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 Preface 

   XI

            “ The abundance of substances of which animals and plants 
are composed, the remarkable processes whereby they 
are formed and then broken down again have claimed the 
attention of mankind of old, and hence from the early days 
they also persistently captivated the interest of chemists ” . 

   Emil Fischer, Nobel Lecture, 1902   

   “ The chemist who designs and completes an original 
and esthetically pleasing multistep synthesis is like the 
composer, artist or poet who, with great individuality, 
fashions new forms of beauty from the interplay of mind 
and spirit ” .    Elias James Corey, Nobel Lecture, 1990    

 Nature has always been a permanent source of inspiration for chemists but, as 
Emil Fischer brightly indicated in his Nobel award acceptance lecture in 1902, it 
is not only the vast diversity of compounds that living beings are capable of creat-
ing, but also the extraordinary strategies of synthesis deployed. Evidently, the cata-
lysts used by living beings  –  enzymes  –  are key to Nature ’ s Synthesis Strategies. 
Emil Fischer himself foretold, a few paragraphs further into his lecture, that 
chemistry would employ enzymes at large and  –  to our greatest surprise, bearing 
in mind that these words were written as early as 1902  –  that artifi cial enzymes 
would be tailor - made to serve its purposes. 

 The longing of biocatalysis to transfer to the laboratory the exquisite effi ciency 
shown by enzymes in Nature has begun to become a reality since the late 1980s, 
with the invention of the polymerase chain reaction (PCR). The level of develop-
ment and access brought about by the PCR to genetic material handling and 
transformation, has allowed the number of available enzymes to grow exponen-
tially. Modifying the catalytic properties of enzymes to adapt them to their 
new environment in a test tube has become a reality. We have learned to imitate 
the strategies used by Nature to create new enzymes, and to adapt the existing 
ones to new synthetic needs. Eventually, Emil Fischer ’ s prediction has come 
true. 



 XII  Preface

 Living beings do not use enzymes in isolation, however. A large portion of the 
extraordinary synthetic effectiveness that enzymes display in Nature comes from 
the fact that living beings apply a multistep synthesis strategy, catalyzed by enzymes 
acting sequentially. It is the utilization of more -  or less - complicated biosynthetic 
routes that allows living beings to build complex structures from simple elements; 
to obtain and to store energy; and to know and to communicate with their environ-
ment. The jointed action of a sequence of enzymes can make irreversible a revers-
ible process, eliminate inhibition problems caused by product excess, or prevent 
the lack of substrate scattered on the bulk solution. Evidently, in order to develop, 
biocatalysis could not look away from these and other synthesis opportunities 
served by multistep reactions. The level of relevance attained by the development 
of this synthetic strategy in the fi eld of biocatalysis and biotransformation is evi-
denced by the celebration in April 2006 of the fi rst Symposium on  Multistep 
Enzyme - Catalyzed Processes , organized jointly by the Applied Biocatalysis Research 
Centre at Gratz and the European Federation of Biotechnology Section of Applied 
Biocatalysis (ESAB), to which this book is indebted. 

 The aim of this handbook is to bring together various key aspects to cover the 
broad fi eld of  multistep enzyme - catalyzed processes , from the  ‘ simplest ’  system in 
which one or a few isolated enzymes are used alone or in combination with non -
 enzyme - catalyzed steps, to the most  ‘ complex ’  system in which artifi cial or natural 
pathways are created or even whole cells are modifi ed to be used as synthetic 
factories. 

 I would like thank all those authors who have participated in this exciting project 
for their superb work, valuable time and remarkable efforts; and in particular, I 
thank Elke Maase and Stefanie Volk at Wiley - VCH for their patience, friendliness 
and precious help in editing. 

 I hope that you enjoy reading this book, and that it can serve as an inspirational 
source and stimulus to researchers of all levels  –  especially the youngest  –  who 
are working in the biocatalysis fi eld.  

