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INTRODUCTION 

Few of us can any longer keep up with the flood of scientific literature, even 
in specialized subfields. Any attempt to do more, and be broadly educated with 
respect to a large domain of science, has the appearance of tilting at windmills. 
Yet the synthesis of ideas drawn from different subjects into new, powerful, 
general concepts is as valuable as eve, and the desire to remain educated 
persists in all scientists. This series, Advances in Chemical Physics, is devoted to 
helping the reader obtain general information about a wide variety of topics in 
chemical physics, which field we interpret very broadly. Our intent is to have 
experts present comprehensive analyses of subjects of interest and to 
encourage the expression of individual points of view. We hope that this 
approach to the presentation of an overview of a subject will both stimulate 
new research and serve as a personalized learning text for beginners in a field. 
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1. INTRODUCTION 

During the last 10 years, remarkable progress has been made in devising 
efficient procedures for accurate electronic structure calculations. Not only 
have the size and complexity of the problems which can be handled been 
extended, but also the reliability of quantum-chemical results has been 
considerably improved. Accurate quantum-chemical predictions of properties 
for small molecules have proven that theoretical calculations are often a useful 
complement to modern experimental work’. 

The progress in the calculation of highly correlated electronic wavefunc- 
tions is due both to the development of improved computational methods and 
to the rapidly increasing computing power available. In particular, the advent 
of vector computers has made it possible to perform much larger calculations 
than before in shorter times. In order to use such machines efficiently, it is 
essential to adjust the methods to the hardware available. Generally 
important is to remove all logic from the innermost loops and to perform as 
many simple vector or matrix operations as possible. 

A central role among the available quantum-chemical tools is played by the 
multiconfiguration self-consistent field (MCSCF) and the multiconfiguration 
reference configuration-interaction (MR-CI) methods. The purpose of 
MCSCF calculations is to obtain electronic wavefunctions which represent 
the states under consideration at all investigated geometries at least qualita- 
tively correctly. In order to obtain more accurate potential energy functions 
and to make reliable predictions for molecular properties, highly correlated 
electronic wavefunctions are necessary. It is usually impracticable to calculate 
such wavefunctions using the MCSCF method. Instead, one employs the 
MCSCF wavefunction as a zeroth-order approximation in an extended MR- 
CI calculation. In most MR-CI methods all single and double excitations (SD) 
relative to the MCSCF configurations are taken into account, and their 
coefficients are determined variationally. Since the length of such configur- 
ation expansions can be very large, conventional MR-CI  method^^-^ often 
require a configuration selection. However, during the last five years, efficient 
‘direct CI’ methods have been developed which can handle very large 
configuration spaces. 

The direct CI method was proposed in 1972 by Roos5. The idea of this 
method is to avoid the explicit construction and storage of the large Hamilton 
matrix. Instead, the eigenvectors are found iteratively. The basic operation in 
each iteration is to form the vector g = H.c directly from the molecular 
integrals and the trial vector c. The optimum algorithm to form this product 
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depends on the structure of the wavefunction. For instance, in full CI 
calculations, in which all possible configurations within a given orbital basis 
are taken into account, it is virtually impossible to account explicitly for all 
different types of interactions. The necessary structure constants (‘coupling 
coefficients’) must then be calculated by a general method and stored on a 
formula file. This formula file is processed together with the molecular 
integrals in each iteration. On the other hand, if the wavefunction comprises all 
single and double excitations relative to a single Slater determinant (CI(SD)) 
only, the different configuration types and structure constants can be 
considered explicitly in a computer program. But even then, Roos and 
Siegbahn6 distinguished more than 250 distinct cases for a closed-shell 
reference function. Their algorithm involved so much logic that it was rather 
inefficient and unsuitable for vectorization. A breakthrough for the closed- 
shell case was achieved by Meyer7 in 1976 with his theory of ‘self-consistent 
electron pairs’ (SCEP). He showed that the calculation of H-c can be 
performed in terms of simple matrix operations, namely matrix multiplic- 
ations, if the configurations are renormalized in a particular way. Particularly 
important in this development was that any dependence of the coupling 
coefficients on external orbital labels had been removed. Only very few and 
simple structure constants independent of the size of the basis set remained. An 
even more elegant formulation of the closed-shell SCEP method was recently 
presented by Pulay, Saebo and Meyer*. They were able to remove the coupling 
coefficients entirely and further reduce the computational effort. Because of its 
matrix structure, the SCEP procedure is optimally well suited for vectoriz- 
ation. It has been programmed and applied by Dykstrag,lo, Werner and 
Reinsch” and Ahlrichs”. 

It took a rather long time until similar matrix-formulated direct CI methods 
became available for more general wavefunctions. Dykstra generalized the 
SCEP theory for certain types of open-shell wavefunctions and for generalized 
valence bond (GVB) reference functions which consist only of closed-shell 
determinants’ 3,14. In both cases, however, the important semi-internal 
configurations were not considered. Flesch and Meyer have developed an 
SCEP procedure for a spin-unrestricted Hartree-Fock (UHF) reference 
determinant”. In 1981 Chiles and Dykstra16 presented a matrix formulation 
of Cicek’s coupled-cluster theory. The first generalization of the SCEP method 
for arbitrary multiconfiguration reference wavefunctions was achieved by 
Werner and R e i n s ~ h ’ ~ ” ~  in 1981. They showed that even in this most general 
case the vector H-c can be obtained by performing a sequence of matrix 
multiplications and that all required coupling coefficients depend only on 
internal orbitals. In several applications the high efficiency of the method was 
demonstrated. Closely related matrix formulations of the direct MR-CI (SD) 
method were also given by AhlrichslQ and Saunders and van Lenthe”. 

Other multiconfiguration reference CI(SD) methods mostly used particular 



4 HANS-JOACHIM WERNER 

orthonormal spin-eigenfunction bases and employed group theoretical 
methods to evaluate the coupling coefficients. Most successful in this respect 
was the ‘graphical unitary group approach’ (GUGA) of Paldus’ and 
S h a ~ i t t ~ ~ - ’ ~ .  S iegbahP was the first to succeed in developing a general direct 
MR-CI method using this technique. Other MR-CI methods were described 
by Buenker and Peyerimh~ff’~~, Brooks and Schaefer”*’*, Duch and 
KarwowskiZ9, Duch30, Tavan and Schulten31, Taylor3’, Liu and 
Y ~ s h i m i n e ~ ~ ,  Lischka et and Saxe et aL3’. Most of these methods used 
the fact that the external parts of the coupling coefficients are rather simple but 
did not eliminate them. In some of these methods, SCEP-like techniques were 
implemented later on (see, e.g., Ref. 36 and other articles in the same volume). 

The MR-CI method usually yields most accurate results if the reference 
function has been fully optimized by an MCSCF procedure. In the MCSCF 
method not only the linear configuration coefficients but also the molecular 
orbitals are optimized. Owing to often strong couplings among the non-linear 
parameters describing changes of the molecular orbitals, early MCSCF 
strongly suffered with convergence difficulties. It would be beyond the scope of 
this chapter to review the numerous attempts to solve this problem. 
Considerable progress was made only quite recently with the development of 
second-order MCSCF or approximate second-order 
 method^^'-^'. In second-order MCSCF procedures the first and second 
derivatives of the energy with respect to all variational parameters, 
namely the orbital and configuration coefficients, are evaluated exactly. The 
energy is then approximated by a Taylor expansion, and the parameters are 
obtained by searching for a stationary point of this approximation. Close to 
the final solution, this method converges quadratically. Unfortunately, the 
radius of convergence is rather small. Therefore, many damping schemes and 
level-shift procedure schemes have been proposed with the aim of ensuring 
global convergence. This has been discussed in detail by Olsen, Yeager and 
Jqhgensen in a previous volume of this series53. 

