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Preface

The importance of research into plant senescence cannot be overemphasized. Senes-
cence processes are unique developmental programs that involve unique mech-
anisms. For example, unlike many other developmental processes in plants that
involve cell division, cell differentiation, and/or cell growth (enlargement), leaf
senescence is achieved by a massive operation of programmed cell death and nutri-
ent recycling. It is known that new gene expression is required in order for leaf cells
to destroy themselves and to recycle nutrients. The cell has to maintain its machin-
ery necessary for new gene expression and nutrient transport while its subcellular
structure and macromolecules are being dismantled by some of the new gene prod-
ucts. How gene expression is regulated and how this complex process operates are
currently among the most significant biological questions.

Senescence has a tremendous impact on agriculture. Leaves are the primary or-
gans that absorb light energy from the sun and convert it to chemical energy in the
form of sugars via photosynthesis. With the onset of senescence, the photosynthetic
capability of a leaf declines sharply. Therefore, leaf senescence limits crop yield and
biomass production, and contributes substantially to postharvest loss in vegetable
and ornamental crops during transportation, storage and on shelves. In addition, pro-
teins, antioxidants and other nutritional compounds are degraded during senescence.
Senescing tissues also become more susceptible to pathogen infection, and some of
the pathogens may produce toxins, rendering food unsafe. Mitotic senescence may
also determine sizes of leaves, fruits and whole plants.

This scientific and economic significance means that much effort has been made
to understand the senescence processes in plants and to devise means of manipulating
them agriculturally. During the past few years there has been significant progress in
this regard, especially in the molecular, genetic and genomic aspects.

This volume summarizes recent progress in the physiology, biochemistry, cell bi-
ology, molecular biology, genomics, proteomics, and biotechnology of plant senes-
cence. The term senescence has been used by both plant and animal biologists, but
it may describe completely different processes. Beginning with senescence-related
terminology and our current knowledge of mitotic senescence in plants (a less well-
studied area, Chapter 1), the book focuses on post-mitotic senescence, including
senescence of leaves (Chapters 2 through 10), flowers (Chapter 11), and fruits
(Chapter 12). This research has led to the development of various new biotech-
nologies for manipulating the senescence processes of fruit (Chapter 12) and leaves
(Chapter 13), some of which are approaching commercialization.



xviii PREFACE

Senescence Processes in Plants will be a very useful reference book for senes-
cence researchers based in academia and industry. It may also serve as a textbook
for advanced undergraduate students and graduate students.

I would like to thank all the authors for their excellently written chapters and the
publishers for their enthusiasm.

Susheng Gan
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1 Mitotic senescence in plants
Susheng Gan

1.1 Introduction

The word senescence derives from two Latin words: senex and senescere. Senex
means ‘old’; this Latin root is shared by ‘senile’, ‘senior’, and even ‘senate’. In
ancient Rome the ‘Senatus’ was a ‘council of elders’ that was composed of the
heads of patrician families. Senescere means ‘to grow old’. The Merriam-Webster
online dictionary defines senescence as ‘the state of being old or the process of
becoming old’. Aging is also the process of getting older. Therefore, aging has
been regarded as a synonym of senescence, and the two words have often been
used interchangeably, which, in some cases, is fine but in some other cases causes
confusion. This chapter will first briefly discuss the terminology of senescence, and
then will review the literature related to mitotic senescence, a topic that has not been
well discussed in the plant senescence research area.

1.2 Terminology and types of senescence

Senescence is a universal phenomenon in living organisms, and the word senescence
has been used by scientists working on a variety of systems, such as yeast, fruit fly,
worm, human being and plants. However, the meaning of the word senescence to
scientists working on different organisms can be different, and the difference can
be subtle in some cases and very obvious in some other cases. Here I try to clarify
the term at cellular and organismal levels to avoid possible confusion.