   Madrid, July 2008    Eduardo Garc í a - Junceda  
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 Asymmetric Transformations by Coupled Enzyme and 
Metal Catalysis: Dynamic Kinetic Resolution  
  Mahn - Joo   Kim  ,   Jaiwook   Park  , and   Yoon Kyung   Choi   

   1

1

  1.1 
 Introduction 

 The enzymatic resolution of racemic substrates now is a well - established approach 
for the synthesis of single enantiomers  [1, 2] . A representative example is the 
kinetic resolution of secondary alcohols via lipase - catalyzed transesterifi cation for 
the preparation of enantiomerically enriched alcohols and esters  [3] . The enzy-
matic resolution in general is straightforward and satisfactory in terms of optical 
purity, but it has an intrinsic limitation in that the theoretical maximum yield of 
a desirable enantiomer cannot exceed 50%. Accordingly, additional processes such 
as isolation, racemization and recycling of unwanted isomers are required to 
obtain the desirable isomer in a higher yield (Scheme  1.1 ).   

    Scheme 1.1     ( R ) - Selective enzymatic resolution with recycling of unreacted ( S ) - substrate.  

 The limitation of enzymatic resolution, however, can be overcome by introduc-
ing an effi cient catalyst for racemization of substrate into the resolution, leading 
to the process called  dynamic kinetic resolution  ( DKR )  [4] . Theoretically, DKR can 
provide single enantiomeric products [99%  enantiomeric excess  ( e.e. ) or greater] 
in 100% yield in the case where a highly effi cient racemization catalyst is combined 
with a highly enantioselective enzyme. In the last decade, several metal - based cata-
lysts have been developed for the racemization and successfully incorporated into 
the resolution process  [5] . Now a wide range of racemic substrates can be converted 
to enantiomeric products of high optical purity in good yields via the  enzymo -
 metallic  DKR (Scheme  1.2 ). This chapter covers these developments with detailed 
examples.    
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  1.2 
 Some Fundamentals for  DKR  

  1.2.1 
 Enzymes for Kinetic Resolution 

 The resolution of a racemic substrate can be achieved with a range of hydrolases 
including lipases and esterases. Among them, two commercially available lipases, 
  Candida antarctica  lipase B  ( CALB ; trade name, Novozym - 435) and   Pseudomonas 
cepacia  lipase  ( PCL ; trade name, Lipase PS - C), are particularly useful because they 
have broad substrate specifi city and high enantioselectivity. They display satisfac-
tory activity and good stability in organic media. In particular, CALB is highly 
thermostable so that it can be used at elevated temperature up to 100    ° C. 

 The lipase - catalyzed resolutions usually are performed with racemic secondary 
alcohols in the presence of an acyl donor in hydrophobic organic solvents such 
as toluene and  tert  - butyl methyl ether (Scheme  1.3 ). In case the enzyme is highly 
enantioselective ( E    =   200 or greater), the resolution reaction in general is stopped 
at nearly 50% conversion to obtain both unreacted enantiomers and acylated 
enantiomers in enantiomerically enriched forms. With a moderately enantioselec-
tive enzyme ( E    =   20 – 50), the reaction carries to well over 50% conversion to get 
unreacted enantiomer of high optical purity at the cost of acylated enantiomer 
of lower optical purity. The enantioselectivity of lipase is largely dependent on 
the structure of substrate as formulated by Kazlauskas  [6] : most lipases show 

    Scheme 1.2     ( R ) -  and ( S ) - Selective enzymo - metallic DKR.  

    Scheme 1.3     Lipase - catalyzed resolution of secondary alcohols.  
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( R ) - selectivity toward simple secondary alcohols carrying one small and one rela-
tively larger substituent at the hydroxyl methane center, and the selectivity in 
general increases with an increase in the size difference between two substituents. 
The size of the small substituent limits the reactivity of substrate toward lipase. If 
it exceeds a three - carbon unit, the substrate reacts very slowly or does not react at 
a synthetically useful rate. Accordingly, the Kazlauskas rule is useful as a guideline 
for predicting substrates that can be effi ciently resolved by lipase as well as the 
stereochemistry of resolved substrates.   

