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Preface

Cosmology has made huge steps forward over the last twenty-five years, both
through new observations as well as through phenomenological models. Impor-
tant cosmological parameters have been measured with unprecedented accuracy.
For instance, measurements of the cosmic microwave background have severely
constrained the possible models describing the early universe.

At the same time, string theory has progressed as a most promising candidate
for a quantum theory of gravity. Simultaneously, it provides a unified framework
for all four fundamental interactions, including the standard model of elementary
particles in addition to gravity.

Nevertheless, important questions remain. On one hand, theorists aim for a mi-
croscopical understanding of the effective theories describing the early universe.
Also, the physics close to the initial singularity of the universe remains to be un-
derstood. This requires a full quantum theory of gravity. On the other hand, new
and forthcoming precision measurements, such as of the fluctuations in the cos-
mic microwave background, will provide possibilities for further detailed tests of
theories describing the early universe.

Recently, string theory has taken up the challenge of deriving experimentally or
observationally testable predictions. This applies in particular to cosmology, as the
examples in this book show. This is in particular due to the fact that cosmology
allows one to access very high-energy scales in the early universe. An important
activity in recent years has been to obtain inflation, that is a period of accelerated
exponential expansion in the early universe, within string-theoretical models. The
forthcoming experiments may potentially discriminate between different classes
of these models. For instance, some of these models predict new structures in the
power spectrum of cosmic microwave background fluctuations in a very natural
way. Moreover, recent new developments in string theory have shed new light on
the possibility that microscopic superstrings created in the early universe could
have been magnified to macroscopic size during the cosmic expansion, possibly
leading to astronomically observable consequences. Also, string theory may be use-
ful in gaining new understanding of the origin of the cosmological constant and
of the nature of dark energy. It may also provide mechanisms by which primordial
gravitational waves can be generated.
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It should also be mentioned here that new experimental predictions from string
theory are also emerging in relation to elementary particle physics. For example,
cross-sections for reaction processes have been calculated under the assumption of
a low string scale of about 1 TeV. These can be tested at the Large Hadron Collider
(LHC) at the CERN laboratory in Geneva, whose experiments will begin to produce
data soon. Also, the searches for supersymmetry may have consequences both for
string theory and for cosmology. Furthermore, the correspondence between super-
gravity in Anti-de Sitter spaces and conformal field theories (AdS/CFT correspon-
dence) and its generalizations have provided new relations between string theo-
ry and strongly coupled gauge theories, in particular gauge theories relevant for
heavy-ion physics and for the quark-gluon plasma, which is expected to play a role
in structure formation in the early universe. In the near future, the interrelations
of string theory with both cosmology and elementary particle physics will be put to
the test.

In view of this background of both new theoretical ideas and new observations,
this book aims at providing a snapshot of current ideas and approaches in string
cosmology. The emphasis is put both on presenting theoretical ideas as well as
on deriving testable predictions from them. At the same time, the book follows
a pedagogical aspect of providing an introduction to present-day research topics
for graduate students and scientists of neighboring fields.

The book begins with an introduction to both cosmology and string theory and
provides a summary and glossary for the remaining chapters. Subsequently, distin-
guished string cosmologists present their areas of research. In Chapters 2 and 3,
Marco Zagermann and Cliff P. Burgess introduce the important concept of string
inflation, emphasizing open string and closed string aspects, respectively. In Chap-
ter 4, Robert C. Myers and Mark Wyman discuss large-scale cosmic superstrings.
In Chapter 5, Gary Shiu presents the non-Gaussianities in the power spectrum
of cosmic microwave background fluctuations which arise in certain string infla-
tion models. In Chapter 6, Robert Brandenberger introduces string gas cosmolo-
gy which addresses the question of describing the earliest moments of cosmolo-
gy, before the standard effective field theory approaches become valid. String gas
cosmology also provides an ansatz alternative to inflation. In Chapter 7, Sumit
R. Das introduces new approaches to describing spacetime singularities, which
are based on gauge–gravity dualities and on matrix models. In Chapter 8, Ax-
el Krause presents the cosmological implications of heterotic M-theory, in par-
ticular in view of the dark energy problem and of the generation of gravitational
waves.

Though the areas presented are diverse, the book aims at emphasizing the cross-
relations between the individual topics, and there are numerous cross-references
between the different chapters. As an example consider the power spectrum of
fluctuations in the cosmic microwave background: This is defined and introduced
in Chapter 1. In Chapters 2 and 3, the form this spectrum assumes in string mod-
els of inflation is discussed. In Chapter 5, possible non-Gaussian contributions to
this spectrum arising in string inflation models are presented. In Chapter 6, this
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spectrum is discussed within string gas cosmology, where it assumes a form which
differs from the inflationary models in some respects.