At the cellular level, as shown in the cartoon in Figure 1.1, a cell’s life history
consists of mitotic and postmitotic processes (Gan, 2003). A cell may undergo a cer-
tain number of mitotic divisions to produce daughter cells. After a limited number
of divisions (e.g. about 40 divisions in human fibroblasts), the cell can no longer di-
vide mitotically. Once a cell ceases mitotic division permanently, it is called mitotic
senescence. In the literature concerning yeast, germline cells and mammalian cells
in culture, this type of senescence is often referred to as cellular senescence, replica-
tive senescence, proliferative senescence or, sometimes, replicative aging (Sedivy,
1998; Takahashi et al., 2000; Ben-Porath and Weinberg, 2005; Patil et al., 2005).
If a cell keeps dividing and fails to undergo mitotic senescence (e.g. cancer cells),
it is said to be ‘immortalized’. Therefore, mitotic senescence is a mechanism to
suppress cancer development. If a cell stops mitosis temporarily due to unfavorable
conditions but retains its mitotic capacity and can re-enter mitotic cycles to produce



2 SENESCENCE PROCESSES IN PLANTS

Cell
cycle

Postmitosis

Mitosis

Quiescence

Figure 1.1 Illustration of a cell’s life history consisting of both mitotic and postmitotic processes.
When the cell stops dividing, it is called mitotic senescence or replicative senescence or proliferative
senescence. The active degenerative and attrition process of the cell that can no longer undergo cell
division is postmitotic senescence. If a cell stops dividing due to, for example, adverse conditions, but
will resume division, the status of the cell is called cell quiescence.

more daughter cells, the temporarily undividing or resting status or process is called
cell quiescence (Stuart and Brown, 2006). Although a mitotically senescent cell is
not dead it may undergo degenerative process leading to death. If the degeneration
is solely a function of age, ‘aging’ is the right word to describe it. In animal litera-
ture, the term ‘cell(ular) aging’ or ‘postmitotic aging’, or ‘postmitotic senescence’
is used for this process. If the degeneration is an active yet quick process, it is a
form of ‘apoptosis’ or ‘programmed cell death’. It however should be noted that
mitotically senescent mammalian cells in culture are resistant to ‘apoptosis’. Most
of the postmitotic cells are somatic in nature (e.g. brain, neuron, and muscle cells);
the term somatic senescence is therefore also used in literature concerning animals.
As will be discussed below, postmitotic senescence also occurs in plant somatic
tissues such as leaves, flowers and fruits. Compared with postmitotic senescence in
animals, leaf/flower/fruit senescence (that involves an active but slow degenerative
process) and hypersensitive response (involving an active yet very quick degenera-
tive process) are typical postmitotic senescence processes in plants.

At the organismal level, when an organism’s ability to respond to stress declines,
its homeostasis becomes increasingly imbalanced, and its risk of disease increases
with age, which leads to the ultimate death of the whole organism. This is the
aging of the whole organism, and is often referred to as organismal senescence. Al-
though cellular senescence may contribute to organismal senescence (Ben-Porath
and Weinberg, 2005), the latter is much more inclusive, for example many age-
related diseases, such as Alzheimer’s disease, are parts of organismal aging. In lit-
erature concerning plants, organismal senescence is senescence of the whole plant.
Among the most studied whole plant senescence processes is monocarpic senes-
cence. Annuals (e.g. Arabidopsis), biennials (e.g. wheat) and some perennials (e.g.
bamboo) possess a monocarpic life pattern, which is characterized by only a single
reproductive event in the life cycle. After flowering (and setting seeds or fruits), the
whole plant will senesce and die. Monocarpic senescence includes three coordinated
processes: (a) senescence of somatic organs and tissues such as leaves (a form of
postmitotic senescence, see below), (b) arrest of shoot apical meristems (SAM),
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a form of mitotic senescence or proliferative senescence (see below), and (c) per-
manent suppression of axillary buds to prevent formation of new shoots/branches.
This third aspect of whole plant senescence has not received enough attention in the
senescence research community.

