraction by crystals was discovered in 1912 by

Max von Laue. The diffraction condition in a simple mathematical form, which is

now known as the Bragg law, was formulated by Lawrence Bragg in the same year.

The Nobel Prizes for Physics in two consecutive years (1914 and 1915) were awarded

Two-Dimensional X-Ray Diffraction By Bob B. He
Copyright � 2009 John Wiley & Sons, Inc.
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to von Laue and the senior and junior Bragg for the discovery and explanation

ofX-ray diffraction. X-ray diffraction techniques are based on elastic scatteredX-rays

frommatter. Due to thewave nature of X-rays, the scattered X-rays from a sample can

interfere with each other such that the intensity distribution is determined by the

wavelength and the incident angle of the X-rays and the atomic arrangement of

the sample structure, particularly the long-range order of crystalline structures.

The expression of the space distribution of the scattered X-rays is referred to as an

X-ray diffraction pattern. The atomic level structure of the material can then be

determined by analyzing the diffraction pattern. Over its hundred-year history of

development, X-ray diffraction techniques have evolved into many specialized areas.

Each has its specialized instruments, samples of interests, theory, and practice. Single-

crystal X-ray diffraction (SCD) is a technique used to solve the complete structure of

crystalline materials, typically in the form of single crystals. The technique started

with simple inorganic solids and grew into complex macromolecules. Protein

structures were first determined by X-ray diffraction analysis by Max Perutz and

Sir John Cowdery Kendrew in 1958 and both shared the 1962 Nobel Prize in

Chemistry. Today, protein crystallography is the dominant application of SCD.

X-ray powder diffraction (XRPD), alternatively powder X-ray diffraction (PXRD),

got its name from the technique of collecting X-ray diffraction patterns from packed

powder samples. Generally, X-ray powder diffraction involves the characterization

of the crystallographic structure, crystallite size, and orientation distribution in

polycrystalline samples [2–5].

X-ray diffraction (XRD), by definition, covers single-crystal diffraction and powder

diffraction aswell asmanyX-ray diffraction techniques.However, it has been accepted

as convention that SCD is distinguished from XRD. By this practice, XRD is

commonly used to represent various X-ray diffraction applications other than SCD.

These applications include phase identification, texture analysis, stress measurement,

percent crystallinity, particle (grain) size, and thin film analysis. An analogous method

to X-ray diffraction is small-angle X-ray scattering (SAXS) technique. SAXS mea-

sures scattering intensity at scattering angles within a few degrees from the incident

angle. SAXSpattern reveals thematerial structures, typically particle size and shape, in

the nanometer to micrometer range. In contrast to SAXS, other X-ray diffraction

techniques are also referred to as wide-angle X-ray scattering (WAXS).

1.2 GEOMETRY OF CRYSTALS

Solids can be divided into two categories: amorphous and crystalline. In an amor-

phous solid, glass, for example, atoms are not arranged with long-range order. Thus,

amorphous solids are also referred to as “glassy” solids. In contrast, a crystal is a solid

formed by atoms, molecules, or ions stacking in three-dimensional space with a

regular and repeating arrangement. The geometry and structure of a crystalline

solid determines the X-ray diffraction pattern. Comprehensive knowledge of crystal-

lography has been covered by many books [2,5–9]. This section gives only some

basics to help further discussion on X-ray diffraction.

2 INTRODUCTION



1.2.1 Crystal Lattice and Symmetry

Acrystal structure can be simply expressed by a point lattice as shown in Figure 1.1(a).

The point lattice represents the three-dimensional arrangement of the atoms in the

crystal structure. It can be imagined as being comprised of three sets of planes, each set

containing parallel crystal planes with equal interplane distance. Each intersection of

three planes is called lattice point and represents the location of the center of an atom,

ion, or molecule in the crystal. A point lattice can be minimally represented by a unit

cell, highlighted in bold in the bottom left corner. A complete point lattice can be

formed by the translation of the unit cell in three-dimensional space. This feature is

also referred to as translation symmetry. The shape and size of a unit cell can be defined

by three vectors a, b, and c all starting from any single lattice point as shown in

Figure 1.1(b). The three vectors are called the crystallographic axes of the cell. As each

vector can be defined by its length and direction, a unit cell can also be defined by the

three lengths of thevectors (a,b, and c) aswell as the angles between them (a,b, andg).
The six parameters (a, b, c, a, b, and g) are referred to as the lattice constants or lattice
parameters of the unit cell.

One important feature of crystals is their symmetry. In addition to the translation

symmetry in point lattices, there are also four basic point symmetries: reflection,

rotation, inversion, and rotation–inversion. Figure 1.2 shows all four basic point

symmetries on a cubic unit cell. The reflection plane is like a mirror. The reflection

plane divides the crystal into two sides. Each side of the crystal matches the mirrored

position of the other side. The cubic structure has several reflection planes. The

rotation axes include two-, three-, four-, and sixfold axes. A rotation of a crystal about

an n-fold axis by 360�/n will bring it into self-coincidence. A cubic unit cell has

several two-, three- and fourfold axes. The inversion center is like a pinhole camera;

the crystal will maintain self-coincidence if every point of the crystal inverted through

the inversion center. Any straight line passing through the inversion center intersects

with the same lattice point at the same distance at both sides of the inversion center.

