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PREFACE

This book presents basic and advanced principles underlying the multivalent

interactions that are prevalent in biological systems. To illustrate important or
complex concepts, the book provides up-to-date examples of synthetic multi-

valent molecules, their design, and their biological benefits. Functional roles

displayed by such molecules of both natural and synthetic origin are well

documented in biology, where they exert unique and crucial activities at a

level not readily achievable by monovalent molecules. The concept of multi-

valent design is now accepted as an e¤ective strategy—in particular, for de-

signing ligands, inhibitors, and drugs that influence biological systems potently

and selectively.
Over the past 15 years, diverse diciplines have generated a growing interest

in the biomedical application of multivalent design. The goal of this book is to

share the findings in this exciting area of research by providing a systematic

summary of experimentally tested case studies of multivalency. I believe that a

single book serves best to collect such scattered research material in one place

and to discuss it in a consistent and introductory format.

The book focuses on practical examples of synthetic multivalent molecules

reported broadly in the literature. It consists of five chapters. In Chapter 1
I introduce the multivalent molecule and its structural elements, describe the

mechanistic basis that accounts for the benefits of multivalent interaction, and

provide a short summary of biological functions displayed by multivalent

molecules. In Chapters 2 to 4 I provide practical examples derived from bio-

logical targets in viral, bacterial, and mammalian cells, respectively. In each

chapter I review in a similar format the design concept, synthesis, and biologi-

cal activity of multivalent molecules: in particular, those of synthetic origin.
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Typically, the chapter format begins with a brief description of a target from a

structural and functional viewpoint to provide a rationale for multivalent de-

sign, followed by the main discussion. In Chapter 5 I summarize various as-

pects of synthetic methods used in the synthesis of multivalent molecules, and I
conclude with a summary of combinatorial approaches developed in the library

design of multivalent molecules. The book ends with an appendix that presents

tabular summaries of both examples treated in this book and untreated. The

targets selected for discussion are comprehensive but, of course, do not purport

to be a complete list.

The book is written for a broad community of audiences, comprising edu-

cators, graduate students, and professional researchers in academia and the

(bio)pharmaceutical industry, particularly those who perform interdisciplinary
research in organic chemistry, chemical biology, biological chemistry, medici-

nal chemistry, pharmacology, and medicine. Specifically, it would be most val-

uable as a reference book for those scientists interested in finding new ideas

and developments in areas of receptor–ligand interaction, carbohydrate-based

medicines, enzyme inhibitors, toxin inhibitors, DNA(RNA)–drug association,

antibiotics, antiviral agents, anti-inflammatory drugs, and anticancer thera-

peutics.

It is my pleasure to express great gratitude to Professor Koji Nakanishi of
Columbia University, who introduced me to the importance of multidisciplin-

ary bioorganic studies and encouraged this publication. I am also indebted to

Professor George M. Whitesides of Harvard University and sincerely appreci-

ate his directing me to continue research in multivalency. In 1996, Professor

Whitesides and several colleagues, including Professor John Gri‰n of Stanford

University, Dr. Mathai Mammen of Harvard, and James Tananbaum of Sierra

Ventures, founded Advanced Medicine, Inc. to develop opportunities in multi-

valent drug research and development. I joined Advanced Medicine in 1997 to
help further develop ideas in multivalent drug design. Today, Advanced Medi-

cine has evolved into a vibrant pharmaceutical company, Theravance, Inc.,

under the guidance of our Chairman, Roy Vagelos (former CEO of Merck

Pharmaceuticals), and current CEO, Rick Winningham. I am indebted to my

colleagues at Theravance for ongoing collaborations in medicinal chemistry. In

particular, I am sincerely thankful to Dr. Ed Moran, Dr. Thomas Jenkins, and

Dr. Mathai Mammen for their editorial assistance with this manuscript.

I am also very grateful to Professor Fred Brewer at Albert Einstein College
of Medicine and Dr. Obadiah Plante at Ancora Pharmaceuticals for their val-

uable comments during the review process. Publication of this book would not

have been possible without the support and patience of Hyun-Joo, Gilbert, and

other family members. Finally, I wish to thank the editors and sta¤ members at

John Wiley & Sons, particularly Jonathan T. Rose, for their e¤orts to complete

this project smoothly and in a timely manner.