Another possibility to increase the radius of convergence is to include higher 
energy derivatives into the Taylor expansion6 lY4’. The exact calculation of 
these derivatives is rather expensive, however. In 1980 it has been demon- 
strated by Werner and M e ~ e r ~ ’ , ~ ~  that the radius of convergence can be 
improved considerably by treating the higher-order effects in an approximate 
manner. Only those terms were considered which account appropriately for 
the orthonormality condition of the orbitals. The extra effort to include these 
terms into a second-order MCSCF procedure is small. Recently, this method 
was further improved by Werner and K n o w l e ~ ’ ~ ~ ’ ~ ,  and a remarkable 
enhancement of convergence was achieved. Moreover, a new direct CI method 
devised by Knowles and Handy6’ was incorporated into the MCSCF 
procedure56. This allows one to optimize much longer configuration expan- 
sions than with previous methods. 
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The purpose of the present chapter is to describe in some detail the MCSCF 
and MCSCF-SCEP methods developed by the present author together with 
W. E. A. R e i n ~ c h ’ ~ ” * - ~ ~  and P. J. K n ~ w l e s ~ ~ ” ~ .  It is intended to 
require only little background. We hope that the rather explicit formulation 
will help the reader to understand various possible computational strategies, 
and give some insight into basic structures underlying both theories. In fact, 
our MCSCF and MCSCF-SCEP methods have many similarities. In both 
cases the integrals, the variational parameters and the coupling coefficients are 
ordered into matrices or vectors, and the quantities needed in each iteration 
are obtained by multiplying and linearly combining these matrices. Therefore, 
both methods are well able to be vectorized, which is important for efficient use 
of modern computer hardware. A reformulation of the SCEP theory in terms 
of non-orthogonal configurations is presented, and new techniques for 
efficient evaluation of the coupling coefficients are discussed. Since the 
emphasis of the present chapter is on the theoretical methods, only few 
examples for applications of our procedures are given. For a review of recent 
applications, the reader is referred to Ref. 64. 

11. SECOND-ORDER DIRECT MULTICONFIGURATION SELF- 
CONSISTENT FIELD THEORY 

A. Definition of Orbitals, Density Matrices and Integral Matrices 

We consider a normalized N-electron wavefunction of the form 

Y = pr(Dr with < @ I l @ J )  = 4, C C I Z  = 1 (1) 
I I 

where { Q I }  is a set of orthonormal configuration state functions (CSFs). 
Usually, the CSFs are symmetry adapted linear combinations of Slater 
determinants, but it is also possible to use the Slater determinants themselves 
as a basis. In the latter case one has to ensure in the optimization process that 
the wavefunction Y, has the required symmetry. This will be discussed in more 
detail in Section 1I.H. The CSFs are constructed from the ‘internal’ subset of 
the orthonormal molecular orbitals { &}. Throughout this paper the internal 
orbitals will be labelled by the indices i,j, k, . . . , The complementary space of 
external orbitals will be labelled a, b, c.. . , and r, s, t . .  . will denote any orbitals. 
The molecular orbitals (MOs) { 4r}  are approximated as linear combinations 
of atomic orbitals (AOs) or other suitable basis functions {K,}: 

We assume that the orbitals are real and that the wavefunction is spin- 
restricted in the sense that each orbital can be occupied by two electrons with 
opposite spin. In terms of the expansion coefficients X, the orthonormality 
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condition of the orbitals takes the form 

where 

is the metric of the basis (K,}. 

written in the form 
The energy expectation value of the wavefunction ( I )  can generally be 

/ \ 

where hi,  and (i j lkr) are the one-electron and two-electron integrals in the MO 
basis, respectively, and 

are coupling coefficients. The one- and two-particle excitation operators E i j  
and E i j , k l  in Eqs (6)  and (7) are defined as follows: 

Ei j  = qp'q4 + qf'qF (8) 

(9) Eij,ki = q;' E i j g ;  + q!' E i j g !  

Here g; and q f  ' are the usual annihilation and creation operators for electrons 
with 2 and p spin, respectively. In order to satisfy the Pauli exclusion principle, 
they must obey the anticommutation relations 

I V P ,  vy1+ = 0 (10) 

Cqf+,qi"'l+ = o  (1 1) 

[I?!' 3 ~ 7 1  + = 6ij6p with P ? G =  {.,a} (12) 

The coupling coefficients 7;; and r:ik, depend only on the formal structure 
of the CSFs {01} but not on the particular form of the orbitals involved. They 
can, therefore, be calculated once and stored on a formula tape. However, as 
will be discussed later, it is in certain cases advantageous to re-evaluate them 
each time they are needed. From the coupling coefficients and CI coefficients, 
the first- and second-order density matrices can be obtained: 

(13) I J  
P ) r s  = 1 c I c J Y ~ S  

I J  

'rs.ru = xCICJrf:ru (14) 
I J  

For convenience in later expressions, we define the symmetrized density 
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Note that for MCSCF wavefunctions these matrices have non-vanishing 
elements only in the internal-internal block. According to the above 
definitions the following symmetry relations hold for real orbitals: 

We further define Coulomb and exchange matrices 

(Jk'),, = (rslkl)  (20) 

(Kk'),, = (rk I Is) (21) 
which are ordered subsets of the two-electron integrals. This ordering of the 
integrals with at most two external orbitals is essential for the matrix 
formulation of both MCSCF and MCSCF-CI methods. As indicated by the 
parentheses in Eqs (18)-(21), superscripts denote different matrices, and 
subscripts their elements. This convention will be followed throughout this 
chapter and the parentheses will often be omitted. The energy expectation 
value can now be written in the simple form 

Po) = tr(hD) + $1 tr(Jk'Plk) (22) 
kl 

where tr(A) denotes the trace of the matrix A. 