1.3 Plants exhibit mitotic senescence, postmitotic senescence
and cell quiescence

Plants exhibit both types of senescence (Figure 1.2). An example of mitotic senes-
cence in plants is the arrest of apical meristem; the meristem consists of nondiffer-
entiated, germline-like cells that can divide finite times to produce cells that will
be then differentiated to form new organs such as leaves and flowers. The arrest of
apical meristem is also called proliferative senescence in plant literature (Hensel
et al., 1994). This is similar to replicative senescence in yeast and animal cells in
culture, as discussed above. Another example of mitotic senescence is the arrest of
mitotic cell division at early stages of fruit development. Fruit size is a function of
cell number, cell size and intercellular space, and cell number is the major factor.
Cell number is determined at the very early stage of fruit development and remains
unchanged thereafter (Tanksley, 2004). Postmitotic senescence occurs in some plant
organs, such as leaves and floral petals. Once formed, cells in these organs rarely
undergo cell division; their growth is mainly contributed by cell expansion; thus,
their senescence, unlike mitotic senescence, is not due to an inability to divide. This
type of senescence involving predominantly somatic tissues is very similar to that

Mitotic/proliferativeMitotic/proliferative
senescencesenescence

Postmitotic senescence

Shoot apical meristem

Early fruit development

Leaf senescence

Carpel senescence
(fruit)

Floral senescence
(sepal & petal)

Early leaf development

Figure 1.2 Mitotic and postmitotic senescence in plants. Mitotic senescence occurs in SAM, in fruits
and leaves that are at very early stages of development. In contrast, postmitotic senescence occurs in
leaves, flowers and fruits that are at late stages of development (thus leaf senescence, flower senescence
and fruit senescence, respectively).
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of such animal model systems as Drosophila and Caenorhabditis elegans whose
adult bodies, with exception of germline, are postmitotic (Gan, 2003).

Cell quiescence also occurs in plants. Cells of apical meristems will stop dividing
under unfavorable conditions. For example, the apical meristems of many trees will
stop proliferative process when they perceive the short-day photoperiod signal; short
day often means that the winter season is coming. These meristem cells retain their
division capability during winters and will resume division activity when spring is
coming. Therefore, the short-day-induced cell quiescence is an evolutionary fitness
strategy. A recent study shows that ethylene and abscisic acid may play a role in
regulating the temporary ‘arrest’ of tree meristem (Ruonala et al., 2006).

1.4 Mitotic senescence: arrest of SAM

1.4.1 Initiation of SAM

SAM is a dome-shaped structure at the tip of a stem that consists of small isodiametric
cells with thin-wall and dense protoplasm. It is formed at the globular stage during
embryogenesis, and at least three genes, SHOOT MERISTEM LESS (STM), CUP-
SHAPED COTYLEDONS (CUC)1 and CUC2, are required for SAM initiation,
because mutation in STM or in both CUC1 and CUC2 results in no formation of
SAM (Bowman and Eshed, 2000). STM encodes a homeodomain transcription factor
and CUC1 and CUC2 encode duplicated NAC family transcription factors.