It remains to be said that although the book provides an overview over major
topics in present-day string cosmology, there are further important concepts in
cosmology which, due to the diversity and wealth of the research area, it is not
possible to cover here. Nevertheless two of them should be named in this preface:
The first is the landscape approach to string vacua. The second is the ekpyrotic sce-
nario of colliding branes, which might provide an alternative to inflation. However,
after studying the present book the reader should be equipped with the necessary
background information for quickly becoming acquainted with those subjects, too.

Finally, I would like to thank all authors of the individual chapters for their contri-
bution, Martin Ammon for his help in compiling the manuscript, René Meyer for
proof-reading, Felix Rust for help with figures, and Anja Tschörtner at Wiley-VCH
for her professional handling of the publishing process.

München, September 2008 Johanna Erdmenger
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1

1

Introduction to Cosmology and String Theory
Johanna Erdmenger and Martin Ammon

1.1

Introduction

Cosmology and string theory are two areas of fundamental physics which have
progressed significantly over the last 25 years. Joining both areas together provides
the possibility of finding microscopic explanations for the history of the early uni-
verse on the one hand, and of deriving observational tests for string theory on the
other. In the subsequent seven chapters, different aspects of string cosmology are
introduced and discussed.

This chapter contains a summary of the basics of both cosmology and string
theory in view of providing a reference and glossary for the subsequent chapters.
The basic concepts are introduced and briefly described, emphasizing those aspects
which are used in the remainder of this book.

There is a wealth of excellent textbooks of both cosmology and string theory,
to which readers interested in further details are referred to – for example [1–7].
Reviews on string cosmology include [8–11]. An introduction to string cosmology
is found in the textbook [12].

Cosmology is introduced in Sections (1.2)–(1.4) below, and string theory in Sec-
tions (1.5)–(1.11).

1.2

Foundations of Cosmology

On the basis of experimental evidence, the common scenario of present-day cos-
mology is the model of the hot big bang, according to which the universe originated
in a hot and dense initial state 13.7 billion years ago, and then has expanded and is
still expanding. The most essential feature of the present-day universe is that it is
homogeneous and isotropic, that is its structure is the same at every point and in
every direction.

This “standard model of cosmology” has received substantial experimental back-
up, beginning with the discovery of the cosmic microwave background (CMB) ra-
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diation by Penzias and Wilson in 1964 [13]. In recent years, a wealth of precise data
has been collected. We list just a few of the important new observations here: In the
1990s, observations of galaxies with the Hubble Space Telescope led in particular
to an accurate measurement of the Hubble parameter. Fluctuations in the cosmic
microwave background radiations have been observed with the COBE satellite, and
subsequently with the BOOMERanG experiment. A further increase in precision
came with the WMAP satellite launched in 2001, whose measurements of the pa-
rameters of the standard model of cosmology are consistent with the conclusion
that the present-day universe is flat. Moreover, these measurements support the
scenario of cosmic inflation. They will be supplemented by further data from the
PLANCK satellite in the near future.

1.2.1

Metric and Einstein Equations

The homogeneity and isotropy of the universe is best described by the Robertson–
Walker metric, which in (–, +, +, +) signature commonly used in string theory reads

ds2 = –dt2 + a2(t)
»

dr 2

1 – κr
+ r 2(dθ2 + sin2 θdφ2)

–
. (1.1)

Here a(t) describes the relative size of space-like hypersurfaces at different times.
κ = +1, 0, –1 stands for positively curved, flat, and negatively curved hypersurfaces,
respectively. The frequency of a photon traveling through the expanding universe
experiences a redshift z of the size

1 + z =
λobserved

λemitted
=

apresent

aemitted
, (1.2)

where λ denotes the photon wavelength.
Using the scale factor a(t) we define the Hubble parameter

H ==
ȧ
a

, (1.3)

with ȧ(t) = da/dt. As was first discovered and suggested by Edwin Hubble, and
has been verified with high precision by modern observational methods, the most
distant galaxies recede from us with a velocity given by the Hubble law,

v � Hd , (1.4)

where d is the distance between us and the galaxies considered.
For describing the expanding universe it is often useful to use the term e-foldings,

defined as e == ln(a(tf)/a(ti)), which describes the growth of the scale factor between
some time ti and a later time tf.