B. The Newton-Raphson Method and Related Optimization Procedures 

The purpose of the MCSCF method is to minimize the energy expectation 
value (Eq. (5)) with respect to the CI coefficients ( c I }  and the molecular-orbital 
coefficients X P i  with the auxiliary orthonormality condition in Eq. (3). Since 
the energy expectation value is a fourth-order function of the orbitals, its direct 
minimization is impracticable. It is, therefore, necessary to employ an iterative 
procedure and minimize in each iteration an approximate energy functional. 
Provided this functional is a reasonably good approximation to the true 
energy as a function of the changes in the orbitals and CI coefficients, its 
minimization will yield improved orbitals and CI coefficients. These are used 
as a starting guess in the next iteration. If the approximate energy functional is 
accurate to second order in the changes of the orbitals and CI coefficients, the 
optimization will be quadratically convergent, i.e. when approaching the final 
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solution the change of the energy in each iteration decreases quadratically. Far 
from the solution, however, the approximate second-order functional may not 
be a reasonable approximation. Special precautions are then necessary to 
ensure convergence. In fact, extensive work of several groups has been 
performed during the last few years in order to find stable and efficient 
algorithms which improve or even guarantee convergence in the non-local 

The common approach in most methods is to describe the orbital changes 
region39-41 ,46,48,50-5 3 

by a unitary (orthogonal) transformation of the form65966 

I?> = C l r >  uri (23) 

g=xu (24) 

(25) 

r 

i.e. 

with 

where R = - Rt is an antisymmetric matrix. Since U remains unitary for any 
choice of this matrix, the elements {Rri,  r > i> form a set of independent 
variational parameters. Some of the parameters R i j  may be redundant, i.e. they 
do not influence the energy to first order. This happens if the orbitals I i )  and 
l j )  have the same occupation number in all CSFs. An Ri j  is also redundant if 
the same first-order energy change can be achieved by a variation of the CI 
coefficients. Since redundant variables do influence the energy in higher order, 
they must be set to zero in order to avoid convergence difficulties. The 
redundant variables can be determined automatically as described in Ref. 67. 

In the Newton-Raphson method the energy is expanded up to second order 
in the variables Rri and the changes of the CI coefficients {AcI>. Collecting 
these parameters into a vector x, the stationary condition for the energy 
approximation 

U =exp(R)= 1 + R  + j R R +  ... 

E"'(x) = E'O' + gtx + ~x'Hx (26) 

takes the form of a system of inhomogeneous linear equations 

where 

is the energy gradient at the expansion point, and 

H~~ = (a2E/axiaxj)x=o (29) 
is the Hessian matrix of second energy derivatives. Explicit expressions for 
these derivatives will be given in Section 1I.C. The solution of Eq. (27) yields the 
parameters x, which are used to calculate new orbitals and a new CI vector. 
Experience has shown the radius of convergence of this method to be rather 



DIRECT MCSCF AND MCSCF-CI METHODS 9 

small. Far from the solution the Hessian often has many negative or very small 
eigenvalues, and convergence can then be achieved only by introducing a level 
shift which makes the Hessian positive definite and the step vector x 
sufficiently small: 

(H + K 1 ) X  + g = o  (30) 

If the level shift is chosen to be 

with 
K =  -A& 

E = Ag'x 

the linear equations are transformed into an eigenvalue equation of the form: 

For A = 1 this is known as the augmented Hessian (AH) method. It was first 
proposed by Leng~f i e ld~~ ,  and used with various modifications by several 
a ~ t h o r s ~ ~ l ~ ~ , ~ ~ , ~ ~ .  It can easily be proved that H-el is always positive 
definite if E is the eigenvalue obtained by solving Eq. (33). It can also be shown 
that the AH method is quadratically ~ o n v e r g e n t ~ ~ .  A value 1 > 1 has the effect 
of further reducing the step length 1x1. In fact, as shown by Fletcher6* and 

TABLE I 
Convergence behaviour of step-restricted augmented Hessian 

calculations (Fletcher optimization). 

Energy difference 

Iter. N," Cob CO' 

1 - 0.019350483 
2 - 0.016995391 
3 - 0.016661071 
4 - 0.002740679 
5 - 0.000038990 
6 - 0.00000001 3 
7 - 0.000000000 
8 
9 

10 
11 

- 0.016819128 
- 0.017490633 
- 0.013430376 
- 0.015795238 
- 0.003660917 
- 0.001 23 1696 
- 0.000050933 
- O.OOO001714 
- 0.000000003 
- 0.000000000 

- 0.005805628 
- 0.015098631 
- 0.0274268 13 
- 0.026688321 
- 0.00941 1258 
- 0.018214694 
- 0.016727086 
- 0.001016208 
- 0.000039643 
- 0.000000210 
- 0.000000000 

ON2 molecule; for details see Ref. 51; improved virtual orbitals (IVOs) 
were taken as starting guess. 
bCO molecule; for details see Ref. 51; IVOs were used as starting guess. 
'CO molecule; basis set and configurations as in footnote b, but 
canonical SCF orbitals used as starting guess; results from Ref. 55. 
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discussed in the context of the MCSCF problem by J#rgensen et ul.s1*s2354, 

Eq. (33) can be derived by minimizing the second-order energy approximation 
(Eq. (26) )  with the auxiliary condition 1x1 < s. If the maximum step length s is 
updated automatically according to a particular scheme after each iteration, 
convergence can be guaranteed. This does not mean, however, that conver- 
gence is achieved with a small number of iterations as desired for a second- 
order scheme. Test calculations published by Jqhgensen er ul. have shown that 
typically 6-10 iterations are necessary unless a very good starting guess from a 
nearby geometry is available (cf. Table I). We have similar experiences using 
this method. Of these iterations, only the last two or three are in the local 
region and show quadratic convergence behaviour. 

The origin of these difficulties is the orthonormality condition in Eq. (3). 
This causes the true energy to be periodic in individual orbital rotations. If 
only a single rotation between the orbitals I i )  and I J )  is considered, the unitary 

-0.0460 

-0.0470 

-0.0460 
2 
c L 

U r - 
o -0.0490 
2 + 
x D, 

-0.0500 
0 

0 
0 + 
- - 

-0,0510 

-0.0520 

-0 0530 
- 60 0 60 120 

Orb i ta l  ro ta t ion  (deg) 

0 

Fig. 1. The dependence of the exact energy and the second-order energy 
approximation E")(R) on the rotation 40-5a for a three-configuration 
MCSCF calculation for the HF molecule. The configurations were: 
la22u23a21n4, 1u22a24o2ln4 and la23u24azln4. For other details see 
Ref. 55. The expansion point at zero degrees corresponds to canonical 
SCF orbitals. E")(R) is also shown for two other expansion points. In these 

cases all orbitals except 40 and 5a were canonical SCF orbitals. 
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matrix U can be written in the form 

(34) ) cosa sina 
-.sins cosa 

u = (  
where the rotation angle a equals Rij .  Clearly, as illustrated in Fig. 1, the 
second-order energy approximation does not describe this periodicity. Its 
minimization, therefore, predicts steps that are either too large or even of the 
wrong sign. Fig. 2 shows the effect of level shifts which restrict the step size to 
certain values. It is obvious that convergence will depend sensitively on the 
choice of the step size. Of course, Figs 1 and 2 are very idealized examples. In 
cases with many orbital rotations which influence each other, the situation is 
much more complicated, and a single level-shift parameter cannot be expected 
to be optimal for all orbital rotations. 

From the above considerations it appears to be necessary to account more 
accurately, in the energy approximation, for the orthonormality of the 
orbitals. A straightforward extension of the Newton-Raphson method would 
be to expand the energy up to third or even higher order in R49,53,61. 

-0,0530 1 I I I 1 I I 

-60 0 60 120 1 

Orbital  rotation (deg)  

0 

Fig. 2. Second-order energy approximations employed in step-restricted 
augmented Hessian calculations for the same model and the same 
expansion points as in Fig. 1 .  For the expansions at zero degrees, various 

level-shift parameters have been used. 
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However, this would be only a partial improvement, since the true orbital and 
energy changes are of infinite order in R. Furthermore, each iteration would 
require a considerably more expensive integral transformation than a second- 
order scheme. Fortunately, it is possible to account for the orthonormality of 
the orbitals appropriately in a rather simple way already in a second-order 
method. This will be explained in the next sections. 

