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Preface

The development of the rapid DNA sequencing method by Fred Sanger and co-
workers 30 years ago initiated the process of deciphering genes and eventually entire
genomes. The rapidly growing demand for throughput, with the ultimate goal of
deciphering the human genome, led to substantial improvements in the technique
and was exemplified in automated capillary electrophoresis. Until recently, genome
sequencing was performed in large sequencing centers with high automation and
many personnel. Even when DNA sequencing reached the industrial scale, it still
cost $10 million and 10 years to generate a draft of the human genome. With the
price so high, population-based phenotype–genotype linkage studies were small in
scale, and it was hard to translate research into statistically robust conclusions. As a
consequence, most presumed associations between diseases and particular genes
have not stood up to scientific scrutiny. The commercialization of the first massive
parallel pyrosequencing technique in 2004 created the first opportunity for the cost-
effective and rapid deciphering of virtually any genome. Shortly thereafter, other
vendors entered the market, bringing with them a vision of sequencing the human
genome for only $1000.
This is the topic of this book. We hope to provide the reader with a comprehensive

overview of next-generation sequencing (NGS) techniques and highlight their
impact on genome research, human health, and the social perception of genetics.
There is no clear definition of next-generation sequencing. There are, however,

several features that distinguish NGS platforms from conventional capillary-based
sequencing. First, it has the ability to generate millions of sequence reads rather
than only 96 at a time. This process allows the sequencing of an entire bacterial
genome within hours or of the Drosophila melanogaster genome within days instead
of months. Furthermore, conventional vector-based cloning, typical in capillary
sequencing, became obsolete and was replaced by direct subjecting of fragmented,
and usually, amplified DNA for sequencing. Another distinctive feature of NGS are
the sequenced products themselves, which are short-length reads between 30 and
400 bp. The limited read length has substantial impact on certain NGS applications,
for instance, de novo sequencing. The following chapters will present several inno-
vative approaches, which will combine the obvious advantages of NGS, such as
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throughput and simplified template preparation, with novel challenging features in
terms of short read assembly and large sequencing data storage and processing.
This book arose from the recognition of the need to understand next-generation

sequencing techniques and their role in future genome research by the broad
scientific community. The chapters have been written by the researchers and
inventors who participated in the development and applications of NGS technolo-
gies. The first chapter of the book contains an excellent overview on Sanger DNA
sequencing, which still remains the gold standard in life sciences. The second and
fourth parts of the book describe the commercially available and emerging sequen-
cing platforms, respectively. The third part consists of two chapters highlighting the
bottlenecks in the current sequencing: data storage and processing. Once the NGS
techniques became available, an unprecedented explosion of applications could be
observed. The fifth part of this book provides the reader with the insight into the
ever-increasing NGS applications in genome research. Some of these applications
are enhancements of existing techniques. Many others are unique to next-generation
sequencing marked by its robustness and cost effectiveness, with the prominent
example of paleogenomics.
The versatility and robustness of the NGS techniques in studying genes in the

context of the entire genome surprised many scientists, including myself. We know
that the processes that cause most diseases are not the result of a single genetic
failure. Instead, they involve the interaction of hundreds if not thousands of genes.
In the past, geneticists have concentrated on genes that have large individual effects
when they go wrong, because those effects are so easy to spot. However, combina-
tions of genes that are not individually significant may also be important. It has
become evident that next-generation sequencing techniques, together with systems
biology approaches, could elucidate the complex dependences of regulatory net-
works not only on the level of a single cell or tissue but also on the level of the whole
organism.
We hope that this book will enrich the understanding of the dramatic changes

in genome exploration and its impact not only on research itself but also on many
aspects of our life, including healthcare policy, medical diagnostics, and treat-
ment. The best example comes from the field of consumer genomics. Consumer
genomics promises to inform people of their risks of developing ailments such as
heart disease or cancer; it can even advise its customers how much coffee they can
safely drink. This information is retrieved from the correlation of the single
nucleotide polymorphism (SNP) pattern of the individual with the SNP haplotype
linked to a particular disease. Recent public discussions on the challenges posed
by the availability of personal genome information have revealed a new perception
of genomic information and its uses. For the first time, a desire to understand the
genome has become important and relevant to people outside of the scientific
community. In addition to the benefits of having access to genetic information,
the ethical and legal risks of making this information available are emerging. The
last part of the book introduces the reader to the debate, which will only intensify
in the years to come.
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In conclusion, I would like to express my sincere gratitude to all of the contribu-
tors for their extraordinary effort to present these fascinating technologies and their
applications in genome exploration in such a clear and comprehensive way. I also
extend my thanks to Professor Hans Lehrach for his constant support.