The dynamics governing the evolution of the scale factor a(t) are obtained from
inserting the Robertson–Walker metric into the Einstein equation

Rμν –
1
2

R g μν = 8πGTμν , (1.5)
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where Rμν and R are the Ricci tensor and scalar, G the Newton constant, and Tμν

the energy–momentum tensor. The universe is best described by the perfect fluid
form for the energy–momentum tensor of cosmological matter, given by

Tμν = (ρ + p)uμuν + pg μν , (1.6)

where uμ is the fluid four-velocity, ρ is the energy density in the rest frame of the
fluid, and p is the pressure in the same frame. For consistency with the Robertson–
Walker metric, fluid elements are comoving in the cosmological rest frame, with
normalized four-velocity

uμ = (1, 0, 0, 0) . (1.7)

The energy–momentum tensor is diagonal and takes the form

Tμν =

 
ρ

pgij

!
, (1.8)

where gij stands for the spatial part of the Robertson–Walker metric, including the
factor of a2(t). Inserting the Robertson–Walker metric (1.1) into the Einstein equa-
tion (1.5) with the energy–momentum tensor (1.6), we obtain the first Friedmann
equation

H2 ==
„

ȧ
a

«2

=
8πG

3

X
j

ρj –
κ

a2 , (1.9)

with the total energy density ρ =
P

j ρj, where the sum is over all different types of
energy density in the universe. Moreover, we have the evolution equation

ä
a

+
1
2

„
ȧ
a

«2

= –4πG
X

j

pj –
κ

2a2 . (1.10)

Here pj labels the different types of momenta. Equations (1.9) and (1.10) may be
combined into the second Friedmann equation

ä
a

= –
4πG

3

X
j

`
ρj + 3pj

´
. (1.11)

The first Friedmann equation may be used to define the critical energy density

ρc ==

0
@X

j

ρj

1
A

c

=
3H2

8πG
� 10–29 g

cm3 , (1.12)

for which κ = 0 and space is flat. The density ratio

Ωtotal ==
ρ
ρc

(1.13)
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thus allows us to relate the total energy density of the universe to its curvature
behavior,

Ωtotal > 1 ⇔ κ = 1 ,
Ωtotal = 1 ⇔ κ = 0 ,
Ωtotal < 1 ⇔ κ = –1 .

(1.14)

Recent WMAP observations have shown that today, Ωtotal = 1 to great accuracy,
which leads to the conclusion that the universe is flat.

Energy conservation, ∇μTμν = 0, gives the relation

ρ̇ + 3H(ρ + p) = 0 . (1.15)

This relation is not independent of the Friedmann equations. Using both of them,
energy conservation (1.15) may be rewritten as

d
dt
`
ρa3´ = –p

d
dt

a3 . (1.16)

1.2.2

Energy Content of the Universe

There is good experimental evidence, in particular from WMAP measurements,
that the cosmic fluid contains four different components, and that the total energy
density ρtotal in the universe is equal to the critical density ρc given by (1.12). This
implies

Ωtotal =
X

j

Ωj = 1 , Ωj =
ρj

ρc
, (1.17)

with Ωj denoting the present-day fraction of the energy density contributed by the
j-th fluid component. The four components of the cosmic fluid are the following:
1. Radiation: this component contains predominantly photons, most of which cor-
respond to the cosmic microwave background. The photons are thermally distrib-
uted with temperature T = 2.715 K. The gas of photons satisfies the equation of
state

pRad =
1
3

ρRad . (1.18)

Moreover, there are also cosmic relic neutrinos in this fluid component, thermally
distributed with T = 1.9 K. The total energy density of radiation is a small fraction,

ΩRad W 8 ~10–5 , (1.19)

of the total present-day energy density.
2. Baryons: since their rest mass is much larger than their kinetic energy, their
equation of state is

pB � 0 . (1.20)
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Their energy fraction is

ΩB W 4% . (1.21)

3. Dark Matter: observations of galaxy movement and of matter influence on fluctu-
ations in the CMB provide evidence that there has to be a large amount of long-lived
nonrelativistic matter subject to gravitation, which is not detectable by its emitted
radiation. Determining the exact structure of this dark matter remains one of the
essential challenges of modern cosmology. Just as for the baryons, dark matter has
the equation of state

pDM � 0 , (1.22)

while its energy fraction is

ΩDM W 26% , (1.23)

so that the overall density of nonrelativistic matter is

ΩM == ΩB + ΩDM W 30% . (1.24)

4. Dark Energy: a fourth, similarly unexplained contribution to the cosmic fluid is
dark energy, which for a total energy density Ω = 1, has to be present in the universe
with the large fraction

ΩDE W 70% . (1.25)

Its equation of state is expected to be

pDE = –ρDE . (1.26)

Observational evidence that such a fluid component with negative pressure must
be present include tests of the Hubble expansion rate using supernovae which
imply that the overall expansion rate of the universe, the Hubble parameter H =
ȧ/a, is increasing at present. The Friedmann equation (1.11) implies that this can
only happen for positive energy density if the total pressure is sufficiently negative,
p < –1/3ρ. Since none of the other fluid components has negative pressure, a large
fraction of such a component must be present.