C. Second-order Energy Approximations 

The energy expectation value(Eq. (5)) is a function of the CI coefficients {c I }  
and the orbital changes 

IAi) = IT)- li) = J'Jr)TVi 

T = U -  1 = R +*RR + ... 

(35) 
r 

where 

(36) 
The dependence on the CI coefficients enters via the density matrices D and Pkl 

and will be considered explicitly later on. The exact energy is a fourth-order 
function of the orbital changes, i.e. E = P4'(T), and of infinite order in R. If the 
energy expansion is truncated to second order in the orbital changes, one 
obtains 

= + 2 1  (Ail h l j )  Dij  + 1 ( Ai I h I Aj)Dij  
i j  i j  

+ 1 [2(AijIkl)Pf; + (AiAjjkkl)Pfi + 2(AikllAj)Qf;] (37) 
i j k l  

where the symmetry relations in Eqs (17)-(19) have been used to sum 
equivalent terms. In terms of U and T, Eq. (37) takes the form 

E")(T) = E'O) + 2 tr(TthD) + tr(TthTD) 

+ 1 [2 tr(TtJk'PIk) + tr(TtJk'TPlk) + 2 tr(TtKk'TQJk))3 (38) 
kl 

Defining the matrices 

and 

A = hD + 1 Jk'PIk 
kl 

B = A + hTD + 1 ( Jk'TPIk + 2Kk'TQIk) 
k l  

= hUD + C(Jk'UPik + 2Kk'TQIk) 
kl 

(39) 

G'j = hDij + (JklPtj' + 2Kk1Qfj') (41) 
k f  
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the second-order energy can also be written in the more compact forms: 

E(')(T) = E(O) + 2 tr(TtA) + x(TtGijT)ij 
V 

= E(O) + tr[Tt(A + B)] (42) 
Note that, owing to the sparsity of the density matrices D, Pk' and Qk', all 
elements A,, and Bra ( I  a} external) vanish. Therefore, in a computer program 
only the rectangular blocks Ari and Bpi have to be computed and stored. For 
the sake of compact expressions, however, it is advantageous to deal formally 
with the full square matrices. 

As outlined in Section II.B, in the Newton-Raphson (NR) method the 
energy approximation in Eq. (42) is truncated to second order in R. The 
explicit form of Eq. (26) for fixed CI coefficients is therefore 

E(')(R) = E ( O )  + 2 tr(RtA) + tr(RRA) + C(RtGijR)ij (43) 
ij 

In contrast to this approximation, Eq. (42) contains terms up to infinite order 
in R. These additional terms account appropriately for the orthonormality of 
the orbitals. In fact, as shown in Fig. 3 for the same model calculation as in Figs 

-I -0.0460 

1 
-0.0530! I I I I I I I I I I I 

Orbi ta l  rotation (deg) 

Fig. 3. The dependence of the second-order energy approximation E"'(T) 
on the rotation 40-50 for the HF molecule as in Fig. 1. 
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1 and 2, E"'(T) is in close agreement with the true energy over a large range of 
rotation angles and predicts minima at nearly the correct angles. Thus, a much 
larger radius of convergence can be expected if E(')(T) rather than E(')(R) is 
used as approximate energy functional. It will be demonstrated also that the 
rate of convergence in the non-local region is much faster* than for a step- 
restricted augmented Hessian method. 

We will now investigate how the second-order energy E(')(T) at a particular 
point T = T(R) changes if T undergoes a small variation. Such a change can be 
described by multiplying U with a second unitary transformation U(AR): 

U(R, AR) = U(R)U(AR) 
= U + U(AR + fARAR + *.-) (44) 

The antisymmetric matrix AR = - ARt defines the change of U. Note that 
U(R, AR) # U(R + AR) since R and AR do not commute. Inserting this into 
Eq. (38) yields, up to second order in AR, 

E")(T, AR) = E")(T) + 2 tr(AR'A) + tr(ARARA) + x(ARtCijAR)i j  
ij 

= E(')(T) + tr[ARt(A + 8) ]  + tr(ARARA) (45) 
where 

A = UtB 

B = A + Ut hUARD + x(Jk'UARP'k + 2K"UARQ")) (47) 
k l  

(48) 

( 
T ; i j  = U+GijU 

One should note the similarity of Eqs (40) and (47). For U = 1 and T = 0 we 
have A = A and GiJ = Gij. Eq. (45) then reduces to Eq. (43) (Newton-Raphson 
approximation). 

D. The Variational Conditions 

The energy expectation value E = JF'~)(T) in Eq. (5) has a stationary point if 
the first derivatives at the expansion point T = 0 with respect to all Rri vanish, 
i.e. if 

(2E/2Rri)R = o  = 2(A - At),i = 0 for all r > i (49) 

The stationary point is a minimum if the Hessian matrix (Eq. (29)) is positive 
definite. Furthermore, the CI coefficients must satisfy the eigenvalue equation 

'This may not be true for rotations between strongly occupied orbitals, cf. Section 11. F. 
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This implies that for the electronic ground state E is the lowest eigenvalue of 
the Hamilton matrix 

= < @ , I / H I @ J >  

= xhijy!! $- 1 ( ~ 1 k l ) r ~ ~ k ~  (51) 
i j  i jk l  

If Eqs (49) and (50) are satisfied simultaneously, convergence of the MCSCF 
procedure is reached. 

Similarly, the energy approximation E'')(T) has a stationary point with 
respect to variations of T if the first derivatives 

= 2(A - 
A R = O  

vanish for all r >  i. These conditions are summarized in the matrix 

U+B - B+U = o (53) 
The stationary point is a minimum if the matrix of second derivatives 

is positive definite. The operator qi in Eq. (54) permutes the indices r and i. For 
T=O Eqs (52) and (54) reduce to the explicit formulae for the energy 
derivatives used in the NR or AH methods (Eqs (28) and (29)). 

In order to minimize the second-order energy approximation E(2)(T, c) with 
respect to the CI coefficients, it can be written in the form 

E'"(T, C) = c~H")c/c~c (55) 

(56) 

where the second-order Hamiltonian H(2) is defined as 

Hit,' = x(U'hU)ij# + 5 C ( i j [  kl)(2)riljkl 
i j  i j k l  

The integrals ( i j  k1)") are the second-order approximations to the exact two- 
electron integrals as a function of T: 

( i j lk l ) (2)  = - ( i j lkl)  + (UtJk'U),, + (UtJijU),, 

+ (1 + zij)(l + zki)(T+KikT)jl (57) 
According to this definition the second-order energy expressions in Eqs (38) 
and (55) are identical for a given set {c,T). The minimization of the energy 
'expectation value' (Eq. (55)) with respect to the { c I )  yields the eigenvalue 
equation 

(H'2' - E'2'l)c = 0 (58) 
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The minimum of E(2)(T, c) with respect to T and cis reached if the coupled non- 
linear equations (53) and (58) are satisfied simultaneously with the same T and 
c. In this case the energy eigenvalue in Eq. (58) becomes identical with the 
expectation values in Eqs (38) and (55). 