1.4.2 Maintenance of SAM

SAM is responsible for generating above-ground postembryonic organs such as
leaves and flowers. The SAM cells keep dividing mitotically, and some of their
daughter cells undergo differentiation to form various aerial organs while others
remain as stem cells that can divide further (Bowman and Eshed, 2000). The bal-
ance between the numbers of daughter cells that remain as meristem cells and that
undergo differentiation is precisely controlled; if too many daughter cells enter dif-
ferentiation, the pool of meristem cells will be depleted. Several genes have been
shown to regulate this balance. In Arabidopsis, STM and WUSCHEL (WUS, a gene
that also encodes a homeodomain transcription factor) are necessary to keep cells
undifferentiated and dividing. Specifically, WUS produces a noncell autonomous
signal that activates cell division in combination with STM (Gallois et al., 2002).
On the other hand, combined WUS/STM functions can initiate the progression from
stem cells to organ initiation (Gallois et al., 2002). The balance is also regulated
by CLAVATA (CLV)1, 2 and 3, because mutations in these genes lead to too many
cells in the SAM (thus a too big SAM). Therefore, these three genes may inhibit
cell division or promote cell differentiation in the SAM. CLV1 encodes a receptor
kinase and CLV2 a receptor-like protein. CLV3 encodes a small protein that may
act as a ligand for the CLV1/2 receptor heterodimer complex. STM and CLV may
function independently in regulating SAM, and WUS may act downstream of the
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CLV pathway. Recent studies show that a transcription factor complex consisting
of C-, D-, and E-type MADS-box proteins controls the stem cell population in the
floral meristem (Ferrario et al., 2006). In addition, the homeodomain/leucine zipper
transcription factor REVOLUTA (Otsuga et al., 2001) may also control the relative
growth of apical (and nonapical) meristems in Arabidopsis (Talbert et al., 1995).

1.4.3 Arrest of SAM: a mitotic senescence in nature

After producing certain number of organs (leaves and flowers), the SAM cells cease
dividing. The loss of cell division capability of SAM is called the arrest of SAM.
The arrest is a proliferative senescence process (Hensel et al., 1994). Figure 1.3
shows an arrested primary inflorescence apex compared with a proliferating one in
Arabidopsis.

1.4.3.1 Physiological regulation
Reproductive development appears to play an important role in regulating prolifera-
tive senescence in plants, which is especially true in many monocarpic plants. Hensel
et al. (1994) found that meristems of all inflorescence branches in the wild-type
Arabidopsis ecotype Landsberg erecta (Ler) ceased to produce flowers coordinately,
but such a coordinated proliferative arrest did not occur in the wild-type Ler plants
with their fruits surgically removed. Similarly, meristem arrest was not observed in a
male-sterile line that never sets seeds. This result suggests that the arrest of inflores-
cence meristems is regulated by developing fruits/seeds (Hensel et al., 1994). Hensel
et al. further proposed two models to explain the effect of developing fruits on the
mitotic activity of meristems. One model is that a factor necessary for sustaining
mitotic activity at the SAM is gradually taken and eventually depleted by develop-
ing fruits, resulting in arrest. The other model is that developing fruits produce a
negative regulator of mitotic activities, and that the negative regulator is transferred
to and accumulated in the SAM to a threshold level so that the SAM is arrested. The
factor, either positive or negative, is unknown.

Like postmitotic senescence that is hormonally regulated (Chapter 7), SAM ar-
rest is controlled by plant hormones. It is known that both cytokinins and auxin can
promote cell division (Trehin et al., 1998). A mitotic cycle consists of G1 → S →
G2 → M (and then back to G1). DNA is synthesized during S while mitosis occurs
during M. Tissue culture studies have shown that auxin appears to promote advance-
ment from G1 to S by up-regulating the expression of a cyclin-dependent kinase
(CDK) gene. Cytokinins can advance the cycle through M, likely by maintaining
cyclin homeostasis (Lee et al., 2006). These data were largely obtained by tissue
culture experiments. Whether these mechanisms are involved in the regulation of the
cell division in SAM is unknown. In contrast to cytokinins and auxin, mitotic drugs
also cause meristem arrest. For example, oryzalin, a chemical that can depolymerize
microtubules, can very rapidly lead to meristem cell division arrest in Arabidopsis
(Grandjean et al., 2004).

In addition, many environmental factors, especially extreme conditions, regulate
meristem arrest. For example, broccoli normally develops a ramified inflorescence



Figure 1.3 An arrested inflorescence apex (B) compared with a proliferating one (A) in Arabidopsis
thaliana (strain: Landsberg erecta) as revealed by scanning electron microscope. (A) An apex 25 days
after planting. Note the meristem is actively proliferating and there are nine floral buds at various
developmental stages. (B) An apex 48 days after planting. The apex has been arrested for 1 week
(Hensel et al., 1994).
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without flower bud development. After a certain period, meristems begin to make
flower buds instead of more inflorescences. The meristem will be arrested at this tran-
sition if the temperature is too high (Bjorkman and Pearson, 1998). The temperature-
sensitive arrest of meristem has also been observed in Arabidopsis (Pickett et al.,
1996).