A cubic unit cell has an inversion center in its body center. The rotation–inversion

center can be considered as a combined symmetry of rotation and inversion.

a

b

c

a

c

b

(a) (b)

ab

g

FIGURE 1.1 A point lattice (a) and its unit cell (b).
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The various relationships among the six lattice parameters (a, b, c, a, b, and g)
result in various crystal systems. The simplest crystal system is cubic system in which

all three crystallographic vectors are equal in length and perpendicular to each other

(a¼ b¼ c and a¼b¼ g¼ 90�). Seven crystal systems are sufficient to cover all

possible point lattices. The French crystallographerBravais found that there are a total

of 14 possible point lattices. Seven point lattices are given by the seven crystal systems

for the case that only one lattice point is in each unit cell and that the lattice point

is located in the corner of the unit cell. These seven types of unit cells are called

primitive cells and labeled by P orR.By adding one ormore lattice pointswithin a unit

cell, one can create nonprimitive cells depending on the location of the additional

lattice points. The location of a lattice point in the unit cell can be specified by

fractional coordinates within a unit cell (u, v, w). For example, the lattice point in a

primitive cell is (0, 0, 0). Therefore, we can define three types of nonprimitive cells.

The label I represents the body-centered point lattice, which has one additional lattice

point at the center of the unit cell, or can be defined by the fraction (12,
1
2,

1
2). The label

F represents the face-centered point lattice with additional lattice points at the

center of unit cell face, or (0, 1
2,

1
2), (

1
2, 0,

1
2), and (12,

1
2, 0). The label C represents

the base-centered point lattice with an additional lattice point at the center of the base

face (12,
1
2, 0). All 7 crystal systems and 14Bravais lattices are summarized in Table 1.1.

The unit cells of the 14 Bravais lattices are shown in Figure 1.3.

1.2.2 Lattice Directions and Planes

The direction of any line in a crystal lattice can be specified by drawing a line

starting from the unit cell origin parallel to the given line and then taking the

– Fourfold axis

– Inversion center

– Reflection plane

– Twofold axis

– Threefold axis

FIGURE 1.2 Symmetry elements of a cubic unit cell.
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coordinates (u0, v0, w0) of any point on the line. The coordinates (u0, v0, w0) are not

necessarily integers. However, by convention, (u0, v0, w0) are multiplied by the

smallest number that produces integers u, v, and w. The crystal direction is described

by putting the three integers in square brackets as [uvw]. [uvw] are the indices

of a specific crystal direction; each of the indices can take a value of positive or

negative integer. All directions in a crystal that are symmetry equivalent to [uvw] are

represented by a notation with the integers in angular brackets as huvwi. For example,

in a cubic crystal all diagonals of the unit cell are symmetry equivalent. So all the

directions [111], ½�111�, ½1�11�, ½11�1�, ½�1�11�, ½�11�1�, ½1�1�1�, and ½�1�1�1� can be represented
by h111i. The bar over the number is for negative indices. Figure 1.4(a) shows some

lattice directions and their indices in a unit cell.

The orientation of lattice planes can be described by using a set of three integers

referred to as Miller indices. Miller indices are the reciprocal intercepts of the plane

on the unit cell axes. If the crystal planemakes fractional intercepts of 1/h, 1/k, 1/lwith

TABLE 1.1 Crystal Systems and Bravais Lattices

The Seven

Crystal Systems Unit Cell Minimum Symmetry

Bravais

Lattices

Lattice

Symbol

Cubic a¼b¼ g¼ 90� Four threefold rotation

axes at 109� 230 to
each other

Simple P

a¼ b¼ c Body centered I

Face centered F

Tetragonal a¼b¼ g¼ 90� One fourfold rotation

axis or one fourfold

rotation–inversion

axis

Simple P

a¼ b 6¼ c Body centered I

Hexagonal a¼b¼ 90� One sixfold rotation

axis or one sixfold

axis rotation–inver-

sion axis

Simple P

g¼ 120�

a¼ b 6¼ c

Rhombohedral

(trigonal)

a¼b¼ g 6¼ 90� One threefold rotation

axis

Simple R

a¼ b¼ c

Orthorhombic a¼b¼ g¼ 90� Any combination

of three mutually

perpendicular two-

fold rotation axes or

planes of symmetry

Simple P

a 6¼ b 6¼ c Body centered I

Base centered C

Face centered F

Monoclinic a¼ g¼ 90� One twofold rotation

axis or one twofold

rotation–inversion

axis

Simple P

b 6¼ 90� Base centered C

a 6¼ b 6¼ c

Triclinic a 6¼b 6¼ g 6¼ 90� None Simple P

a 6¼ b 6¼ c
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the three crystal axes, respectively, theMiller indices are (hkl). If plane runs parallel to

an axis, intercept is at ¥, so Miller index is 0. Miller indices describe the orientation

and spacing of a family of planes. Figure 1.4(b) shows some lattice planes and their

Miller indices in a unit cell. The spacing between adjacent planes in a family is

referred to as the “d-spacing.” The symbol {hkl} refers to all planes that are symmetry

a

a

a

a

a

aa

aa

a

a

a

b

b

b

c

c

c

c

c

120 ο

P

P

P

P PA

P

F C

R

I

I

I

F

Cubic

Tetragonal Hexagonal Rhombohedral

Orthorhombic

Monoclinic Triclinic

a
aa

ab

gb a

FIGURE 1.3 Unit cells of the 14 Bravais lattices.
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equivalent to (hkl). This group of equivalent planes is referred to as planes of a form.

For the cubic system, all the planes (100), (010), (001), ð�100Þ, ð0�10Þ, and ð00�1Þ
belong to the form {100}. For a tetragonal crystal, a¼ b 6¼ c, only the first two indices

imply the same interception distance on the crystal axes, so the form {100} would

only include (100), (010), ð�100Þ, and ð0�10Þ.
Figure 1.5(a) shows the hexagonal unit cell and indices of some directions.