Seok-Ki ChoiPalo Alto, California
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NOTES FOR ORGANIZATION
AND CLASSIFICATION

Given diverse aspects of classification related to multivalent ligands and in-

hibitors, I wish to provide a road map to the structure and organization of this
book. Its main contents consist of three chapters that are divided according to

the origin of targets: viruses (2), bacteria (3), or mammalian cells (4). Within this

division, materials are grouped further on the basis of target class and struc-

tural composition of multivalent molecules. Therefore, typical headings of each

chapter start with an organism (e.g., influenza virus), proceed to a description

of a target under a certain class (receptor: hemagglutinin), followed by a discus-

sion of a group of multivalent molecules (e.g., divalent, trivalent, polyvalent,

. . . , sialic acid). Under such a format, multivalent ligands from the same class
can be reviewed collectively and comparatively as to their design concept, syn-

thesis, and biological activity. A short outline of each chapter is given below.

Chapter 2 covers multivalent examples from viral targets such as influenza

virus and the human immunodeficiency virus (HIV). Several classes of multi-

valent inhibitors targeting viral surface proteins (influenza hemagglutinin), en-

zymes (influenza neuraminidase, HIV-protease), and nucleic acids (as inter-

calators and as binders at minor or minor groove) are presented. The chapter

ends with a summary of synthetic multivalent antigens that are designed to
mimic the surface of influenza, HIV, or foot-and-mouth disease virus.

Chapter 3 focuses on bacterial cells, a pathogenic system that proves to be

well validated for a multivalent approach. This chapter provides ample exam-

ples of multivalent inhibitors that display enhanced activity against a wide

range of receptors or ligands expressed on a bacterial surface (d-ala-d-ala, lipid
A, adhesins), toxins (cholera, anthrax), enzymes (transpeptidase), and nucleic

acids (ribosomal RNA).
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Chapter 4 treats multivalent molecules that inhibit or modulate mammalian

cells. The list of tested macromolecular targets is extensive. Selected examples

include surface receptors (hepatic asialoglycoprotein receptor, selectins), en-

zymes (acetylcholine esterase), G-protein-coupled receptors (opioid receptor),
and ion channels (cyclicnucleotide-gated channel). Applications in nucleic acid

are demonstrated by a daunorubicin dimer acting as a DNA intercalator, and a

hairpin-shaped polyamide dimer acting as a minor groove binder. In addition,

several types of synthetic vaccines are illustrated, including multivalent globo-

H presented on protein carrier as the one mimicking cancer cell surface. Dis-

cussion of such diverse cellular targets should help to better understand multi-

valent concepts and applications in drug development.

Finally, the organization of the book aims for easy access to and concise
comparison of multivalent molecules for a given receptor. However, readers

might be interested in looking at the features of multivalent molecules or-

ganized from di¤erent aspects regardless of their target families, functions, or

cellular origins. In a sense, it might be useful to compare multivalent design

methods within a broadly defined boundary based on target location (mem-

brane-bound versus soluble) and target valency (divalent, trivalent, . . . , multi-

valent). The nature of assembly of multivalent sites is considered to be impor-

tant as well, such that targeting to a single-subunit multivalent receptor can be
distinguished from a multisubunit receptor complex composed of either identi-

cal subunits (homo) or di¤erent subunits (hetero). To complement such inter-

esting features, a table (Table 20) is given in the appendix as a cross-reference

to present such information for major targets: for example, whether they

are membrane-bound, soluble, homo-trivalent, or hetero-divalent. Readers

are advised to utilize these additional aspects of classification when selecting

materials.
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ABBREVIATIONS

ACE a‰nity capillary electrophoresis

AChE acetylcholine esterase

Ala alanine

AmB amphotericin B

b-AR b-adrenergic receptor

ASGP-R asialoglycoprotein receptor

AT-III antithrombin III

AZT azidothymidine
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BSA bovine serum albumin

bZIP basic leucine zipper protein

CA-II carbonic anhydrase II

Caspase-3 cysteine aspartyl protease-3

CD cyclodextrin
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cGMP cyclic guanosine monophosphate
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CNG cyclic nucleotide-gated (CNG)