Berlin, July 2008 Michal Janitz
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Part One
Sanger DNA Sequencing





1
Sanger DNA Sequencing
Artem E. Men, Peter Wilson, Kirby Siemering, and Susan Forrest

1.1
The Basics of Sanger Sequencing

From the first genomic landmark of deciphering the phiX174 bacteriophage genome
achieved by F. Sanger�s group in 1977 (just over a 5000 bases of contiguous DNA) to
sequencing several bacterial megabase-sized genomes in the early 1990s by The
Institute for Genomic Research (TIGR) team, from publishing by the European
Consortium the first eukaryotic genome of budding yeast Saccharomyces cerevisiae in
1996 to producing several nearly finished gigabase-sized mammal genomes includ-
ing our own, Sanger sequencing definitely has come a long and productive way in the
past three decades. Sequencing technology has dramatically changed the face of
modernbiology, providingprecise tools for the characterization of biological systems.
The field has rapidly moved forward nowwith the ability to combine phenotypic data
with computed DNA sequence and therefore unambiguously link even tiny DNA
changes (e.g., single-nucleotide polymorphisms (SNPs)) to biological phenotypes.
This allows the development of practical ways for monitoring fundamental life
processes driven by nucleic acids in objects that vary from single cells to the most
sophisticated multicellular organisms.
�Classical� Sanger sequencing, published in 1977 [1], relies on base-specific chain

terminations in four separate reactions (�A�, �G�, �C�, and �T�) corresponding to the
four different nucleotides in the DNA makeup (Figure 1.1a). In the presence of all
four 20- deoxynucleotide triphosphates (dNTPs), a specific 20,30-dideoxynucleotide
triphosphate (ddNTP) is added to every reaction; for example, ddATP to the �A�
reaction and so on. The use of ddNTPs in a sequencing reaction was a very novel
approach at the time and gave far superior results compared to the 1975 prototype
technique called �plus and minus� method developed by the same team. The
extension of a newly synthesized DNA strand terminates every time the correspond-
ing ddNTP is incorporated. As the ddNTP is present in minute amounts, the
termination happens rarely and stochastically, resulting in a cocktail of extension
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products where every position of an �N� base would result in a matching product
terminated by incorporation of ddNTP at the 30 end.
The second novel aspect of the method was the use of radioactive phosphorus or

sulfur isotopes incorporated into the newly synthesized DNA strand through a
labeled precursor (dNTP or the sequencing primer), therefore,making every product
detectable by radiography. Finally, as each extension reaction results in a very complex

Figure 1.1 Schematic principle of the Sanger
sequencing method. (a) Four separate DNA
extension reactions are performed, each
containing a single-stranded DNA template,
primer, DNA polymerase, and all four dNTPs to
synthesize new DNA strands. Each reaction is
spiked with a corresponding dideoxynucleoside
triphosphate (ddATP, ddCTP, ddTTP, or ddGTP).
In the presence of dNTPs, one of which is
radioactively labeled (in this case, dATP), the
newly synthesized DNA strand would extend
until the available ddNTP is incorporated,
terminating further extension. Radioactive
products are then separated through four lanes

of a polyacrylamide gel and scored according to
their molecular masses. Deduced DNA
sequence is shown on the left. (b) In this case,
instead of adding radioactive dATP, all four
ddNTPs are labeled with different fluorescent
dyes. The extension products are then
electrophoretically separated in a single glass
capillary filled with a polymer. Similar to the
previous example, DNA bands move inside the
capillary according to their masses.
Fluorophores are excitedby the laser at the endof
the capillary. The DNA sequence can be
interpreted by the color that corresponds to a
particular nucleotide.