It follows the same definition as other lattice types. However, lattice planes are often

described by a different system of plane indexing, called Miller–Bravais indices.

In hexagonal unit cells, it is common to use four axes coordinates, a1, a2, a3, and c,

in which a1, a2, and a3 are lying in the basal plane and c is perpendicular to

FIGURE 1.4 (a) Indices of lattice directions and (b) Miller indices of lattice planes.

[100]

[010]

[011][001]

[110]

½
(a) (b)

a1

a3

a2

120°

120°
120°

(1100)

(1011)

(1210)

(0001)

FIGURE 1.5 (a) Hexagonal unit cell (heavy lines) and indices of some lattice directions and

(b) Miller–Bravais indices of some lattice planes in the hexagonal lattice.
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all three axes. The indices of a plane in the hexagonal system are written as

(hkil). Figure 1.5(b) shows some lattice planes in a hexagonal lattice described by

Miller– Bravais indices. Since a1, a2, and a3 are symmetry equivalent and 120� apart
from each other, there are only two independent axes among them. So the first three

values in the Miller–Bravais indices maintain the following relation:

hþ kþ i ¼ 0 ð1:1Þ
Since all cyclic permutations of h, k, and i are symmetry equivalent, ð10�10Þ,

ð�1100Þ, and ð0�110Þ are equivalent.

A zone is defined as a set of nonparallel planes, which are all parallel to one axis.

This axis is called the zone axis. Miller indices for all planes in a zone obey the

relationship

huþ kvþ lv ¼ 0 ð1:2Þ

where [uvw] defines the zone axis and (hkl) are the miller indices of each plane in the

zone. Figure 1.6 shows some of the crystal planes in the cubic lattice that belong to the

[001] zone.

The distance between two adjacent planes with the same indices is called

interplanar spacing or d-spacing, which is an important parameter in the Bragg law.

The interplanar spacing dhkl is a function of both the plane indices (hkl) and the

lattice parameters (a, b, c, a, b, g). The equations of d-spacings for all seven crystal
systems are listed in Table 1.2.More equations on the unit cell volume and interplanar

angles can be found in Appendix 3 of Ref. [2].

FIGURE 1.6 All shaded crystal planes belong to [100] zone in the cubic lattice.
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1.2.3 Atomic Arrangement in Crystal Structure

Actual crystal structures can be described by the Bravais lattice filled with the same

or different kinds of atoms. The atoms take either the exact lattice points and/or

points with fixed offset to the lattice points. The three most common crystal structures

of metals are body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal

close-packed (HCP) structures as shown in Figure 1.7. BCC has two atoms per unit

cell located at the coordinates (0, 0, 0) and (12,
1
2,

1
2), respectively. Many metals such as

a-iron, niobium, chromium, vanadium, and tungsten have BCC structure. FCC has

four atoms per unit cells at the coordinates (0, 0, 0), (0, 12,
1
2), (

1
2, 0,

1
2), and (12,

1
2, 0),

respectively. Metals with FCC structure include g-iron, aluminum, copper, silver,

nickel, and gold. HCP contains three equivalent hexagonal unit cells, each has two

atoms at the coordinates (0, 0, 0) and (23,
1
3,

1
2) (or at equivalent position (

1
3,

2
3,

1
2)). Metals

with HCP structure include beryllium, magnesium, zinc, and a-titanium. Both

FCC and HCP are close-packed arrangements. Both FCC (111) plane and HCP

(0002) have the same atomic arrangement within the plane, but have different

stacking sequences.

TABLE 1.2 Equation of d-Spacing for All Seven Crystal Systems

Crystal System Equation

Cubic 1

d2
hkl

¼ h2 þ k2 þ l2

a2

Tetragonal
1

d2
hkl

¼ h2 þ k2

a2
þ l2

c2

Hexagonal
1

d2
hkl

¼ 4

3

h2 þ hkþ k2

a2

� �
þ l2

c2

Rhombohedral

(trigonal)

1

d2
hkl

¼ ðh2 þ k2 þ l2Þsin2aþ 2ðhkþ klþ hlÞðcos2 a � cos aÞ
a2ð1 � 3 cos2 aþ 2 cos3 aÞ

Orthorhombic
1

d2
hkl

¼ h2

a2
þ k2

b2
þ l2

c2

Monoclinic
1

d2
hkl

¼ 1

sin2 b

h2

a2
þ k2sin2 b

b2
þ l2

c2
� 2hl cos b

ac

� �

Triclinic
1

d2
hkl

¼ ð1 � cos2 a � cos2 b � cos2 gþ 2 cos a cos b cos gÞ � 1

� h2

a2
sin2 aþ k2

b2
sin2 bþ l2

c2
sin2 gþ 2kl

bc
ðcos b cos g � cos aÞ

�

þ 2lh

ca
ðcos g cos a � cos bÞþ 2hk

ab
ðcos a cos b � cos gÞ

�
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Structures of crystals formed by unlike atoms are built by the Bravais lattice with

certain conditions. One is that the translation of the Bravais lattice must begin and

end on the atoms of same kind. The other is that the space arrangement of each kind of

atom possesses the same symmetry elements as the whole crystal. The structure of

NaCl (rock salt) is shown in Figure 1.8. The unit cell of NaCl contains eight ions,

located at the following coordinates:

. 4 Naþ ions at (0, 0, 0), (12,
1
2, 0), (

1
2, 0,

1
2), and (0, 12,

1
2);

. 4 Cl� ions at (12,
1
2,

1
2), (0, 0,

1
2), (0,

1
2, 0), and (12, 0, 0).