Con A concanavalin A

CPMV cowpea mosaic virus
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CsA cyclosporin A
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DC-SIGN dendritic cell–specific ICAM-3 grabbing nonintegrin

DHFR dihydrofolate reductase

DLS dynamic light scattering

EC e¤ective concentration

EGFR epidermal growth factor receptor

ELAM-1 endothelial leukocyte adhesion molecule-1

ELISA enzyme-linked immunosorbent assay

EPO-R erythropoietin receptor

ERK extracellular regulated kinase

FGF fibroblast growth factor

FKBP FK506-binding protein

FMDV foot-and-mouth disease virus

FRAP FKBP-12-rapamycin-associated protein
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G-CSF granulocyte-colony-stimulating factor

GGBP glucose–galactose binding protein

Glc glucose
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gp120 glycoprotein 120

GPCR G-protein-coupled receptor
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HA hemagglutinin

HAI hemagglutination inhibition

HIV human immunodeficiency virus
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HPPK 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase

HT 5-hydroxytryptamine or serotonin

IC50 concentration at 50% inhibition

ICAM-3 intracellular adhesion molecule-3

IgG immunoglobulin G
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Ka association constant
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1
INTRODUCTION

1.1 NOMENCLATURE AND DEFINITIONS

1.1.1 Valency

According to Mammen et al. [1], the valency of a molecule, or that of a bio-

logical entity such as a cell, virus, or bacterium, represents the number of sep-

arate structural units of the same or a similar type that are connected to the
molecule or entity. Thus, if a molecule presents two tethered, identical copies of

binding elements, such as a ligand, it is classified as a divalent molecule (li-

gand). Schematic examples are provided in Figure 1.1 to describe the concept

of valency in the context of receptor and ligand interaction. For example, di-

valent binding occurs when a divalent ligand associates with a divalent receptor

through the simultaneous interaction established between two receptor–ligand

pairs. Similarly, multivalent or polyvalent interactions are defined as specific

simultaneous associations of multiple ligands present on a molecular construct
or biological surface that bind to multiple receptors presented on a comple-

mentary entity.

The classification of multivalent molecules presented above is simply based

on the structural aspects of molecules, such as the number of structurally iden-

tical ligands per multivalent construct; hence, the term structural valency is used

to classify such molecules. However, not all ligands present on a multivalent

molecule are involved in interactions with a multivalent receptor displaying
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multiple sites, and a certain portion of the tethered ligands are functionally in-

active (Figure 1.1). Thus, for a particular multivalent receptor–ligand associa-

tion, the valency of a multivalent ligand is not necessarily equivalent to its
structural valency. This property is described by Dam et al. [2] as functional

valency. The concept of functional valency is of significant interest; however, it

has been explored in only a limited number of studies. In this book the valency

of a multivalent molecule normally refers to structural valency unless its func-

tional valency is available otherwise.

Multivalent interactions are now understood to be a ubiquitous strategy

that has evolved in nature for a wide range of functions, including selective

recognition of multivalent antigens by antibodies [3] (e.g., bivalent anti-DNP
IgG [4], decavalent IgM, bivalent anticardiolipin antibody binding to b2-
glycoprotein I lipoprotein [5]), neutrophil adhesion and rolling on the surface of

an activated endothelial cell [6], and the tight adsorption of a virus particle or

bacterium to a host cell surface [7–9] (Figure 1.2). These multivalent inter-

actions are more potent and selective over the analogous monovalent interac-

tion and are therefore only weakly inhibited by most monovalent ligands, es-

pecially when the binding cleft for the monovalent ligand is shallow. When

designing inhibitor molecules to interfere with multivalent interactions, the
most e¤ective strategy is to use multivalent molecules. Such multivalent mole-

cules proved to be highly potent inhibitors: in particular, against surface–

surface interaction as observed in virus–cell and cell–cell adhesion (Figure 1.2)

[10,11].