E. Solution of the Non-linear Equations 

In order to make the optimization procedure outlined in Sections 1I.C and 
1I.D practicable, a stable algorithm to solve the coupled non-linear equations 
(53) and (58) is necessary. The method should avoid the explicit construction 
and storage of large Hessian or Hamilton matrices in order to be flexible with 
respect to the number of orbitals and configuration state functions. Hence, for 
the optimization of the CI coefficients it is advantageous to employ a ‘direct 
CI’ procedure. In a direct CI method the desired eigenvector is obtained 
iteratively. In each iteration the ‘residual vector’ y = (H - El)c is calculated 
directly from the one- and two-electron integrals, a trial vector c and the 
coupling coefficients. The residual vector is then used to improve the trial 
vector c. Very similar techniques can be employed to solve iteratively large 
systems of linear equations or the non-linear equations (53) (‘direct MCSCF‘). 
The iterations needed to solve Eqs (53) and (58) are called ‘micro-iterations’. 
After convergence of the micro-iterations, the final matrix U is used to 
transform the orbital coefficients according to Eq. (24). Then a new set of 
operators Jk’, Kk’ is evaluated. Efficient algorithms for this partial four-index 
transformation have been described by several a ~ t h o r s ~ ~ * ~ ~ , ~ ~ .  The calcul- 
ation of these operators and a variational energy initializes the next ’macro- 
iteration’. 

In complete active space self-consistent field (CASSCF)  calculation^^^*^^^^^ 
with long configuration expansions the most expensive part is often the 
optimization of the CI coefficients. It is, therefore, particularly important to 
minimize the number of CI iterations. In conventional direct second-order 
MCSCF  procedure^^^,^^*^^, the CI coefficients are updated together with the 
orbital parameters in each micro-iteration. Since the optimization requires 
typically 100- 150 micro-iterations, such calculations with many configur- 
ations can be rather expensive. A possible remedy to this problem is to 
decouple the orbital and CI op t imi~a t ions~~ ,  but this causes the loss of 
quadratic convergence. The following method allows one to update the CI 
coefficients much fewer times than the orbital parameters. This saves 
considerable time without loss of the quadratic convergence behaviour. 

In order to minimize the second-order energy approximation P ( T )  for 
fixed CI coefficients a step-restricted augmented Hessian method as outlined 
in Section 1I.B (Eqs (30)-(33)) is used. While in other MCSCF methods this 
technique is employed to minimize the exact energy, it is used here to minimize 
an approximate energy functional. The parameter vector x is made up of the 
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non-redundant elements AR,, ( r  > i). The successive expansion points are 
defined by the matrix T = U - 1, which is updated according to Eq. (44) each 
time the eigenvalue equation (33) has been solved using Davidson’s 
technique”. In each micro-iteration, the residual vector 

y = g + (H - LE)X (59) 

has to be evaluated, where the elements of the gradient g and the Hessian H are 
given in Eqs (52) and (54), respectively. The damping parameter 1 is 
determined automatically as the Davidson iteration proceeds such that the 
step length 1x1 remains smaller than a prescribed threshold (e.g. 0.5). The 
explicit form of the residual vector is obtained by deriving Eq. (45) with respect 
to all ARri. It can be written in matrix form as 

Y = 2(8 - fit) -(A + At)AR + AR(A + At)  - REAR 

with E = 2 tr(ARtA) (60) 
The matrices A and have been defined in Eqs (46) and (47). In the Davidson 
procedure, the matrix AR and the residual Y are obtained as linear 
combinations 

AR = CCI,,,S~ (61) 
m 

Y =  Carnym 
m 

where S” are orthonormalized expansion vectors.* The Y” are calculated 
according to Eq. (60) with the S” instead of AR. The optimum parameters am 
are determined by solving a small eigenvalue problem”. A new expansion 
vector is then obtained as 

(63) m + l  - Sri - - Yri/(Dri - E )  

and subsequently orthonormalized to all previous S”. The diagonal elements 
Dri of the Hessian matrix (Eq. (54)) used in the update formula (63) are given by 

DOi = [2UtGiiU - (UtB + BtU)],, (64) 

(65) 

Usually it is sufficient to calculate these elements only once per macro- 
iteration with U = 1, such that the operators G’jneed not be transformed each 
time U is updated. If the Davidson procedure has converged (i.e. Y is smaller 
than a certain threshold) the unitary matrix U is updated according to Eq. (44), 
and a new matrix B is calculated. The process is repeated until Eq. (53) is 

Dji = 2[(UtGiiU)jj + (U’G”U)ii - 2(UtGjiU),] 
- (UtB + BtU)ii - (UtB + BtU), 

*In the orthonormalization process the non-redundant elements of the matrices S” form a vector. 
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satisfied to the desired accuracy. One should note that no expensive integral 
transformation is necessary after updating U. 

After an update of U it is possible to perform a direct CI step in order to 
improve the CI vector and the density matrices. In this case the calculation of 
B is done in two steps. First, the one-index transformations 

(Rk' )r j  = (Kk'T),j (68) 

are performed, and, at the same time, the second-order integrals ( i j [ k l ) ( ' )  are 
evaluated by performing the second half transformations 

(U'hU),, = (U'b),, (69) 

(ijikr)(2'e(UtJk'),j (70) 

(ik 1 jl)") t (Tt R k ' ) i j  (71) 

Since only the internal blocks of these transformed matrices are needed, the 
latter step is much cheaper than the first half of the transformation (Eqs (66)- 
(68)). The half-transformed operators fi, 3'' and Rk' are stored on disc, while 
the integrals (ijlkl)'2) are kept in high-speed memory and employed in the 
subsequent direct CI step. The direct CI procedure will be described in Section 
1I.H. The improved CI vector is used to evaluate new density matrices D, Pk' 
and Q". Finally, the new matrix B is calculated according to 

B = 6D + C(Jk'Pfk + 2Rk'Qfk) 
k1 

As compared with other direct second-order MCSCF , the 
above procedure has the following advantages: (i) A CI step is only performed 
if the transformation matrix U has converged to a sufficiently stable value as 
indicated by a small step size AR in the previous augmented Hessian iteration. 
This avoids unnecessary oscillations of the CI coeflicients and minimizes the 
number of C1 steps. (ii) Each update of the CI vector requires the cost of only 
two direct CI iterations, one for the calculation of the residual vector and one 
for the evaluation of the density matrices. If the orbitals and CI coefficients are 
optimized by a coupled Newton-Raphson or augmented Hessian procedure, 
each CI update should be about three times as expensive as a simple direct CI 
step. In practice, even a factor of 5 has been reported7'. (iii) Since the density 
matrices are recalculated exactly, the effect of the change of the CI vector on 
the orbitals is taken into account more accurately than in the Newton- 
Raphson method. This considerably improves convergence, particularly in the 
region far from the solution. 

In the (step-restricted) AH method as proposed by L e n g ~ f i e l d ~ ~ . ~ ~ . ~ ~  and 
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TABLE I1 
Convergence of CASSCF calculations for formaldehyde". 