It can be seen that Naþ ions form an FCC structure and four Cl� ions form an

FCCwith (12,
1
2,

1
2) translation from the Naþ “lattice.” Therefore, the Bravais lattice of

NaCl crystal is face-centered cubic.

BCC FCC HCP

FIGURE 1.7 Atomic arrangements in three common crystal structures of metals.

— Cl
–

— Na
+

FIGURE 1.8 The structure of NaCl. Naþ is FCC and Cl� is FCC with (12,
1
2,

1
2)

translation.
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1.2.4 Imperfections in Crystal Structure

In the above, we have assumed that crystals have a very regular atomic arrangement

following the crystal structure. However, most crystalline materials are not perfect.

The regular pattern of atomic arrangement may be interrupted by crystal defects.

There are various types of crystal defects, such as point defects, line defects, planar

defects, and bulk defects.

Point defects are defects that involve randomly distributed extra or missing atoms.

There is no strict definition of the size of a point defect, but generally a point defect is

not extended in space in any dimension, but within a region of one or a few atoms.

Vacancies are sites that should be occupied by an atom in a perfect crystal. Interstitials

are extra atoms inserted between the normal atomic sites. Typically, interstitials are

significantly smaller atoms compared to the matrix atoms in the crystal, for example,

hydrogen, carbon, boron, or nitrogen atoms in metal crystals. Crystals with inter-

stitials are also referred to as interstitial solid solutions. Substitutional solid solution

contains another type of point defects—substitutional defects. In a substitutional

solid solution of B in A, B atoms replace the sites normally occupied by A atoms. In a

typical substitutional solution, B atoms are randomly distributed in the crystal.

Under certain conditions, B atoms may replace A atoms in a regular pattern, called

long-range order. The solution is then called ordered or superlattice structure. Point

defects may change the lattice parameters in proportion to the concentration of the

defects. Point defects play an important role in semiconductors.

Line defects are defects that extend in one dimension within a region of one or a

few atoms in other two dimensions. Crystal dislocations are line defects. There are

two basic types of dislocations, the edge dislocation and the screw dislocation.

An edge dislocation is caused by the termination of a plane of atoms in themiddle of a

crystal or can be thought of as the result of adding or subtracting a half crystal plane

between two adjacent full crystal planes. A screw dislocation is a line defect along

which the atom arrangement is distorted like a screw thread or can be thought of as the

result of cutting partway through the crystal and displacing it parallel to the edge of the

cut. Dislocations can dramatically reduce the energy barrier to shearing a crystal

along a crystal plane, so that the density of dislocations in a crystal can change the

resistance of the crystal to plastic deformation.

Plane defects are crystal defects that extend in two dimensions and within a region

of one or a few atoms in the third dimension. Grain boundaries are interfaces between

contacting crystals that have different orientations. Depending on the degree of

misorientation between the two contacting crystals, grain boundaries are categorized

as low-angle grain boundaries and high-angle grain boundaries. The difference

between low-angle grain boundary misorientation and high-angle grain boundary

misorientation varies in the range of 10–15� depending on the material. The structure

and property of low-angle grain boundaries have a strong dependence on the

misorientation angle, while high-angle grain boundaries are not dependent on the

misorientation. Antiphase boundaries are another type of plane defect existing in

ordered alloys. The crystals on both sides of the boundary have the same structure and

orientation with the interruption of the order by removing or adding a layer of atoms.
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For example, if the ordering is in the sequence of ABABABAB, an antiphase

boundary takes the form of ABABBABA or BABAABAB. Stacking faults are

another type of plane defect. Stacking faults commonly occur in close-packed

structures. The {111} planes of FCC and the {0002} planes of HCP have the same

close-packed atomic planes with sixfold symmetry. Any two adjacent close-packed

crystal planes in FCCandHCPare stacked in an identical sequence and labeled asAB.

Each atom inB plane is directly on top of the center of triangles formed by three atoms

in A plane. In HCP structure, the atomic location in third plane is directly above those

of the first plane, so the stacking sequence continues as ABABABAB. In FCC

structure, the atoms in the third layer fall on a location not directly above eitherA orB,

but third location C. The atoms in the fourth plane are directly above those of A plane,

so the sequence continues as ABCABCABC. A stacking fault is one or two plane

deviations from the above perfect sequence. For example, ABCABCBCABCABC

in FCC is a stacking fault and ABABABCABAB in HCP is a stacking fault. All plane

defects disrupt the motion of dislocations through amaterial, so introducing the plane

defects can change the mechanical properties of a material.

Bulk defects, also known as volume defects, are either clusters of the above

defects or small regions of a different phase. The latter are often called precipitates.

Bulk defects are obstacles to dislocation motion, so they are one of the mechanisms

for strengthening materials. A crystal may contain many small regions or blocks

with identical lattice structure, but separated by faults and dislocation clusters, as

shown in Figure 1.9. The adjacent blocks are slightly disoriented so that the perfect

crystal lattice extends only within each block. This kind of structure is referred to as

a mosaic structure. The extent of the mosaic structure is also described as mosaicity.

A crystal with low mosaicity means it has larger perfect crystal blocks or smaller

misorientation between blocks.

FIGURE 1.9 Illustration of crystallite mosaic in a crystal.
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1.3 PRINCIPLES OF X-RAY DIFFRACTION

X-rays are electromagnetic radiation with a wavelength in the range of 0.01–100A
�
.

X-rays belong to a portion of the electromagnetic spectrum overlapping with gamma

rays in the shorter wavelengths and with ultraviolet in the longer wavelengths.

The wavelength of typical X-rays used in X-ray diffraction is in the vicinity of 1A
�
,

which is comparable to the range of interatomic spacing in crystals. When a

monochromatic X-ray beam hits a sample, in addition to absorption and other

phenomena, it generates scattered X-rays with the same wavelength as the incident

beam. This type of scattering is also known as elastic scattering or coherent scattering.