Each of the above equations of state implies that wj = pj/ρj is time independent,
with

wRad =
1
3

, wM = 0 , wDE = –1 . (1.27)

Inserting these values into the energy conservation condition in the form (1.16) we
obtain, with a0 the present-day value of a,

ρj = ρj,0

“a0

a

”αj

, αj = 3(1 + wj) , (1.28)
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where

αRad = 4 , αM = 3 , αDE = 0 . (1.29)

The different equations of state for the different fluid components thus imply that
their relative abundances differ in the past universe as compared to the present-day
observations since their energy densities vary differently as the universe expands.
The history of the universe splits into periods where radiation, matter, and dark
energy dominate the evolution of the total density, consecutively. The transition be-
tween the radiation and matter-dominated regimes is called radiation–matter equali-
ty and occurs at a scale given by the comoving wave vector of magnitude k � (aH)eq.
Note also that the Friedmann equation (1.9) implies that for w > –1/3, the scale fac-
tor a(t) grows more slowly than the Hubble scale H–1(t).

It is useful to define the comoving frame which moves along with the Hubble flow.
A comoving observer is the only one which sees an isotropic universe.

1.2.3

Development of the Universe

During its expansion the universe experienced a number of decisive physical
events. The earliest cosmological event for which there is observational evidence
is nucleosynthesis, which began about three minutes after the big bang, and lasted
for about fifteen minutes. At this time, the universe cooled below 1 MeV and light
nuclei, hydrogen, helium, lithium, and beryllium, began to accumulate from pro-
tons and neutrons. The observational evidence for nucleosynthesis comes from
measuring the relative abundance of these elements.

The radiation–matter crossover described above occurred at a redshift (1.2) of z ~
3600, or about 50 000 years after the big bang. After this crossover, density inho-
mogeneities can grow only logarithmically with a while they grow linearly with a
during radiation domination.

At a redshift of around z ~ 1100, or about 380 000 years after the big bang,
recombination of nuclei and electrons into electrically neutral atoms occurs. This
is the origin of the cosmic microwave background which corresponds to the light
which is free to move through the universe after recombination. Beforehand, pho-
tons interact with the charged medium surrounding them on short scales. The
CMB corresponds to a surface of last scattering for the photons. Measurements
of the CMB temperature fluctuations, which are of the order δT/T ~ 10–5, pro-
vide direct information about the size of primordial density fluctuations at this
time.

Finally, galaxy formation occurs in the universe once the primordial density fluc-
tuations have been amplified to a scale at which they are no longer well-described
by linear perturbations. According to the cold dark matter model (for reviews see
for instance [14]), the distribution of galaxies observed today also requires the
presence of nonrelativistic (cold) dark matter, together with nonlinear fluctua-
tions.
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1.3

Inflation

1.3.1

Puzzles Within the Big Bang Model

When considering the initial conditions characterizing matter in the big bang sce-
nario of an expanding universe, we encounter a number of puzzles. Three of them
are discussed in the subsequent text. The initial conditions fix the matter distrib-
ution in the universe at the Planckian time of tp = 10–43 s when classical gravity
becomes applicable.

Horizon problem. The horizon problem relates to the fact that the universe is so
extremely homogeneous. The Friedmann equation (1.9) implies that the universe
expands so quickly that thermal equilibration would violate causality. A dimension-
al analysis for the ratio ai/a0 of the initial and the present-day value of the scale fac-
tor a(t) shows that our universe was initially larger than a casual patch by a factor of
the order ȧi/ȧ0. If expansion was always decelerated by an attractive gravity force,
which implies ȧi/ȧ0 >> 1, then the homogeneity scale was always larger than the
causality scale. In fact, using the present size of the universe, the Planck time and
the temperature of the universe now and at Planck time, one finds that ȧi/ȧ0 ~ 1028.
This would require an extraordinary fine tuning.