monovalent ligand monovalent receptor monovalent association

multivalent receptormultivalent ligand multivalent association

divalent ligand divalent receptor divalent association

n n n

trivalent receptortrivalent ligand
(structural valency)

divalent association
(functional valency)

Figure 1.1 Definitions of structural and functional valence as illustrated in mono-

valent, divalent, and multivalent (polyvalent) interaction.
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1.1.2 Linkers

The synthesis of multivalent molecules is performed by tethering multiple

copies of a ligand or binding element with a linker. A linker provides not only a

covalent connection but also appropriate spacing between tethered ligands such

that multiple receptor–ligand pairs interact simultaneously without being

forced to mismatch. A linker used for a multivalent molecule has to be stable
chemically, biochemically, and enzymatically. In contrast, many linkers used in

bioconjugate molecules, such as those designed into prodrugs or delivery tools

[12], must be chemically or enzymatically labile in order to provide the release

of monovalent drugs at a certain stage or site after delivery into a biological

system. In addition, the use of linker in prodrugs is not intended for modula-

tion of binding activity of prodrugs such that covalently attached ligands from

prodrugs may not bind to its receptor in either monovalent or multivalent

fashion until its ligands are released free. The linker must be at least a neutral
contributor to biological activity, so as not to interfere with the intrinsic activ-

ity of the tethered ligand. In some cases, the linker may even contribute favor-

ably provided that productive contacts are made between the linker and the

target surface.

cell

IgG

antigenic surface

cell surface

cell surface

virus
(bacterium)

multivalent
ligand

multivalent
ligand

multivalent
ligand

Figure 1.2 Representative examples of natural multivalent interactions and their syn-

thetic multivalent inhibitors.
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In this book, the terms linkers and spacers are used interchangeably. A

linker needs to be designed taking a number of factors into account, such as

linker length between connected ligands, conformational property (i.e., flexible,

rigid), and the nature of linker functional groups (e.g., amide, ether, amine). As
long as the linker is long enough to allow bivalent occupation of tethered li-

gands at receptor sites, a rigid linker contributes more favorably to tight asso-

ciation than does a flexible one, as predicted from considering the conforma-

tional entropy of linkers, examined by Mammen et al. [13]. This is because a

large number of linker configurations existing in the unbound state are going to

a single configuration in the bound state, a thermodynamic feature associated

with an entropic cost. Therefore, the larger the initial number of configurations,

the greater this cost. A very important assumption, however, is that the rigid
linker orients the ligands such that multivalent binding is possible. With this

assumption, an unsaturated or aryl-incorporated linker, for example, experi-

ences a lower conformational entropic cost upon association than does a satu-

rated or thioether-containing flexible linker. Amide- and ether-based linkers

provide an intermediate flexibility. However, the entropic e¤ect is often ac-

companied by an enthalpic contribution to the free energy of binding since the

linker itself is able to participate in interaction with the receptor, or to contrib-

ute via a hydrophobic e¤ect by favorable transfer from an aqueous medium to
a hydrophobic receptor domain. The experimental verification of such linker

variation is discussed in later chapters.

1.1.3 Sca¤olds

Covalent linkage is a term generally associated with a sca¤olding or framework

that serves as a molecular anchoring system where multiple chemically reactive

sites are expressed as handles for ligand attachment. The valency and shape of
a sca¤old exert a significant influence on the binding and functional ability of

multivalent molecules that comprise such a sca¤old. Numerous classes of scaf-

fold are commonly used in the design of multivalent molecules, as shown in

Figure 1.3. Molecules of low valency (e.g., di- and trivalent molecules) are de-

signed using a one-dimensional linear or branched chain. Examples include

oligo(glycine)-spaced divalent sialoside as an influenza inhibitor [14], alkane-

spaced divalent sLex as an E-selectin inhibitor [15], and Tris-linked trivalent

lactoside as a ligand to the asialoglycoprotein receptor [16].
In addition to linear sca¤olding, multivalent molecules may also be built on