The scattered X-rays from a sample are not evenly distributed in space, but a function

of the electron distribution in the sample. The atomic arrangement in the sample can

be ordered like a single crystal or disordered like glass or liquid. As such, the

intensities and spatial distributions of the scattered X-rays form a specific diffraction

pattern that is uniquely determined by the structure of the sample.

1.3.1 Bragg Law

There are many theories and equations about the relationship between the diffraction

pattern and thematerial structure.Bragg law is a simpleway to describe the diffraction

of X-rays by a crystal. In Figure 1.1(a), the incident X-rays hit the crystal planes with

an incident angle u and reflection angle u. The diffraction peak is observed when the
Bragg condition is satisfied:

nl ¼ 2dsinu ð1:3Þ
where l is the wavelength, d is the distance between each adjacent crystal planes

(d-spacing), u is the Bragg angle at which one observes a diffraction peak, and n is an
integer number, called the order of reflection. That means that the Bragg condition

with the same d-spacing and 2u angle can be satisfied by various X-ray wavelengths
(energies). The first-order reflection (n¼ 1) is from the fundamental energy, and the

second- or third-order reflections are from harmonic energies two or three times the

fundamental energy.

In X-ray diffraction using a single wavelength, the Bragg equation is typically

expressedwithn¼ 1 for thefirst orderofdiffractionbecause thehigherorder reflections

can be considered as being from different lattice planes. For instance, the second-order

reflection from (hkl ) planes is equivalent to the first-order reflection from (2h, 2k, 2l)

planes.Thediffraction peak is displayed as diffracted intensities at a range of 2u angles.
For perfect crystals with perfect instrumentation, the peak is a delta function (the dark

straight vertical line) as shown in Figure 1.10(b). The intensity is denoted by I.

The delta function is an oversimplifiedmodel that requires a perfect crystalwithout

mosaic structure and a perfectly collimated monochromatic X-ray beam. A typical

diffraction peak is a broadened peak displayed by the curved line in Figure 1.10(b).

The peak broadening can be due to many effects, including imperfect crystal

conditions, such as strain, mosaic structure, and finite size; ambient conditions, such

as atomic thermal vibration; and instrumental conditions, such as X-ray beam size,
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beam divergence, beam spectrum distribution, and detector resolution. The curved

line gives a peak profile, which is the diffracted intensity distribution in the vicinity of

the Bragg angle. The highest point on the curve gives the maximum intensity of the

peak, Imax. Thewidth of a peak is typicallymeasured by its full width at halfmaximum

(FWHM). The total diffracted energy of a diffracted beam for a peak can bemeasured

by the area under the curve, which is referred to as integrated intensity. The integrated

intensity is a more consistent value for measuring the diffracted intensity of a

reflection since it is less affected by all the peak broadening factors. Causes of peak

broadening, while increasing FWHM, typically also reduce themaximum intensity at

the same time.Therefore, overall variation of the integrated intensity is less significant

compared to the variations of FWHM and Imax.

1.3.2 Diffraction Patterns

The above diffraction condition is based on the existence of long periodicity of

crystalline materials. In general, X-ray diffraction can provide information on the

atomic arrangement in materials with long-range order, short-range order, or no

order at all, like gases, liquids, and amorphous solids. A material may have one of

the above atomic arrangement types, or a mixture of the above types. Figure 1.11

gives a schematic comparison of diffraction patterns for crystalline solids, liquids,

amorphous solids, and monatomic gases as well as their mixtures. The diffraction

pattern from crystals has many sharp peaks corresponding to various crystal planes

based on the Bragg law. The peaks at low 2u angles are from crystal planes of large

d-spacing and vice versa at high 2u angles. To satisfy the Bragg condition at all crystal
planes, the crystal diffraction pattern is actually generated from polycrystalline

materials or powder materials. Therefore, the diffraction pattern is also called

powder diffraction pattern. A similar diffraction pattern can be collected with a

single crystal if the crystal has been rotated at various angles during the data

collection so that the Bragg law can be satisfied when the crystal is at the right

orientation. The techniques have been used in the Gandolfi camera in which the

crystal is rotated above an axis tilted 45� from the camera axis. The powder-like

IDiff
rac

ted
 X

-ra
ys

(a)

q

q

q

(b)

Incident X-rays

d

d

FWHM
Imax

FIGURE 1.10 The incident X-rays and reflected X-rays make an angle of u symmetric to the

normal of crystal plane (a). The diffraction peak is observed at the Bragg angle u (b).
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pattern generated by rotating a single-crystal sample with other types of diffract-

ometers is also referred to as Gandolfi pattern.

Both amorphous solid and liquid materials do not have the long-range order as a

crystal does, but the atomic distance has a narrow distribution due to the atoms being

tightly packed. In this case, the intensity of the scattered X-rays forms one or two

maxima with a very broad distribution in the 2u range. The intensity versus 2u

Crystal

Liquid or amorphous solid

Monatomic gas

Amorphous solid with crystallinity

Crystal with air scattering

I

I

I

I

2q

I

2q

2q

2q

2q

FIGURE 1.11 Diffraction patterns from crystalline solids, liquids, amorphous solids, and

monatomic gases as well as their mixtures.
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distribution reflects the distribution of the atomic distances. In principle, a pattern like

this should be called a scattering pattern since there is no diffraction as we have

defined earlier, but we may call it diffraction pattern for convenience. A monatomic

gas has no order at all. The atoms are distributed randomly in space. The scattering

curve shows no feature at all except that the scattered intensity drops continuously

with the increase of the 2u angle. The scattering curve for air or gas shows a similar

feature although the molecules have a preferred distance between atoms within

each molecule. The diffraction pattern from a material containing both amorphous

and crystalline solids has a broad background from the amorphous phase and sharp

peaks from crystalline phase. For example, many polymer materials have an

amorphous matrix with crystallized regions. The diffraction pattern may contain

air-scattering background in addition to sharp diffraction peaks. The air scattering can

be generated from the incident beam or diffracted beam. If the air scattering is not

removed by the diffractometer, the diffraction pattern contains a high background at

low 2u angle and the background gradually decreases with increasing 2u angle.