Flatness problem. While the horizon problem relates to the initial conditions for
the spatial distribution of matter, the flatness problem relates to the initial veloci-
ties. These must satisfy the Hubble law (1.4). The ratio of the kinetic to the total
energy of matter in the universe is again given by (ȧi/ȧ0)2 and if this ratio is very
large, a very unnatural fine tuning between the kinetic energy associated to Hub-
ble expansion and the gravitational potential energy is required. This may be seen
from the Friedmann equation (1.9) which implies

Ω(t) – 1 =
κ

(Ha)2 , (1.30)

and thus, since the present-day Ω0 has been observed to be very close to unity,

Ωi – 1 = (Ω0 – 1)
„

ȧ0

ȧi

«2

< 10–56 (1.31)

for ȧi/ȧ0 ~ 1028. Such an astonishing fine-tuning appears implausible.
Initial perturbations. A third puzzle, related to the other two, concerns the origin

of the original inhomogeneities needed to explain the large-scale structure of the
present-day universe.

1.3.2

The Concept of Inflation

A concept which can solve the puzzles mentioned is inflation. The idea of inflation,
first suggested in [15], is that there is an initial stage of accelerated expansion where
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gravity acts as a repulsive force. If gravity was always positive, then ȧi/ȧ0 is neces-
sarily larger than one since gravity decelerates expansion. ȧi/ȧ0 < 1 is possible only
if gravity is repulsive during some period of expansion. This period of repulsive
gravity can in particular explain the creation of our universe from a single causally
connected region. Moreover, since it accelerates expansion, small initial velocities
inside a causally connected region become very large.

In the inflationary period we have ä > 0. From the Friedmann equation (1.11),
which may be written in the form

ä = –
4πG

3
(ρ + 3p)a , (1.32)

for the total energy density ρ and the total momentum p. We read off that ä > 0
requires ρ + 3p < 0. This implies that the strong energy dominance condition,
ρ + 3p > 0, must be violated during inflation. One example which violates this
condition is a positive cosmological constant for which p W –ρ.

Inflation can only appear during a limited period in time for consistency with
cosmological observations. In simple inflationary models it takes place in the peri-
od of tinf ~ 10–36 – 10–34 s after the big bang. It must end with a “graceful exit”, after
which ä becomes negative again.

Let us consider how the condition p = –ρ may be realized. The matter and its
interactions during inflation is simply modeled by a single scalar field ϕ = ϕ(t), the
inflaton. This can be viewed as an order parameter describing the vacuum of the
physical theory determining the very high energy physics. This gives rise to

ρ =
1
2
ϕ̇2 + V(ϕ) , p =

1
2
ϕ̇2 – V(ϕ) , (1.33)

with potential V(ϕ). The condition p W –ρ requires ϕ̇2 << V(ϕ), so the kinetic energy
must be smaller than the potential energy. This is referred to as “slow roll”. The
Klein–Gordon equation or ρ̇ = –3H(ρ + p) imply

ϕ̈ + 3Hϕ̇ + V ′ = 0 , V ′ ==
∂V
∂ϕ

. (1.34)

The second term in this equation corresponds to a friction term proportional to H.
Generically if friction becomes large, we may neglect the second derivative term ϕ̈

and find an approximate asymptotic solution to (1.34). With ϕ̈ = 0, (1.34) implies

ϕ̇ W –
„

V ′

3H

«
. (1.35)

From the slow-roll condition 1/2ϕ̇2 << V we then obtain the two conditions

ε << 1, η << 1 (1.36)

for the slow-roll parameters

ε ==
1
2

„
MpV ′

V

«2

, η ==
M2

pV ′′

V
. (1.37)
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Single-field slow-roll inflation leads to important consequences for density fluctua-
tions, as discussed in Section 1.4.3 below, and in further detail in Chapters 2 and 3.
It turns out that these consequences can be described just in terms of the two
small parameters ε and η, together with the value of the Hubble parameter during
inflation.

1.4

Fluctuations

1.4.1

Characterization of Small Fluctuations

An important question of cosmology is to study how the large-scale structure of the
universe which is observed today, including galaxies and clusters of galaxies, devel-
oped from the initially flat and homogeneous universe. The large-scale structure
has evolved from initially small fluctuations during the expansion of the universe.
These small fluctuations are taken as initial conditions of the big bang model.

In linear approximation, the fluctuations of the Robertson–Walker metric (1.1),
given by

ds2 =
ˆ(0)g μν + δg μν(x)

˜
dx μ dxν , (1.38)

may be decomposed as follows using the symmetry properties of the unperturbed
Robertson–Walker metric. The linear approximation applies to fluctuations on
length scales below the Hubble scale. It implies that the different fluctuation
modes decouple and have a Gaussian distribution.