a rigid and preorganized sca¤old that is well defined in structure, orientation,

and conformation. Such a rigid system presents a known number of pre-

assembled attachment sites that enables one to achieve the proper positioning

between attached ligands. Rigid sca¤olds are found in diverse classes of mo-

lecular systems, ranging from small molecules [17] such as benzene and glucose,

to macrocycles such as azacrown ether, to round molecules such as cyclo-

dextrin and calix[n]arene. For example, azacrown ether proves to be an e¤ec-
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tive framework for the activity of galactoside-presenting pentavalent ligands,
which bind cholera toxin B pentamer very tightly [18]. Calix[n]arene consists

of four (n ¼ 4), six (n ¼ 6), or eight (n ¼ 8) phenol units joined to form a vase-

like structure (calix ¼ ‘‘vase’’ in Greek). Another well-known rigid system in-

cludes cyclodextrin, a cyclic oligosaccharide composed of six, seven, or eight

a-d-glucose units, thus forming a-, b-, and g-cyclodextrin, respectively [19].

Sca¤olds such as cyclodextrin and calix[n]arene o¤er multiple repeats of a

hydroxyl functional group located around the circumference of the narrow

(primary) or the wide (secondary) face. These hydroxyl groups are readily de-
rivatized for tethering ligands such as those based on carbohydrates [20–24].

The application of such rigid sca¤olds is represented by a heptavalent galacto-

side anchored on the primary face of b-cyclodextrin [25] and a tetravalent sia-

loside displayed on calix[4]arene.

The surfaces of naturally occurring glycoproteins present multiple types of

linker

one-dimensional linear scaffold  rigid scaffold

two- and three-dimensional surface scaffold

ligand

calixarene
cyclodextrin

azacrown ether
macrocycle

transition metal complex

multiantennary
dendrimer (tree-like)

flexible chain scaffold

polymer
peptoid

globular protein
dendrimer
 latex bead

nanocrystal (Au, Cd/Se)

branched scaffold

self-assembled monolayer (Au)
surface (silica, polystyrene, carbon nanotube)

glucose
benzene

scaffold

liposome
micelle

Figure 1.3 Shape and size of various sca¤olds used in multivalent presentation.
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complex carbohydrates clustered in di- and triantennary configurations [26].

Such branched sca¤olds resemble a treelike structure that is classified as a den-

drimer [27,28]. Compared to these natural glycodendrimerlike molecules, syn-

thetic dendrimers o¤er templates that are more compact, with dense branching.
Synthetic dendrimers allow the multivalent display of ligands in a medium

range of valency (10- to <100-mer), thus filling the gap formed between rela-

tively low valency (2- to 10-mer) and high valency (>100-mer in a polymer)

[29–32]. Depending on branching pattern and core structure, some dendrimers

adopt a large spherical or pseudospherical structure, whereas others take on the

shape of a half sphere. For example, a hexadecavalent sialoside that strongly

inhibits the adhesion of influenza virus to red blood cells is designed on the

template of an oligo(lysine)-derived half-spherical dendrimer [33].
The synthesis of multivalent molecules designed on a polymer backbone is

readily achieved by polymerizing a ligand monomer or by modifying a pre-

formed polymer by conjugating it with the ligand [34]. A polymer sca¤old

provides a high-valency (>100-mer) system that is di‰cult to construct by us-

ing repeated connections of linear and branched sca¤olding. Polymeric poly-

valent molecules are highly e¤ective in interfering with multivalent interactions,

in particular those involving interactions of complementary micrometer-scale

surfaces. This high level of interfering activity is attributed primarily to tight
binding of one surface, but also partially to a steric e¤ect, a second mode of

action observed in certain multivalent systems [35]. This steric occlusion involves

blocking the complementary surfaces from approaching one another due to the

presence of the interfering ligand, even if that ligand is incompletely bound to

one surface. Typical examples of polymeric polyvalent ligands are based on a

flexible framework that includes poly(acrylamide). For instance, the sialic acid

present in amide side chains of poly(acrylamide) acts as a potent inhibitor of

virus–cell adhesion [36]. Other polyvalent examples are based on conforma-
tionally rigid sca¤olds, such as polymers of unsaturated framework prepared

by ring-opening metathesis polymerization. A specific example of the latter

class includes polymeric mannoside, which provides multiple copies of manno-

side as an inhibitor of lectin-mediated hemagglutination [37].