Energy difference 

Without With With 
Iter. couplingb coupling' couplingd 

1 - 0.095301120 - 0.106133147 - 0.105835733 
2 - 0.009714002 - 0.001264146 - 0.001561529 
3 - 0.001696277 - 0.000000014 - 0.000000044 
4 - 0.000446948 
5 - 0.000141 13 1 
6 - 0.000052973 
7 - 0.00002291 1 
8 - 0.000010824 
9 - 0.000005361 

"Activespace: 3a1-7a,, lb,-3b,, lb,-2b1, 3644configurations; basis set 
and other details, see Ref. 55. 

each iteration, Eq. (54) is solved with fixed CI coefficients. The CI 
coeficients are optimized with R = 0 at the beginning of each iteration. 
'E'''(T, c)  fully optimized with respect to T and c. 
dSame as footnote c,  but only five updates of the CI coeficients in the first 
iteration. 

used in various modifications by Shepard et al.46, Golab et dS2 and Jensen 
and Agren7' the residual Y is calculated according to Eq. (60) for the special 
case U = 1 only. (If the orbital CI coupling is included, further terms have to be 
added to Y.) After having obtained the solution Y = 0 with U = 1 in these 
methods, the next macro-iteration is started, i.e. a four-index transformation 
to obtain new operators Jk' and Kk' is necessary. In our method this 
transformation is only performed after several applications of the AH method 
to the energy approximation E(2)(T). This greatly reduces the number of four- 
index transformations and the overall effort. Tables I1 and 111 demonstrate the 
fast convergence for some CASSCF calculations. It is seen that convergence is 
reached in only 2-3 macro-iterations. Similar fast convergence behaviour has 
been observed in many other applications. 

The total number of micro-iterations needed for solving the non-linear 
equations (53) is often fairly large. It is, therefore, important to make them as 
efficient as possible. In order to minimize the 1/0 time, the operators Jk' and 
Kk' should be kept in high-speed memory whenever possible, since their 
recovery from disc may be more expensive than their use in the calculation of 
Y. It is worth while to mention that we often found it advantageous to evaluate 
the operators G'j as intermediate quantities. These operators only change if 
the CI coefficients are updated, and their calculation is particularly helpful if 
many micro-iterations are performed between CI updates. The matrix B is 
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TABLE 111 
Convergence of CASSCF calculations for various states of NO". 

Energy difference 

her. X T I  a4n A% + B21-Ib b4Z- 

1 - 0.09099300 - 0.06561940 - 0.03737295 - 0.06733878 - 0.07296502 
2 -0.00135266 - 0.00930193 - 0.00004712 - 0.00282646 - 0.00229034 
3 - 0.00000001 - 0.00000786 - O.OOOoooOO - 0.00000012 - 0.00000013 

'Active space: 2u-60, In-2n; la, 2u orbitals frozen. The starting orbitals were canonical SCF 
orbitals for the 'Z+ state in all cases. R = 2.1 bohr. Basis set: 
HuzinagaT2 1 Is, 7p (innermost 5s. 3pcontracted), augmented on each atom by 2s, lp, 2d functions 
with the following exponents: 
N: s (0.051,0.020); p (0.042); d (0.88, 0.22); 
0: s (0.069, 0.027); p (0.053); d (1.2, 0.3); 
Final energies are: - 129.40697524, - 129.12317041, - 129.20572150, - 129.08492834 and 
- 129.14238817 hartree for the first to last columns, respectively. 
bSecond state of this symmetry optimized. 

then obtained as 

(P)ri = (A)ri  + C U,rC(G'jUAR)sj (73) 
s i  

which requires about M 2  N 2  operations. This is cheaper by a factor of $ M  per 
micro-iteration than the application of Eq. (47). This saving often outweighs 
the additional cost for the calculation of the G'j(Eq. (41), $N2M4 operations). 
The advantages are even greater if molecular symmetry can be employed, since 
only those blocks (Gij)rs are needed in which ( r , i )  and (s , j )  correspond to 
orbitals of the same symmetry. The evaluation of the operators G" is 
particularly efficient on vector computers, because it can be performed in 
terms of matrix multiplications with long vector lengths. In this case the 
elements G:;, P x  and QZ (fixed i j) form vectors, and the operators J:: and K:: 
form supermatrices. 

F. Optimization of Internal Orbital Rotations 

The optimization method outlined in Sections 1I.C-E shows very fast and 
stable convergence behaviour when applied to CASSCF wavefunctions, in 
which all orbital rotations between occupied orbitals are redundant. However, 
experience has shown that convergence is often much slower when orbital 
rotations between strongly occupied valence orbitals have to be optimized. It 
has been shown that this is due to the fact that the energy approximation 
E(')(T) is not invariant with respect to a unitary transformation between two 
doubly occupied orbitals55. If the 2 x 2 transformation in Eq. (34) is applied to 
a single Slater determinant with just two doubly occupied orbitals, the second- 
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order energy E(’)(T) takes the form (a = R1,, TI  = T,, = cos c( - 1, T,, = 
- TZ1 = sin a) 

where 
,?(,)(a) = el + e,(5 - 8 cos a +  4 cos’ a) (74) 

el = 2(h,  1 + h22)  (75) 
e ,  =(11)11)+(22)22)+4(11~22)-2(12112) (76) 

(77) 

For small a, Eq. (74) can be approximated by 

,?“)(a) = el + e,(l + $a4 + ...) 
Hence, E(’)(T) is not invariant with respect to a. In the Newton-Raphson 
approximation only terms up to second order in u are taken into account, and 
Eq. (77) shows that E(”(R) has the correct invariance property. The 
implications of these findings are demonstrated in Fig. 4. This figure illustrates 
for a simple MCSCF wavefunction how the exact energy and the second-order 
energy E(,)(T) change as a function of the rotation angle a between two 
strongly occupied orbitals. Since one of these orbitals is correlated, the exact 
energy is not invariant with respect to a, but it is very flat. The energy 
approximation E(’)(T) shows the expected a4 dependence. Therefore, the 
rotation angle predicted by minimization of E(,)(T) is much too small. In fact, 
too small step sizes for internal orbital rotations have been observed in many 
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Fig. 4. The dependence of various energy approximations on the rotation 2o-3a 
for the HF molecule as in Fig. 1. 
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applications. The Newton- Raphson or undamped augmented Hessian 
methods predict steps which are of wrong direction or too large ( + 61” and 
- 542‘, respectively; the optimum angle is - 53”). Therefore, the use of the NR 
or A H  method often does not remedy convergence difficulties for such 
rotations. 

The fact that the rotations between occupied orbitals cause most difficulties 
suggests a special treatment of these rotations. This is possible at rather 
modest expense, since for any unitary matrix U which transforms the internal 
orbitals only among themselves, the transformation of the internal one- and 
two-electron integrals h,,  and ( i j lk l )  is very cheap and can be performed in 
high-speed memory. Hence, we can start each macro-iteration with an 
optimization of the internal-internal orbital rotations and the CI coefficients 
only. As for the minimization of E”’(T. c) an uncoupled step-restricted 
augmented Hessian method can be used for this optimization. Since the 
number of internal- internal orbital rotations is small, the augmented orbital 
Hessian can be constructed and diagonalized explicitly. A CI update is done 
after 1-3 orbital optimization steps, which converge quadratically. Usually a 
total of 2-3 CI updates is sufficient. Since in each step the one- and two- 
electron integrals are transformed exactly, the process yields a variational 
energy which is fully optimized with respect to the parameter subspace 
considered. 