 Lipase, which is highly useful for kinetic resolution, however, has a limitation 
for use in DKR in that it cannot be used for ( S ) - confi guration products. For this 
purpose, subtilisin, a protease from  Bacillus licheniformis , can replace lipase since 
it provides complementary enantioselectivity (Scheme  1.4 ). Subtilisin, however, 
has been much less frequently employed in resolution compared to lipase because 
it displays poor catalytic performance in organic media. Subtilisin is inferior to 
lipase in several properties such as activity, enantioselectivity and stability. Accord-
ingly, the use of the enzyme usually requires some special treatments for activa-
tion and stabilization before use. For example, the treatment of subtilisin with 
surfactants has enhanced substantially its activity and stability up to a synthetically 
useful level.    

    Scheme 1.4     Subtilisin - catalyzed resolution of secondary alcohols.  

  1.2.2 
 Metal Catalysts for Racemization 

 Many different metal catalysts have been explored for racemization of secondary 
alcohols. Among them, ruthenium - based organometallic complexes have been 
most intensively tested as the racemization catalyst (Figure  1.1 ).   

 These ruthenium catalysts catalyze the racemization of secondary alcohol 
through a dehydrogenation/hydrogenation cycle with or without releasing 
ketone as a byproduct (Scheme  1.5 ). Catalysts  6 – 9  display good activities at room 
temperature, while others show satisfactory activities at elevated temperatures. 
Catalyst  1 , for example, requires a high temperature (70    ° C) for dissociation 
into two monomeric species ( 1a  and  1b ) acting as racemization catalysts 
(Scheme  1.6 ).     

 Most ruthenium catalysts except  8  and  9  are highly sensitive to oxygen or air 
and must be used under anaerobic conditions. The latter can be used under 
aerobic conditions. Currently, no rationale is available for explaining the difference 
in stability between these ruthenium catalysts. In general, racemizations by these 
catalysts take place more rapidly with benzylic alcohols compared to non - benzylic 
or aliphatic alcohols.  



 4  1 Asymmetric Transformations by Coupled Enzyme and Metal Catalysis

    Figure 1.1     Ruthenium catalysts.  

    Scheme 1.5     A simplifi ed mechanism for ruthenium - catalyzed racemization of  sec  - alcohol.  

    Scheme 1.6     Dissociation of catalyst  1 .  
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  1.2.3 
 Enzyme – Metal Combination for  DKR  

 DKR of secondary alcohol is achieved by coupling enzyme - catalyzed resolution 
with metal - catalyzed racemization. For effi cient DKR, these catalytic reactions 
must be compatible with each other. In the case of DKR of secondary alcohol with 
the lipase – ruthenium combination, the use of a proper acyl donor (required for 
enzymatic reaction) is particularly crucial because metal catalyst can react with 
the acyl donor or its deacylated form. Popular vinyl acetate is incompatible with 
all the ruthenium complexes, while isopropenyl acetate can be used with most 
monomeric ruthenium complexes.   p  - Chlorophenyl acetate  ( PCPA ) is the best acyl 
donor for use with dimeric ruthenium complex  1 . On the other hand, reaction 
temperature is another crucial factor. Many enzymes lose their activities at elevated 
temperatures. Thus, the racemization catalyst should show good catalytic effi -
ciency at room temperature to be combined with these enzymes. One representa-
tive example is subtilisin. This enzyme rapidly loses catalytic activities at elevated 
temperatures and gradually even at ambient temperature. It therefore is compati-
ble with the racemization catalysts  6 – 9 , showing good activities at ambient tem-
perature. In case the racemization catalyst requires an elevated temperature, CALB 
is the best counterpart.  

  1.2.4 
 (  R  ) -  and (  S  ) - Selective  DKR  

 Thanks to two complementary enzymes, lipase and subtilisin, both ( R ) -  and ( S ) - 
selective DKR can be performed to obtain the corresponding enantiomeric products. 

 DKR by the lipase – ruthenium combination provides ( R ) - products, while DKR 
by the subtilisin – ruthenium combination gives products of the opposite confi gura-
tion (Schemes  1.7  and  1.8 ).       

    Scheme 1.7     ( R ) - Selective DKR with the lipase – ruthenium combination.  