Unlike the natural peptide backbone, peptoid is made of synthetic a-amino

peptide units in which the side chains are linked at the amide nitrogen rather

than at the a-carbon. The resulting tertiary amide both removes a hydrogen

bond critical to secondary structure and introduces a second stable rotomer of
the amide bond. Both e¤ects are probably responsible for the unique properties

that distinguish peptoids from a peptide sca¤old. An example peptoid-based

multivalent molecule is illustrated by an N-substituted oligo(glycine) presenting

multiple copies of lactoside or mannoside as side chains [38].

Several classes of sca¤old mimic a two-dimensional plane or three-dimen-

sional spherical surface, as shown in Figure 1.3. First, globular proteins such as

human albumin constitute a type of adaptable sca¤old because they contain

reactive functional groups such as lysine, which are useful for amide coupling,
and tyrosine, which is reactive to diazonium molecule for diazo coupling [39].
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These proteins are soluble in water and lack intrinsic glycosylation, thus per-

mitting neoglycoprotein preparation.

Self-assembled monolayers (SAMs) on gold comprise a two-dimensional

planar surface that enables the presentation of multivalent molecules. This sys-
tem mimics a cell surface in some aspects, but it lacks lateral mobility as ob-

served in a cell surface. Sugar-displaying SAMs have been designed to study

multivalent sugar–lectin interactions [40,41]. Similar systems may be used to

model the surface for bacterium–mammalian cell adhesion [42,43].

Liposomes and vesicles allow multivalent display on a spherical surface and

are commonly used to simulate cells. In such a system, lateral motion is per-

mitted and allows a multivalent display to ‘‘adapt’’ to a complementary sur-

face, much as may occur in cellular systems. The utility of liposomes and vesi-
cles is demonstrated by several examples, including sialyl ganglioside displayed

on a liposome as a potent inhibitor of influenza virus [44], and d-Ala-d-Ala

peptide ligand presented on micelles to mimic bacterial cell surfaces [45]. Multi-

valent display on a larger round surface is possible by using nanometer-sized

spheres made of latex, silica, or gold. For instance, polystyrene beads are

available for derivatization with 6-sulfo sLex as a selectin ligand to produce

multivalent nanoparticles that can e¤ectively inhibit selectin-mediated attach-

ment of a human embryo to the uterine wall [46].

1.1.4 Ligand Density

Two or more di¤erent types of molecules can be presented simultaneously, in

multiple copies, on the surface of a liposome or on the side chains of a polymer.

By varying, for instance, the proportions of bioactive ligand and inactive resi-

dues, it is possible to change the biological activity of such molecules. The

properties of such molecules are described in terms of surface density or ligand
density for liposomes and polymers, respectively. For polyvalent polymers, li-

gand density is defined as the number of attached ligands relative to the total

number of side chains per polymer molecule. For liposomes bearing ligands,

the surface density is defined as the average number of ligands relative to the

total number of functional groups, including ligands, exposed on the surface of

a liposome particle. Pertinent examples are illustrated using multivalent sialic

acid, shown as either poly(acrylamide) [47] or liposome [48] in Figure 1.4. Li-

gand density constitutes a critical factor to be considered when designing mul-
tivalent molecules because it broadly a¤ects ligand distribution, interligand

distance, and the shape and conformation of the polymer. All of these proper-

ties help to modulate the biological activity of multivalent molecules.