Owing to the fact that the internal orbitals change in this optimization 
process, the operators h,,, J:f and K:f also change. I t  is not necessary, however, 
to perform a second four-index transformation. Instead, the modified 
operators are obtained from the original ones by the much cheaper 
transformations 

/I,, -+ (U’hU),, (78) 

J:i+ C(U’J”U)rsUiku,I (79) 
1J 

I J  

The simplest method to perform this transformation requires about i N 2  M4 
operations. Symmetry greatly reduces the effort. On vector machines the 
transformation can be performed in terms of matrix multiplications with long 
vector lengths (all L’,,U, for a given k , l  form a vector. the operators form 
supermatrices) and is therefore very fast. Using the transformed operators and 
orbitals, the optimization process is continued as described in Sections 1I.C-E. 

The separatc optimization of the internal orbital rotations at the beginning 
of each macro-iteration improves convergence considerably. However, this 
treatment so far neglects the coupling to the internal-external rotations. This 
coupling creates additional rotations R i j  between the internal orbitals when 
the non-linear equations (53) are solved. Convergence can be further improved 
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TAB1.E IV 
Convergence of CASSCF calculations for the electronic ground 

state of CS,'. 

Energy difference 

Without With With int. opt. 
her. int. optb int. opt.' and abs? 

1 - 0.077490937 - 0.085838896 - 0.087484601 
2 - 0.005439995 - 0.0046441 81 - 0.003059391 
3 - 0.003146803 - 0.000066851 - 0.00000601 8 
4 - 0.002194213 - 0.000000082 - 0.000000000 
5 - 0.001326677 
6 - 0.000661 122 
7 - 0.000240696 
8 - 0.000047226 
9 - 0.000002333 

10 -0.000000007 

"Geometry: R = 3.1 bohr, a = 105". Basis set: 
C: Huzinaga'* 8s,4p, innermost 5s, 3p contracted; in addition one s 
(0.05), one p (0.05), and one d (0.5). 
S :  Huzinaga" 1 Is, 7p, innermost 6s, 4p contracted; in addition one s 
(0.05), one p (0.05), and one d (0.5). 
Active space: 7a,-10a1, 6b2-8b,, 2b1-3b,, 2a, (3564 CSFs, 11 100 
determinants). The la,-5a,, lb2-4b,, l b ,  and la, orbitals were 
canonical SCF orbitals and frozen; the 6a, and 5b, orbitals are doubly 
occupied and optimized. 
bNo extra optimization of internal-internal orbital rotations. 
'Internal-internal orbital rotations fully optimized in the beginning of 
the second to fourth iteration. 
dAs in footnote c, but in addition one absorption step ofelements Ri, in 
each iteration (see text). 

TABLE V 
Convergence of test calculations for the N, and CO molecules. 

Energy difference 

Iter. N," NZb CO' cod 
1 - 0.052436691 - 0.053795845 - 0.056168288 - 0.1 14267390 
2 - 0.003387148 - 0.002049568 - 0.002605968 - 0.006158512 
3 - 0.000023449 - 0.000001875 - 0.000001306 - 0.000002589 
4 - 0.000m00 - 0.000000000 - 0.000000000 - 0.000000000 

"N, molecule; using IVOs as starting guess; basis set and configurations as in Ref. 51 and Table 1. 
One absorption of elements Rij  per iteration. 
bAs in footnote a, but two absorptions of elements Rij per iteration. 
'CO molecule; using IVOs as starting guess; basis set and configurations as in Ref. 51, and Table I .  
One absorption of elements Rij per iteration. 
dAs in footnote c, but canonical SCF orbitals used as starting guess. 
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by an iterative ‘absorption’ of these parameters R i j  into the orbital basis. This 
can be accomplished as follows. After solving the non-linear equations a 
unitary transformation matrix is formed from the elements Ri j  N )(U - Ut)ij 
( i , j  internal only), and the transformations in Eqs (78)-(80) are repeated. The 
internal orbitals are transformed correspondingly. Then, some additional 
micro-iterations are necessary to solve the non-linear equations (53) and (58) 
with the new operators. In this case a good starting approximation is available 
by forming a unitary matrix from the previous Rai and R,j = 0. This process 
can be iterated until all R i j  remain zero when solving Eq. (53). In that case the 
internal orbital rotations have been treated to highest possible order with the 
operators JkL and Kk’ of the present macro-iteration. Since this is also true for 
the optimization of the CI coefficients, about the same convergence behaviour 
is expected for CASSCF (no internal-internal orbital rotations) and more 
general MCSCF calculations. In practice, we found it sufficient to absorb the 
internal-internal elements R,, into the present orbital basis only once per 
macro-iteration. Furthermore, the initial optimization of the internal-internal 
orbital rotations is not necessary in the first macro-iteration. 

Tables IV and V demonstrate the convergence improvements due to the 
internal optimization procedure. The first column of Table IV shows a 
calculation without the extra optimization of the internal orbital rotations. In 
the second column of Table 1V the internal-internal rotations are optimized 
only at the beginning of the second and subsequent macro-iterations, but no 
absorptions of the elements Rij  have been performed. In the third column one 
absorption step has been done in each macro-iteration. The drastic reduction 
of the number of four-index integral transformations justifies the additional 
effort needed for the transformations in Eqs (78)-(80). The wavefunctions 
optimized in Table V are the same as those in Table I, and a comparison of 
these tables clearly demonstrates the convergence acceleration achieved with 
our method. The observed convergence behaviour is better than quadratic 
immediately from the first iteration even if bad starting orbitals are used. In the 
calculation for CO with SCF orbitals as a starting guess (last column in Table 
V), the initial orbital Hessian matrix had 21 negative diagonal elements, and 
probably a greater number of negative eigenvalues. In this case the initial 60 
and 271 orbitals were of Rydberg rather than of antibonding character. For N, 
it is shown in Table V that more than one absorption step in each iteration 
somewhat improves convergence. However, because it is usually not possible 
to save an iteration in this way, it  is not recommended to perform more than 
one absorption step. 

G. Treatment of Closed Shells 

In many applications several orbitals are doubly occupied in all configur- 
ations of the MCSCF wavefunction. For such orbitals it is possible to simplify 
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the algorithm, since the sub-blocks of the density matrices which involve 
closed-shell orbitals are of very simple structure. As shown below, they can be 
eliminated completely from the formalism. 

The simplest way to deal with energetically low-lying closed-shell core 
orbitals is to take them directly from a preceding SCF calculation without 
further optimization. In this case one has to eliminate all rows and columns 
corresponding to core orbitals from the matrices Pkf ,  Q k f ,  R, A, B, etc., and 
replace the one-electron Hamiltonian h by a core Fock operator F". This 
operator is calculated in the A 0  basis* according to 

where 

is the core first-order density matrix in the A 0  basis, and c(d) is defined as 

wVpv = 1 qAP I P 4  - 8 P P  141 (83) 
P a  

The operator Pc has to be evaluated only once. It is transformed into the 
current MO basis at the beginning of each macro-iteration, i.e. 

F'= X T ' X  (84) 
Whenever the operator G(D) is used in the following, it will be assumed that it 
has been transformed into the MO basis similarly. 