The δg00 component has the form

δg00 = 2a2φ , (1.39)

with scalar φ. The spacetime component δg0i has the form

δg0i = a2(∂iB + Si) , (1.40)

where the index i runs over the three space-like components. The vector Si satisfies
∂iSi = 0. The fluctuation component δgij is a tensor under 3-rotations and may be
written as

δgij = a2(2ψδij + 2∂i∂jE + ∂iFj + ∂jFi + hij) , (1.41)

where ψ, E are scalars, ∂iFi = 0, hi
i = 0, ∂ihi

j = 0.
The fluctuations are thus described by the scalar fluctuations φ, ψ, B, E, the vector

fluctuations Si, Fi, and the tensor fluctuations hij. The latter described gravitation-
al waves. All of these functions change under coordinate reparametrizations, but
may be regrouped into coordinate invariant expressions. A particularly important
coordinate invariant combination of scalar fluctuations is

Φ == φ –
1
a
ˆ
a (B – E ′)

˜′ , (1.42)
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where the prime denotes differentiation with respect to conformal time η, defined
by dt = a(t)dη. The fluctuation Φ is the relativistic equivalent of the Newton po-
tential. The Einstein equation (1.5) relates the metric fluctuations to the energy–
momentum tensor and its fluctuations.

1.4.2

Power Spectrum

The power spectrum of fluctuations P(k) is obtained by transforming to Fourier
space. In the linear approximation, a nonrelativistic Fourier transformation is ap-
propriate (see for instance [16]). In particular, for the scalar fluctuations Φ of (1.42)
we have

Φ(r, t) =
Z

d3k
(2π)3 Φk(t) exp

ˆ
i(k/a) · r

˜
, (1.43)

where homogeneity and isotropy of the background imply that Φk(t) depends only
on k = |k| and t. k is the wave vector in the comoving frame which moves along
with the Hubble flow. The physical wavelength is λ = 2πa/k. The power spectrum
is obtained from the autocorrelation function �Φ(r),

�Φ(r) == 〈Φ(r)Φ(0)〉 =
Z

d3k
(2π)3 Ps(k) exp

ˆ
i(k/a) · r

˜
. (1.44)

If we assume that the average denoted by the brackets 〈〉 is given by a Gaussian
distribution, we have

Ps(k) == |Φ(k)|2 (1.45)

for the power spectrum. A dimensionless measure of the power spectrum is
obtained by performing an angular integration within the Fourier transforma-
tion,

〈Φ(r)Φ(0)〉 =

∞Z
0

dk
k

Δ2
Φ(k)

sin(kr/a)
kr/a

, (1.46)

with

Δ2
s (k) ==

1
2π2 k3Ps(k) . (1.47)

The spectral index ns is defined by

ns – 1 ==
d ln Δ2

s

d ln k
. (1.48)
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A spectral index of ns = 1 corresponds to a scale invariant spectrum, also called
a Harrison–Zel’dovich spectrum. For tensor fluctuations or gravitational waves,
denoted by hij in (1.41), the spectral index is defined by

nT ==
d ln Δ2

T

d ln k
. (1.49)

These fluctuations have not yet been observed.
The structure of the spectrum is influenced by the expansion of the universe.

For instance, for a spectrum which is scale invariant for modes k < keq, with keq ==
(aH)eq the momentum scale at radiation–matter equality, we have a spectrum of
the form Δ2

Φ(k) ∝ 1/k4 for modes k > keq. This behavior arises since modes with
k > keq re-enter the Hubble scale before radiation–matter equivalence, while modes
with k < keq do so afterwards (remember that aH shrinks during both matter and
radiation dominated periods).

1.4.3

Fluctuations and Inflation

Inflation has a significant impact on the fluctuation spectrum which originates
from two facts. First, there are new contributions to the equations of motion for
the metric fluctuations which originate from fluctuations of the scalar inflaton
field. Second, while the scale aH shrinks during matter and radiation dominance,
it grows during inflation, such that length scales L ~ a grow faster than H–1. There
is a horizon corresponding to the graceful exit at which inflation ends, and where
the length scales grow slower than the Hubble scale again.