    Scheme 1.8     ( S ) - Selective DKR with the subtilisin – ruthenium combination.  
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  1.3 
 Examples of  DKR  

  1.3.1 
 First  DKR  of Secondary Alcohols 

 The fi rst use of a metal catalyst in the DKR of secondary alcohols was reported 
by Williams  et al.   [7] . In this work, various rhodium, iridium, ruthenium and alu-
minum complexes were tested. Among them, only Rh 2 (OAc) 4  and [Rh(cod)Cl] 2  
showed reasonable activity as the racemization catalyst in the DKR of 
1 - phenylethanol. The racemization occurred through transfer - hydrogenation 
reactions and required stoichiometric amounts of ketone as hydrogen acceptor. 
The DKR of 1 - phenylethanol performed with Rh 2 (OAc) 4  and  Pseudomonas fl uore-
scens  lipase gave ( R ) - 1 - phenylethyl acetate of 98%   e.e. at 60% conversion after 
72   h.  

  1.3.2 
  DKR  of Secondary Alcohols with Racemization Catalyst  1  

 Signifi cantly improved DKR was reported by B ä ckvall  et al.  who used diruthenium 
complex  1  together with CALB  [8] . This work demonstrated for the fi rst 
time the superiority of PCPA as the acyl donor over popular acyl donors such 
as vinyl and isopropenyl acetate. The DKR of 1 - phenylethanol by this procedure 
afforded optically pure ( R ) - 1 - phenylethyl acetate in a high yield (Scheme  1.9 ) 
 [8b] .   

 However, the procedure has some drawbacks to overcome. First, it requires 
an elevated temperature (70    ° C) for the activation of the racemization catalyst. Such 
a high temperature is unacceptable for thermally less - stable enzymes. Second, the 
racemization proceeds through a mechanism including the release of ketone as 
a byproduct and thus the lowering of yield is inevitable. Third, PCPA used in an 

    Scheme 1.9     DKR of 1 - phenylethanol with ruthenium catalyst  1 .  



excess amount is often diffi cult to remove from the acylated products during work -
 up. In spite of these limitations, the procedure with ruthenium catalyst  1  has been 
successfully applied in the DKR of a variety of simple and functionalized alcohols, 
including diols  [9] , hydroxy acid esters  [9b, 10] , hydroxyl aldehydes  [9b] ,  β  - azido 
alcohols  [11] ,  β  - hydroxyl nitriles  [12] ,  β  - halo alcohols  [13]  and hydroxyalkanephos-
phonates  [14] . 

 An interesting application of  1  is the use in the asymmetric reductive acetylation 
of ketones via DKR of alcohol intermediates. In this transformation, ruthenium -
 catalyzed hydrogenation of ketone takes place in a concerted fashion with DKR of 
alcohol to produce the corresponding acyl products (Scheme  1.10 ). The idea of this 
process was to take advantage of ketone formation, which is a problem observed 
in the DKR of secondary alcohols with  1 . A key to this process was the selection 
of hydrogen donors compatible with the DKR conditions. 2,6 - Dimethyl - 4 - heptanol, 
which cannot be acylated by lipases, and hydrogen molecules were effective 
hydrogen donors  [15] . Asymmetric reductive acetylation of ketones under 1   atm 
hydrogen in ethyl acetate gave products in good yields and high optical purities 
(Scheme  1.11 )  [15b] . Here, ethyl acetate was used as both acyl donor and 
solvent.     

    Scheme 1.10     Hydrogenation and DKR of ketones.  
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    Scheme 1.11     Asymmetric reductive acetylation of ketones.  

 Asymmetric reductive acetylation was also applicable to acetoxyphenyl ketones. 
In this case the substrate itself acts as an acyl donor. For example,  m  - acetoxyace-
tophenone was transformed to ( R ) - 1 - (3 - hydroxyphenyl)ethyl acetate under 1 atm 
H 2  in 95% yield  [16]  (Scheme  1.12 ). The pathway of this reaction is rather complex. 
It was confi rmed that nine catalytic steps are involved: two steps for ruthenium -
 catalyzed reductions, two steps for ruthenium - catalyzed racemizations, two steps 