1.4 RECIPROCAL SPACE AND DIFFRACTION

The Bragg law gives a simple relationship between the diffraction pattern and the

crystal structure. Many X-ray diffraction applications can be easily explained by the

Bragg law. X-ray diffraction phenomena can also be explained in reciprocal space by

the reciprocal lattice and theEwald sphere. X-ray diffraction analysiswith concepts in

reciprocal space is a powerful way of understanding and solving many diffraction

problems [2–5].

1.4.1 Reciprocal Lattice

Reciprocal lattice is a transformation of the crystal lattice in real space to reciprocal

space. The shape and size of a unit cell in real space can be defined by three vectors

a, b, and c all starting from any single lattice point. The unit cell of the corresponding

reciprocal lattice is then given by three vectors a*, b*, and c* (also referred to as

reciprocal lattice axes), and

a* ¼ 1

V
ðb� cÞ;

b* ¼ 1

V
ðc� aÞ;

c* ¼ 1

V
ða� bÞ

ð1:4Þ

where V is the volume of the crystal unit cell in the real space and

V ¼ a � b� c ð1:5Þ
Since each reciprocal lattice axis is the vector product of two lattice axes in real

space, it is perpendicular to the planes defined by the two lattice axes. The original
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lattice axes and reciprocal lattice axes maintain the following relations:

a � a* ¼ b � b* ¼ c � c* ¼ 1 ð1:6Þ
and

b � a* ¼ c � a* ¼ a � b* ¼ c � b* ¼ b � c* ¼ a � c* ¼ 0 ð1:7Þ
Figure 1.12 illustrates the relationship between the original lattice in real space

and the reciprocal lattice. The unit cell of the original lattice is drawn in dotted lines.

The three reciprocal lattice axes define a unit cell of the reciprocal lattice (solid lines).

The origin of the reciprocal lattice axes, denoted by O, is the origin of the reciprocal

lattice. The repeat translation of the reciprocal lattice unit cell in three dimensions

forms the complete reciprocal lattice. Except the origin, each lattice point is denoted

by a set of three integers (hkl), which are the number of translations of the three

reciprocal lattice axes, respectively, to reach the lattice point. In other words, the

vector drawn from the origin to the lattice point (hkl) is given by

Hhkl ¼ ha* þ kb* þ lc* ð1:8Þ
and the direction of the vectorHhkl is normal to the lattice planes (hkl) in real space.

The magnitude of the vector Hhkl is given by the d-spacing of the (hkl) planes:

jHhkl j ¼ 1

dhkl
ð1:9Þ

Therefore, each point (hkl) in the reciprocal lattice represents a set of lattice

planes (hkl) in the real space lattice. The position of the point in the reciprocal lattice

a

b

c

c*

a*

b*

O

100

101

110

111

011

001

010

000

H 111

FIGURE 1.12 The relationship between the original lattice in real space and the reciprocal

lattice.
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defines the orientation and d-spacing of the lattice planes in the real space lattice. The

farther away a reciprocal lattice point is from the origin, the smaller is the d-spacing of

the corresponding lattice planes. For example, the reciprocal lattice point (111)

represents the (111) lattice planes in the real space lattice, and the lattice vector is

given by

H111 ¼ a* þ b* þ c*

and

d111 ¼ 1

jH111j ¼
1

ja* þ b* þ c*j
1.4.2 The Ewald Sphere

The relationship between the Bragg condition and the reciprocal lattice can be

explained visually by the Ewald sphere, also referred to as reflection sphere. Ewald

came up with a geometrical construction to help visualize which Bragg planes are in

the correct orientation to diffract. In Figure 1.13, the diffracting crystal is located

in the center of the Ewald sphere, C. The radius of the Ewald sphere is defined as 1/l.
The incident beam can be visualized as the vector from I to C, and the diffracted beam

is the vector from C to P. Both the incident beam and diffracted beam are at an angle u
from a set of crystal planes (hkl). The d-spacing of the crystal planes is . In the Ewald

sphere, both incident beam vector s0/l and diffracted beam vector s/l start at the point
C and end at points O and P, respectively. The vector from O to P is the reciprocal

latticevectorHhkl and is perpendicular to the crystal planes. The threevectors have the

following relationship:

s � s0

l
¼ Hhkl ¼ ha* þ kb* þ lc* ð1:10Þ

FIGURE 1.13 The Ewald sphere and Bragg condition in reciprocal space.
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and the magnitude of the vectors has the following relationship based on the

Bragg law:

s � s0

l

��� ��� ¼ 2 sin u

l
¼ jHhkl j ¼ 1

dhkl
ð1:11Þ

The point O is the origin of the reciprocal lattice and the point P is the reciprocal

point (hkl). TheBragg condition is satisfied onlywhen the reciprocal lattice point falls

on the Ewald sphere. For a single crystal, the chance to have a reciprocal lattice

point on the Ewald sphere is very small if the crystal orientation is fixed. Multiplying

both ends of Eq. (1.10) by the three lattice axes in real space, respectively, we obtain

the Laue equations

a � ðs � s0Þ ¼ hl
b � ðs � s0Þ ¼ kl
c � ðs � s0Þ ¼ ll

ð1:12Þ

The Laue equations establish that a periodic three-dimensional lattice produces

diffractionmaxima at specific angles depending on the incident beam direction and the

wavelength. The Laue equations are suitable to describe the diffraction geometry of a

singlecrystal.TheBragg lawismoreconvenientlyused forpowderdiffraction.Both the

Laue equations and the Bragg law define the diffraction condition in different formats.