In inflationary models, the fluctuations � of the inflaton φ are obtained from
linearizing the equation of motion

qφ – V ′(φ) = 0 (1.50)

after replacing φ → φ + � and linearizing in � as well as in the metric fluctuations.
The time dependence of the background forces � and the scalar metric fluctua-
tion Φ to mix with each other. For instance, for k >> aH the solution for Φ of the
coupled equations shows a damped oscillation. In the opposite regime k << aH, the
coupled fluctuations equations read, in the slow-roll approximation,

3H�̇ + V ′′(φ)� + 2V ′(φ)Φ = 0 , 2M2
PHΦ = φ̇� . (1.51)

The solutions are, after transforming to momentum space,

�k = Ck
V ′(φ)
V(φ)

, Φk = –
Ck

2

„
V ′(φ)
V(φ)

«2

, (1.52)

with Ck a constant of integration. This constant is set by the initial conditions at the
horizon where the universe exits the inflation period. Since all classical fluctuations
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are damped away during the inflation period, the new perturbations are fueled by
quantum fluctuations. The quantization for the inflaton perturbations reads

�(x) =
Z

d3k
(2π)3

ˆ
ckuk(t) exp( ik · r/a) + c∗ku∗

k(t) exp(– ik · r/a)
˜

, (1.53)

where c∗k , ck are the creation and annihilation operators and uk(t) exp( ik·r/a) is a ba-
sis of eigenmodes of the background field equation. Evaluating �k at the horizon
exit the, where k = aH, determines the integration constant to be

Ck = uk(the)
„

V
V ′

«
he

. (1.54)

Using this, the result for the power spectrum for the scalar metric fluctuations
eventually reads

Δ2
Φ(k) =

„
V

24π2M4
Pε

«
he

, (1.55)

with ε the slow-roll parameter defined in (1.37).
For the spectral index (1.48) we obtain, using that

d
d ln k

= –M2
P

„
V ′

V

«
d

dϕ
(1.56)

in the slow-roll approximation,

ns – 1 = –6ε + 2η , (1.57)

with ε, η as in (1.37), where the right hand side is evaluated at horizon exit. This im-
plies that ns < 1. Therefore, inflation predicts a red tilt in the scalar power spectrum,
since ns < 1 means that the amplitude for smaller momentum modes is larger than
the amplitude for larger momentum modes. Similarly, for tensor modes inflation
predicts that

Δ2
T(k) =

2V
3π2M4

P
, (1.58)

and

nT = –2ε (1.59)

for the tensor spectral index (1.49).
This concludes our brief introduction to cosmology.

1.5

Bosonic String Theory

We now turn to the essentials of string theory, emphasizing aspects relevant to the
subsequent chapters. We begin by discussing bosonic string theory, after which
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we focus on superstring theories and dualities between these theories. Moreover,
the unification of consistent superstring theories in ten dimensions into M-theory
will be discussed. Also, there is a short introduction to D-branes and to compact-
ification scenarios of string theory to four spacetime dimensions. Finally, short
introductions to string thermodynamics and to the AdS/CFT correspondence are
given.

Whereas in conventional quantum field theory the elementary particles are
point-like objects, the fundamental objects in perturbative string theory are one-
dimensional strings. As a string evolves in time, it sweeps out a two-dimensional
surface in spacetime, the world-sheet of the string, which is the string counterpart
of the world-line for a point particle. To parametrize the world-sheet of the string,
two parameters are needed: the world-sheet time coordinate τ = σ0, which param-
etrizes the world-line in the case of a point-like particle, and σ = σ1 parametrizing
the spatial extent of the string. The embedding of the world-sheet of the fundamen-
tal string into the (target) spacetime is given by the functions X μ(τ, σ), which are
also referred to as the embedding functions or target spacetime string coordinates.
Since the action of a point-like particle is given by the length of the world-line, the
natural generalization to the action of a string propagating through flat spacetime
is given by the area of the world-sheet,

S = –
1

2πα′

Z
d2σ
q

– det ∂αX μ∂�Xμ , (1.60)

where d2σ = dσ0 dσ1 = dτdσ. This is the Nambu–Goto action of a fundamental
string. The determinant is taken with respect to α, � = 0, 1, where α and � label
the world-sheet coordinates. Moreover, we use the short-hand notation ∂α = ∂/∂σα.
The only free parameter appearing in this action is α′, which is related to the length
of the string, α′ = l2s . The dimensionful prefactor T = 1/(2πα′) can be interpreted as
the string tension or the energy per length. To get rid of the square root in the action
of the fundamental string in view of quantization, an auxiliary field hα�(σ0, σ1) is
introduced, which has to satisfy the constraints given below. This gives rise to the
Polyakov action,

S = –
1

4πα′

Z
d2σ

√
–hhα�∂αX μ∂�Xμ , (1.61)

which is classically equivalent to (1.60) using the equations of motion of hα�. In
(1.61), h is the determinant of the matrix hα� and hα� is the inverse matrix of
hα�, that is hα�h�γ = δα

γ . The auxiliary field hα� is called the world-sheet metric. The
Polyakov action is invariant under the following symmetries:

– Poincaré transformations
These transformations are global symmetries of the world-sheet fields X μ of
the form