1.1.5 Homo- and Heterovalent Molecules

Multivalent interactions can refer to the simultaneous association occurring

between multiple, identical pairs of receptor and ligand; such interactions are
homovalent. In contrast, multivalent interactions can occur between more than
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one kind of receptor and ligand; such interactions are heterovalent. As with

homovalent interactions, formation of multiple ligand–receptor pairs should
contribute to the increased association strength of the entire complex. Figure

1.5 illustrates the functionally bivalent association between a heterobivalent

ligand and a heterobivalent receptor. Structurally, a heterodimeric molecule

closely resembles a bifunctional molecule, as the latter is also composed of two

di¤erent ligands tethered through a linker. However, a bifunctional molecule is

designed to bind in a monovalent manner to two distinct target receptors

widely separated or located in a di¤erent compartment of a cell.
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Figure 1.4 Definition of ligand density in polymer- and liposome-based multivalent

molecules.

homobivalent
association

heterobivalent  
association

bifunctional molecule

monovalent association

Figure 1.5 Representation of homovalent and heterovalent interaction.
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1.2 MECHANISTIC ASPECTS OF MULTIVALENT INTERACTION

1.2.1 A‰nity Constant and Avidity

Multivalent and monovalent interactions di¤er fundamentally in their respec-

tive definitions and calculations of association strength [1]. For a monovalent

system composed of a receptor and a ligand, the a‰nity constant (Ka) is the

binding strength for a monovalent complex (Figure 1.6). This term is related to

the free energy of association (DGmono) by the Gibbs equation below. In a

multivalent interaction between two entities presenting N tethered ligands and
N tethered receptors, the association constant is defined as avidity (Kmulti

a ). This

constant is a collective association constant that takes into consideration mul-

tiple interactions between two multivalent entities, and it is related to the free

energy of binding calculated as for monovalent binding:

DGmono ¼ �RT ln(Kmono
a )

DGmulti
N ¼ �RT ln(Kmulti

a )

In estimating cooperativity in multivalent association, the free energy of multi-

valent binding (DGmulti
N ) can be related to that of N monovalent associations:

that is, NDGmono, given N independent receptor–ligand interactions. The ratio

between the two indicates the degree of cooperativity, where the cooperativity

coe‰cient (a) is defined as follows:

a ¼ degree of cooperativity ¼ DGmulti
N

N DGmono

Depending on the magnitude of a, multivalent interaction is positively cooper-

ative or synergistic (a > 1), noncooperative or additive (a ¼ 1), or negatively

cooperative (a < 1). The term cooperativity is often used in biological systems

monovalent association

multivalent association

n n n

Ka
mono

Ka
multi

∆G1
mono = -RTln(Ka

mono)

∆GN
multi = -RTln(Ka

multi) where N = (n + 2)

+

+

Figure 1.6 Comparison of thermodynamic parameters of association in monovalent

and multivalent interaction.
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as with the hemoglobin tetramer–oxygen interaction, which shows positive

cooperativity [49]. However, the term is rarely used in multivalent systems,

partly because few multivalent systems have been shown to demonstrate posi-

tive cooperativity. Moreover, multivalent interaction can be much tighter than
monovalent binding, regardless of the size of the cooperativity constant. In

practical terms, the contribution of a multivalent association is often expressed

by the ratio (b) of multivalent avidity to monovalent a‰nity constant, intro-

duced by Mammen et al. [1] (Figure 1.6):

b ¼ Kmulti
a

Kmono
a

Thus, b represents the enhancement factor, a term that reflects the strength of a
multivalent association relative to the monovalent association.

The di¤erence between a and b is illustrated by a trivalent system based on a

vancomycin receptor and a d-Ala-d-Ala ligand (Figure 1.7) [50]. Vancomycin

is an antibiotic belonging to the glycopeptide class of receptors. Antibiotics in
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Figure 1.7 Interaction of a trivalent vancomycin with a trivalent d-Ala-d-Ala ligand.
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this class target bacterial cell walls by binding to the d-Ala-Ala peptide pre-

cursor. In a monovalent system, vancomycin associates with d-Ala-d-Ala li-

gand with a dissociation constant (Kd ) value of 1:6� 10�6 M (DGmono ¼ �33

kJ/mol). In a trivalent system composed of trivalent vancomycin and trivalent
d-Ala-d-Ala designed by Rao et al. at Harvard [50], the receptor–ligand asso-

ciation is extremely tight, with a Kd value of 4� 10�17 M (DG tri ¼ �94 kJ/

mol). The avidity of the trivalent complex is much higher than the a‰nity of

the monovalent interaction. Based on the value of the cooperativity constant

[a ¼ 94� ð3� 33Þ ¼ 0:95], this trivalent interaction is still negatively coopera-

tive, although it is exceptionally tight. In terms of binding enhancement (b), the
trivalent interaction leads to about a 4� 1010-fold increase in binding strength

relative to that of the corresponding monovalent interaction. In fact, the bind-
ing strength is 25 times higher than that of the avidin–biotin system—one of the

strongest monovalent interactions in biological systems—thus clearly demon-

strating the practical value of multivalency for designing a high-a‰nity system.