4j 1 Sanger DNA Sequencing



mixture of large radioactive DNA products, probably the most crucial achievement
was the development of ways to individually separate and detect thesemolecules. The
innovative use of a polyacrylamide gel (PAG) allowed very precise sizing of termina-
tion products by electrophoresis followed by in situ autoradiography. Later, the
autoradiography was partially replaced by less hazardous techniques such as silver
staining of DNA in PAGs.
As innovative as they were 30 years ago, slab PAGs were very slow and laborious

and could not be readily applied to interrogating large genomes. The next two major
technological breakthroughs took place in (i) 1986 when a Caltech team (led by Leroy
Hood) and ABI developed an automated platform using fluorescent detection of
termination products [2] separating four-color-labeled termination reactions in a
single PAG tube and in (ii) 1990 when the fluorescent detection was combined with
electrophoresis through a miniaturized version of PAGs, namely, capillaries [3]
(Figure 1.1b). Capillary electrophoresis (CE), by taking advantage of a physically
compact DNA separation device coupled with laser-based fragment detection,
eventually became compatible with 96- and 384-well DNA plate format making
highly parallel automation a feasible reality. Finally, the combination of dideoxy-based
termination chemistry, fluorescent labeling, capillary separation, and computer-
driven laser detection of DNA fragments has established the four elegant
�cornerstones� on which modern building of high-throughput Sanger sequencing
stands today.
Nowadays, the CE coupled with the development of appropriate liquid-handling

platforms allows Sanger sequencing to achieve a highly automatable stage whereby a
stand-alone 96-capillary machine can produce about half a million nucleotides
(0.5Mb) of DNA sequence per day. During the late 1980s, a concept of �highly
parallel sequencing� was proposed by the TIGR team led by C. Venter and later
successfully applied in human and other large genome projects. Hundreds of
capillary machines were placed in especially designed labs fed with plasmid DNA
clones around the clock to produce draft Sanger reads (Figure 1.2). The need for large
volumes of sequence data resulted in the design of �sequencing factories� that
had large arrays of automatedmachines running in parallel together with automated
sample preparation pipelines and producing several million reads a month
(Figure 1.3). This enabled larger and larger genome projects to be undertaken,
culminating with the human and other billion base-sized genome projects.
Along the way, numerous methods were developed that effectively supported

template production for feeding high-throughput sequencing pipelines, such as the
whole genome shotgun (WGS) approach of TIGR and Celera, or strategies of
subgenome sample pooling of YAC, BAC, and cosmid clones based on physical
maps of individual loci and entire chromosomes (this strategywasmainly used by the
International HumanGenome Project team). Not only did the latter methods help to
perform sequencing cheaper and faster but also facilitated immensely the genome
assembly stage, where the daunting task of putting together hundreds of thousands
of short DNA pieces needed to be performed. Some sophisticated algorithms based
on paired end sequencing or using large-mapped DNA constructs, such as finger-
printed BACs from physical maps, were developed. Less than 20 years ago,
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assembling a 1.8Mb genome of Haemophilus influenzae sequenced by the WGS
approach [4]was viewed as a computational nightmare, as it requiredputting together
about 25 000 DNA pieces. Today, a typical next-generation sequencing machine
(a plethora of which will be described in the following chapters of this book) can
produce 100Mb in just a few hours with data being swiftly analyzed (at least to a draft
stage) by a stand-alone computer.

1.2
Into the Human Genome Project (HGP) and Beyond

The HGP, which commenced in 1990, is a true landmark of the capability of Sanger
sequencing. This multinational task that produced a draft sequence published in
2001 [5]was arguably the largest biological project ever undertaken.Now, 7 years later,
to fully capitalize on and leverage the data from the Human Genome Project,
sequencing technologies need to be taken to much higher levels of output to study

Figure 1.2 Sanger sequencing pipeline. (a) DNA
clone preparation usually starts with the isolation
of total DNA (e.g., whole genomic DNA from an
organism or already fragmented DNA, cDNA,
etc.), followed by further fragmentation and
cloning into a vector for DNA amplification in
bacterial cells. As a result, millions of individual
bacterial colonies are produced and individually
picked into multiwell plates by liquid-handling
robots for isolation of amplified DNA clones.
This DNA then goes through a sequencing
reaction described in Figure 1.1. (b) Processed

sequenced DNA undergoes capillary
electrophoresis where labeled nucleotides
(bases) are collected and scanned by the laser
producing raw sequencing traces. (c) Raw
sequencing information is converted into
computer files showing the final sequence and
quality of every scanned base. The resultant
information is stored on dedicated servers and
also is usually submitted into free public
databases, such as the GeneBank and Trace
Archive.
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