δX μ = Λμ
νX ν + a μ and δhα� = 0 , (1.62)

where Λ μ
ν and a μ are Lorentz transformations and spacetime translations,

respectively.
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– Reparametrizations
The Polyakov action is invariant under reparametrizations since a change in
the world-sheet parametrization of the form σ α → f α(σ) = σ′α with

hα�(σ) =
∂f γ

∂σα

∂f δ

∂σ� hγδ(σ′) and X ′μ(τ′, σ ′) = X μ(τ, σ) (1.63)

does not change the action.
– Weyl transformations

The action is also invariant under rescalings of the world-sheet metric hα�

hα� → eω(σ,τ)hα� and δX μ = 0 . (1.64)

Since this transformation is a local symmetry of the action, the energy–
momentum tensor of the field theory defined on the world-sheet is traceless,
that is T a

a = 0. After quantization, Weyl Symmetry is potentially broken by
a conformal anomaly. In string theory, this anomaly has to be absent, which
is only the case if the spacetime dimension of the target space is D = 26
for bosonic string theory. Moreover, there are restrictions on the form of the
background fields allowed (see Section 1.5.4).

The local symmetries may be used to choose a gauge which brings the components
of the world-sheet metric into a simple form. In particular, the equations of motion
of the action can be simplified by choosing the gauge

hα� = ηα� =

 
–1 0
0 1

!
. (1.65)

In this and other conformal gauges, the equation of motion for X μ(τ, σ) is a rela-
tivistic wave equation,`

∂2
τ – ∂2

σ
´

X μ = 0 , (1.66)

supplemented by the Virasoro constraints

∂τX μ∂σXμ = 0 , (1.67)

∂τX μ∂τXμ – ∂σX μ∂σXμ = 0 . (1.68)

These constraints are derived from the equations of motion of the auxiliary field
hα� in the Polyakov action and have to be satisfied to ensure the equivalence of the
two actions (1.60) and (1.61) at the classical level.

1.5.1

Open and Closed Strings

By applying variational methods, it is possible to derive not only the equations of
motion but also the possible boundary conditions for the string. There are two
different types of strings: open and closed strings.
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1.5.1.1

Closed Strings

Closed strings are topologically equivalent to a circle, that is they do not have end-
points. If we parametrize these strings by the parameter σ ∈ [0, 2π[, the boundary
conditions read

X μ(τ, 0) = X μ(τ, 2π), ∂σX μ(τ, 0) = ∂σX μ(τ, 2π), hα�(τ, 0) = hα�(τ, 2π) .

(1.69)

This means that the string coordinates X μ are periodic, that is the endpoints are
joined to form a closed loop. The mode expansion for the closed string is simply
given by a pair of left and right-moving waves, which travel around the string in
opposite directions,

X μ(τ, σ) = X μ
R(τ – σ) + X μ

L (τ + σ) . (1.70)

XR (XL) are the right (left) moving parts, respectively. The mode decompositions of
the left and right-moving parts are given by

X μ
R(τ – σ) =

1
2

x μ
0 + α′p μ

R(τ – σ) + i

r
α′

2

X
n=/0

1
n

α μ
n e–2in(τ–σ) (1.71)

and

X μ
L (τ + σ) =

1
2

x μ
0 + α′p μ

L (τ + σ) + i

r
α′

2

X
n=/0

1
n

α̃ μ
n e–2in(τ+σ) . (1.72)

x μ
0 and p μ are the center-of-mass position and momentum of the string, respective-

ly. The periodicity condition requires that p μ
R = p μ

L , and reality of X μ requires the
conditions α μ

–n = (α μ
n )� and α̃ μ

–n = (α̃ μ
n )�. Moreover, the center-of-mass momentum

p μ can be identified with the zero mode of the expansion by

α μ
0 = α̃ μ

0 =

r
α′

2
p μ . (1.73)

1.5.1.2

Open Strings

For open strings, two different boundary conditions in each direction μ of the
spacetime are possible, Neumann or Dirichlet boundary conditions. In the case
of Neumann boundary conditions, the component of the momentum normal to
the boundary of the world-sheet vanishes, that is

∂σXμ(τ, 0) = ∂σXμ(τ, π) = 0 . (1.74)

Note that the open string is now parametrized by σ ∈ [0, π]. The boundary condi-
tion implies that there is no momentum flowing through the ends of the string.
The mode decomposition of the embedding function X μ(τ, σ) is given by

X μ(τ, σ) = x μ
0 + 2α′p μτ + i

√
2α′
X
n=/0

1
n

α μ
n e–inτ cos(nσ) . (1.75)