The freezing of core orbitals is usually a very good approximation if they are 
energetically well separated from the valence orbitals. However, the full 
optimization of all orbitals is sometimes desirable. This is the case, for instance, 
when the MCSCF calculation is followed by the evaluation of energy 
gradients with respect to the nuclear coordinates. It is, therefore, useful to 
consider explicitly the simplifications which are possible for closed-shell 
orbitals. 

Using the anticommutation relations in Eqs (lo)-( 12) it is straightforward 
to derive the following expressions for the case that 1 i) is a closed-shell orbital: 

(85) 

D . . =  26.. 
1J l J  

pfj  = 26&, - $(6ifDjk -k 6ikDjf) 

Using these relations, we obtain ( I  i )  closed shell, l j )  closed or open shell): 

Ari = 2(GC),i (87) 
G" = 2dijCc -I- cDjkLik (88) 

k 

*In this section all quantities in the A 0  basis are marked with a tilde. 
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where 

and 

The summations in Eq. (89) run over open-shell orbitals only. For the case that 
t i )  and l j )  are open-shell orbitals, the same quantities are given by 

G" = F'D,j + C ( Jk'P$ + 2KkfQL{) (92) 
kllopen) 

These formulae differ from Eqs (39) and (41) only in the use of F' instead of h 
and the restrictions of the summations. Hence, all second-order density matrix 
elements involving closed-shell orbitals have been eliminated. However, all 
operators Jk' and Kk' are still needed in Eq. (88). Since the computational effort 
for their evaluation depends strongly on the number of optimized orbitals, it 
would also be useful to eliminate the operators Jkl and Kk' involving any 
closed-shell orbitals. As shown in the following, this is possible in a direct 
MCSCF procedure. 

In each micro-iteration, we have to evaluate 

or the similar quantity B. For the case that li) is a closed-shell orbital, we 
obtain 

B , ~  = ~(G'u),, + ~ ( L ~ ~ T D ) , ,  (94) 
j 

Defining the first-order change of the density matrix D as 

AD = TD + DT+ 

Bri = 2(G'U + C(AD)),i 

(95) 

(96) 

Eq. (94) can be rewritten as 

The operator G(AD) describes the first-order change of G'. It can be obtained 
directly from the two-electron integrals in the A 0  basis (cf. Eqs (83) and (84)). 
This requires transforming AD into the A 0  basis: 

A B  = XADX' (97) 

From Eq. (96) the relation of our method to a closed-shell Hartree-Fock 
procedure is apparent. For the case that there are only closed-shell orbitals, the 
variational conditions for El2'(T) (Eq. (53)) take the form 

(98) (U'B),, = 2(U'F'U + U'G(AD)),; = 0 for all a,i 
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In the usual first-order SCF procedure the second term accounting for the 
change of the Fock operator is neglected. 

Next we have to consider the columns of B which correspond to open-shell 
orbitals (li) open shell). These columns are given by 

Bri = 1 (F'U)rjDji + C [(Jk'U)rjPF + 2(Kk'T),,Qf] 
jkl(open) j(open) 

+ 1 1 Dik(LkjT)rj 
j(closed) k(open) 

(99) 

The first three terms on the right-hand side of Eq. (99) differ from Eq. (40) only 
by the restrictions on the summations and the replacement of h by F'. The last 
term accounts for the change of the Fock operator F' caused by a variation of 
the closed-shell orbitals. It can be brought into the form 

1 1 Dik(Lk'T), = (G(ADc)D)ri ( 1 00) 
j(closed) k(open) 

where 
(AD')rs = (TD' + DCTt)rS 

= 2  1 (Trjajs + Tsjarj) (101) 
j(closed) 

is the first-order change of the closed-shell density matrix in the MO basis. 
It follows from the above that the price one must pay for the elimination of 

the operators Jk' and Kk' involving closed-shell orbitals is the calculation of the 
two operators G(AD) and C(AD') from the two-electron integrals in the A 0  
basis in each micro-iteration. If a large number of micro-iterations are 
necessary to solve the non-linear equations (53), this might be rather expensive. 
However, it is expected that energetically low-lying 'core orbitals' do not 
depend much on the changes of the valence orbitals and converge rapidly. It 
should, therefore, be possible to freeze all parameters Rri which involve core 
orbitals in intermediate micro-iterations, and evaluate the operators G(6D) 
and G(AD') only a few times. Such an approximation is not appropriate, 
however, for closed-shell valence orbitals. For these orbitals the operators L'j 
should be calculated explicitly. 

In order to update the core orbitals the denominators Dri in Eq. (63) are 
needed. Neglecting terms arising from the change of the operator G', these can 
be approximated by 

Dri = 2(Gir - Gri) ( 102) 
Again, this approximation is not appropriate if li) is a valence orbital. 

H. A Direct Configuration-interaction Method for 
Complete Active Space Calculations 

In the wavefunction optimization procedure outlined in the previous 
sections the coefficients { c I }  can be optimized by any available CI procedure. 
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For short CI expansions one could simply construct and diagonalize the 
Hamiltonian matrices H'". For longer CI expansions a direct CI procedure 
must be employed. Here the desired eigenvectors are obtained iteratively 
without explicitly calculating and storing the Hamilton matrix. The basic 
operation in a direct CI iteration is the evaluation of the residual vectors* 

y" = (H - E")c" (103) 
for the required electronic states n. In terms of the molecular integrals and the 
coupling coefficients y can be written as 

i j  J 

The coupling coefficients ( @ I I E i j I @ J )  and ( @ I I E i j , k l l @ J )  in principle need 
only be constructed once if they are stored on a formula tape. In our program 
this step can be performed by a graphical unitary group approach (GUGA)27. 
However, for large CASSCF calculations, the formula tape becomes exceed- 
ingly long. This limits the length of the configuration expansion which can be 
handled by this method to about lo4 configurations. For longer CASSCF 
expansions the only remedy is to recalculate the coupling coefficients each 
time they are needed. Clearly, this requires a particularly efficient algorithm. 

Recently, Siegbahn73 proposed the use of the fa~tor izat ion '~- '~  

( @ I /  E i j , k l  I @ J )  = ( @ I  I E i j I @ K  ) (@K I Ekl  I @ J )  - b j k  ( @ I  I E i l  I @.I ) (l'O5) 
K 

where the summation runs over the full spin-eigenfunction basis. This 
factorization follows from the anticommutation relations in Eqs (lo)-( 12). The 
formula tape then need only contain the one-particle matrix elements 
(@, I Eijl OK ), ordered after the intermediate state label K .  Even though this 
greatly reduces the number of stored coupling coefficients, the length of the 
formula tape can still be rather large. Hence, sorting and processing of the 
coupling coefficients may take considerable time. 

A further development was made by Knowles and Handy6'. They proposed 
to use Slater determinants instead of spin eigenfunctions as a basis {@,}. In this 
case the coupling coefficients ( @jIEi j I@J)  take only the values k 1 or 0, and 
can rapidly be recalculated each time they are required. With a suitable 
'canonical' addressing scheme for the determinants and CI coefficients, the 
construction and use of the coupling coefficients can be vectorized. This makes 
it possible to use modern vector processors very efficiently. 

The calculation of the residual vector is done in the following steps: 

= Yk:JcJ (106) 
J 

*Here and in the following we omit the superscripts indicating a second-order approximation. 