The distance between the origin of the reciprocal lattice (O) and the lattice point (P)

is reciprocal to the d-spacing. The largest possible magnitude of the reciprocal lattice

vector is given by 2/l. This means that the smallest d-spacing satisfying the Bragg

condition is l/2. In powder X-ray diffraction, the random orientation of all crystallites

can take all possible orientations assuming an infinite number of crystallites in

diffraction. The trace of the reciprocal lattice points from all crystallites can be

considered as a series of spherical surfaces with the origin O as the center. Therefore,

the condition for satisfying the Bragg law is only if the d-spacing is greater than half of

the wavelength. In other words, the Bragg condition can be satisfied if a reciprocal

lattice point falls in a sphere of 2l from the origin O. This sphere is called the limiting

sphere for powder diffraction. Figure 1.14 illustrates the limiting sphere for powder

diffraction in a two-dimensional cut through the origin. All the reciprocal lattice points

within the limiting sphere are denoted by black dots. For powder samples, all the

reciprocal lattice points having the same distance from the origin form a sphere shown

by a circle of broken line. For example, the reciprocal lattice point P(hkl)would not fall

on the Ewald sphere for a single crystal with fixed orientation. But for powder samples,

the equivalent reciprocal lattice point from some crystallites would fall on the Ewald

sphere at point P0. The same explanation can also be given for rotating single crystal. In

this case, the reciprocal lattice point P(hkl) can crosswith theEwald sphere by a proper

rotation. The Gandolfi camera works in this principle.

1.4.3 Diffraction Cone and Diffraction Vector Cone

In powder diffraction, for a fixed incident X-ray vector s0/l, the diffracted beam

vector s/l takes all directions at a 2u angle from the incident beam direction, as shown
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in Figure 1.15. The end of s/l vector forms a circle on the Ewald sphere passing

through the reciprocal lattice point P(hkl), P0(hkl), and all equivalent reciprocal

lattice points. The diffracted beams form a conewith the incident beam on the rotation

axis. This cone is referred to as diffraction cone. The 2u angle can takevalues from0 to

O

P ( )hkl

C

Limiting sphereEwald sphere

P¢
Hhkl

a*

b*

2/l

2qs/l

s0/l

1/l

FIGURE 1.14 Limiting sphere for the powder diffraction.
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C 2q
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Ewald sphere

Diffraction coneDiffraction vector cone

X-ray

s/l

Hhkl

Hhkl

s0/l

FIGURE 1.15 Diffraction cone and diffraction vector cone illustrated on the Ewald sphere.
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180�, corresponding to all the directions of the diffracted beams. The diffraction

vector Hhkl, starting from the origin of the reciprocal lattice (O) to the trace circle of

the lattice point P(hkl) and equivalents, also forms a cone, named the diffraction

vector cone. The angle between the diffraction vector and the incident beam is

90� � u. In the illustration with the Ewald sphere, the diffraction cone and the

diffraction vector cone start from different points. In real space geometry, both

the diffraction cone and the diffraction vector cone are considered as starting from the

same point (the sample location or instrument center).

1.5 TWO-DIMENSIONAL X-RAY DIFFRACTION

1.5.1 Diffraction Pattern Measured by Area Detector

The diffraction patterns shown in Figure 1.11 are displayed as diffracted intensity

versus 2u angle assuming that the diffracted intensity is a unique function of

diffraction angle. The actual diffraction pattern is distributed in the 3D space around

the diffracting sample. Figure 1.16 illustrates the diffraction patterns from single-

crystal and polycrystalline samples. The diffracted beams from a single crystal point

to discrete directions, each corresponding to a family of diffracting planes, as shown

in Figure 1.17. Each diffracted beam is a direct reflection of the incident X-ray beam

based on the Bragg law. The diffracted beams are intercepted by an area detector and

the X-ray intensity distribution on the sensing area is converted to an image-like

diffraction pattern, also referred to as a frame. The region representing each diffracted

beam in the frame is called diffraction spot. Figure 1.16(b) is a diffraction frame from

a single crystal of chicken eggwhite lysozyme. Due to the large and complex unit cell

of this protein crystal, there are many diffraction spots in the frame. Today, in the area

of single-crystal diffraction, two-dimensional detectors are required to collect enough

diffraction data to solve the structure of a complex crystal. Single-crystal X-ray

diffraction has been covered by much literature [9,10]. This book will mainly cover

diffractions from polycrystallinematerials or other non-single-crystal materials in the

following chapters.

Polycrystalline materials consist of many crystalline domains, ranging from a

few to more than a million in the incident beam. In single-phase polycrystalline

materials, all these domains have the same crystal structure but various orientations.

Polycrystalline materials can also be multiphase materials with more than one kind

of crystal structure blended together. Polycrystalline materials can also be mixed or

bonded to different materials such as thin films or coatings on single-crystal

substrates. The crystalline domains can be embedded in an amorphous matrix.