Gargano et al. at Syracuse [51] proposed a simplified model that can be used

in correlating the strength of multivalent association with that of monovalent

association. This model makes it possible to estimate the multivalent enhance-

ment factor (b) (Figure 1.8). The model is, however, designed under highly

simplified conditions of multivalent systems that are not likely to fit real sys-
tems. The conditions include (1) equivalent binding sites on the multivalent re-

ceptor as a homobivalent system, (2) noncooperativity (a ¼ 1) such that first

binding at one site is thermodynamically identical to second binding at neigh-

boring site, (3) a flexible linker of optimal length to ensure bivalent association,

and (4) no linker–receptor interaction, to avoid extra thermodynamic con-

siderations. Because of such limiting conditions, this model should be used for

+

+

+

+
Kmono

K1 ≈ 4Kmono

K2 ≈ Kmono

K3 ≈ 10-2/2 M

Eqn 1

Eqn 2

Eqn 3

+
Kdi

Eqn A

Eqn B

K1

K2

K3

Figure 1.8 Theoretical model used for deriving an equation that would make it possi-

ble to estimate di(multi)valent association constant.
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estimating the b term rather than predicting it accurately. It is illustrated by a

simple divalent binding model composed of a dimeric receptor and a dimeric

ligand, as described in Figure 1.8. This model suggests that the bivalent asso-

ciation constant (K di) is expressed as three related association constants:
K1, K2, and K3. Each equilibrium constant is derived based on certain ap-

proximations, such as the number of possible permutations assumed in recep-

tor–ligand site association in Eqn 1 in the figure (K1 ¼ 4Kmono), monovalent

binding in Eqn 2 (K2 ¼ Kmono), and e¤ective local concentration (Ce¤ ) of

bound divalent ligand in Eqn 3 (K3ACe¤ ¼ 10�2/2 M, where two tethered

ligands are 30 Å apart [52]). An overall divalent association constant, which

provides an estimate of the factor of divalent enhancement, is obtained as a

product of the three equilibrium constants:

K di ¼ K1K2K3 ¼ 2� 10�2(Kmono)2

b ¼ K di

Kmono
¼ 2� 10�2(Kmono)

This type of prediction is generalized to the multivalent association constant in

a higher-order system as follows:

Kmulti ¼ F (s� 10�2)n�1(Kmono)n

where n is the valency number, F is a statistical factor defined by the sys-

tem, and s ¼ 30/[interreceptor distance (Å)]. An application is illustrated by

a monovalent Pk trisaccharide ligand, which binds to pentavalent Shiga
toxin (AB5) with a Ka value of 1� 103 M�1. If this monovalent ligand is

converted to a polyvalent ligand that carries Pk trisaccharide as side chains of

poly(acrylamide), a binding constant(K penta) can be estimated for the multi-

valent interaction with the toxin pentamer as follows:

K penta(M�1)A1(1� 10�2)5�1(Kmono)5 ¼ 10�8(103)5 ¼ 107

where F ¼ 1 and s ¼ 1. The predicted value is close to the experimental value
of the binding constant, K pentaA1:2� 107 M�1, obtained from a cell-based

assay [51]. This theoretical equation for calculating Kmulti indicates that the

strength of the multivalent association increases exponentially as a function of

valency. It also predicts that the intrinsic a‰nity of a monovalent system con-

tributes significantly to the strength of multivalent association and that the

intrinsic a‰nity is especially important in cases of low valency, such as for a

bivalent or trivalent ligand.

1.2.2 Thermodynamics

The thermodynamic basis of multivalent interactions has been investigated by

numerous groups of researchers [1,2]. Mammen et al. have provided a particu-
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