Most often, the sample undergoing X-ray analysis is not a randomly oriented

polycrystalline material, but a combination of polycrystalline, amorphous, and

single-crystal contents, polycrystalline with preferred orientation, or deformed due

to residual stresses. The diffracted beams from a polycrystalline (powder) sample

form a series diffraction cone in 3D space since a large number of crystals oriented

randomly in the space are covered by the incident X-ray beam, as shown in
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Figure 1.16(c). Each diffraction cone corresponds to the diffraction from the same

family of crystalline planes in all the participating grains. The diffraction frame from

a polycrystalline sample is a cross section of the detecting plane and the diffraction

cones. Figure 1.16(d) is a diffraction frame collected from corundum powder with an

area detector. Since the diffraction pattern collected with an area detector is typically

given as a two-dimensional image frame, the X-ray diffraction with an area detector is

called two-dimensional diffraction.

1.5.2 Two-Dimensional X-Ray Diffraction System and Major Components

Two-dimensional X-ray diffraction (XRD2) systems have a variety of configurations

and component options to fulfill requirements of different samples and applications.

As shown in Figure 1.17, a typical XRD2 system normally consists of five basic

components:

FIGURE 1.16 The patterns of diffracted X-rays: (a) from a single crystal, (b) diffraction

frame from a lysozyme protein single crystal, (c) diffraction cones from a polycrystalline

sample, and (d) a diffraction frame from corundum powder.
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. X-Ray Source: produces X-rays with the required radiation energy, focal spot

size, and intensity;

. X-Ray Optics: conditions the primary X-ray beam to the required wavelength,

beam focus size, beam profile, and divergence;

. Goniometer and Sample Stage: establishes and maneuvers the geometric

relationship between primary beam, sample, and detector;

. Sample Alignment and Monitor: assists users with positioning the sample into

the instrument center and monitors the sample state and position;

. Area Detector: intercepts and records the scattering X-rays from a sample, and

saves and displays the diffraction pattern into a two-dimensional frame.

Each of the basic components may have several options suitable for various

application and functions. The whole system is controlled by a computer with

software for instrument control, data acquisition, and data analysis. In addition to

the five basic components, there are some other accessories, such as a low-tempera-

ture stage, high-temperature stage, helium or vacuum beam path for SAXS, beam

stop, and alignment and calibration fixtures. The geometry conventions, X-ray source

and optics, detector, goniometer, sample stage, and various configurations will be

covered in the following chapters.

1.5.3 Summary

A two-dimensional diffraction frame contains far more information than a diffraction

pattern measured with conventional diffraction systemwith a point detector or a linear

position-sensitive detector. The speed of two-dimensional diffraction is typically

several orders of magnitude higher than conventional diffraction. Two-dimensional

FIGURE 1.17 Five basic components in an XRD2 system: X-ray source (sealed tube

generator); X-ray optics (monochromator and collimator); goniometer and sample stage;

sample alignment and monitor (laser video); and area detector.
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X-ray diffraction analyses, commonly performedon polycrystallinematerials, include

phase identification, quantitative phase analysis, preferred orientation, and residual

stresses.

Phase identification (phase ID) can be done by integration in the selected 2u range
along the Debye rings. The integrated data give better intensity and statistics for phase

ID and quantitative analysis, especially for those sampleswith texture, large grain size,

or small quantity. Then the integrated diffraction profiles can be analyzedwith existing

algorithms andmethods, profile fittingwith conventional peak shapes and fundamental

parameters, quantification of phases, and lattice parameter indexing and refinement.

Thediffraction resultscanbeused tosearchandmatchwith the ICDDdatabase [11–16].

Texture measurement with two-dimensional diffraction is extremely fast com-

pared to measurement using a point or linear detector. The area detector collects

texture data and background values simultaneously for multiple poles and multiple

directions. Due to the high measurement speed, pole figures can be measured at very

fine steps, allowing detection of very sharp textures [17,18].

Stressmeasurement using the area detector is based on a direct relationship between

the stress tensor and diffraction cone distortion. Since the whole or a part of the Debye

ring is used for stress calculation, two-dimensional diffraction canmeasure stress with

high sensitivity, high speed, andhigh accuracy. It is very suitable for sampleswith large

crystals and textures. Simultaneous measurement of stress and texture is also possible

since 2D data consist of both stress and texture information [19–21].

Percent crystallinity can bemeasured faster andmore accuratelywith data analysis

over 2D frames, especially for samples with anisotropic distribution of crystalline

orientation. The amorphous region can be defined externally within user-defined

regions, or the amorphous region can be defined with the crystalline region included

when the crystalline region and the amorphous region overlap.

SAXS data can be collected at high speed. Anisotropic features from specimens,

such as polymers, fibrousmaterials, single crystals, and biomaterials, can be analyzed

and displayed in two dimensions. Desmearing correction is not necessary due to the

collimated point X-ray beam. Since one exposure takes all the required SAXS

information, it is easy to scan over the sample to map the structure information

from small-angle diffraction [22,23].

Microdiffraction data are collected with speed and accuracy. X-ray diffraction

from small sample amounts or small sample areas has always been a slow process

because of limited beam intensity. The 2D detector captures whole or a large portion

of the diffraction rings, so spotty, textured, or weak diffraction data can be integrated

over the selected diffraction rings [24–26].

Thin film samples with a mixture of single crystals, random polycrystalline layers,

and highly textured layers can be measured with all the features appearing simulta-

neously in diffraction frames. The pole figures fromdifferent layers and substrates can

be overlapped to reveal the orientation relationship [27–29]. The use of an area

detector can dramatically speed up the data collection for reciprocal space mapping

on an in-plane reciprocal lattice point [30].

Combinatorial screening by two-dimensional X-ray diffraction is one of the most

powerful high-throughput screening techniques. Because of the penetrating power of
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