1.4.3.2 Genetic regulation
In contrast to the initiation and growth, the arrest of apical meristems may be reg-
ulated in part by FIREWORKS (FIW). During a course of screening for mutants
that exhibit premature cessation of inflorescence growth in Arabidopsis, Nakamura
et al. (2000) isolated a novel mutant line named fireworks (fiw) that displayed ear-
lier cessation of flower formation and inflorescence stem elongation. The recessive
mutant fiw/fiw displayed an inflorescence meristem arrest 7 days earlier than wild-
type Arabidopsis plants. Otherwise the vegetative growth and development in the
mutant line were normal, and the mutant plants produced normal flowers and set
fully matured siliques, although the flowers and siliques were clustered at the top
of the inflorescence, looking like fireworks (thus so named). The early arrest in
the fiw/fiw plants occurred globally, not only in the primary inflorescence but also
in the lateral inflorescences (Nakamura et al., 2000). In addition to the early mi-
totic senescence phenotype, the mutant plants also exhibited accelerated rosette leaf
senescence (Nakamura et al., 2000), suggesting that FIW may also have a role in
regulating postmitotic senescence. The fiw mutation was mapped on the lower arm
of chromosome 4 but the corresponding gene has not been cloned yet. The cloning
and characterization of FIW will help us understand how a single gene may control
both mitotic and postmitotic senescence.

1.5 Role of telomere and telomerase in mitotic senescence

1.5.1 Telomere

Telomeres are specialized structures consisting of proteins and highly repeated DNA
at the ends of the linear eukaryotic chromosomes. The repeated sequences are rel-
atively conserved, for example, the repeated sequence in vertebrates is TTAGGG,
but the length of the telomere varies among different species, different individuals,
different tissues and even among different chromosomes (Bekaert et al., 2004). In
humans, the telomere may be 3–20 kb in length. In yeasts, the repeated sequence
is T1–4G1–4, not as highly conserved as that of humans. In many higher plants, the
repeated sequence is TTTAGGG. Telomeres can serve as caps to prevent chromo-
somes from fusion with each other.

1.5.2 Telomerase

Chromosomal DNAs are replicated during S phase by DNA polymerases. DNA
polymerases move from the 3′ to 5′ direction (polymerizing in the 5′ to 3′ direction),



8 SENESCENCE PROCESSES IN PLANTS

so at a replication fork there are two new DNA strands: one is the leading strand that
will have no problem to replicate the DNA to the end of the template, and the other
is the lagging strand. The lagging strand will have problem to replicate the very end
of the linear template DNA sequence. Therefore, the DNA sequence at the very end
of a chromosome will be lost each time the chromosome is replicated. This is called
telomere shortening.

Telomerases are special reverse transcriptases that add telomere DNA to chro-
mosome ends. A telomerase contains both RNA and protein components. The RNA
component is approximately 150 nucleotides long and contains about 1.5 copies of a
specific telomeric repeat. The RNA component serves as a template to synthesize the
corresponding telomeric repeat DNA sequence. In general, germ cells contain high
telomerase activity and telomere length in the germ cells is maintained relatively
stable because of the telomerase activity. In contrast, somatic cells in animals lack
telomerase activity, which prevents somatic cells, such as skin cells, from develop-
ing into cancer cells, because the telomeres will be shortened after each division
(Bekaert et al., 2004).

1.5.3 Telomere shortening and replicative senescence in animals

In mammalian cells in culture, there is a molecular clock of senescence or aging that
counts cell division numbers (Sedivy, 1998; Sherr and DePinho, 2000; Bekaert et
al., 2004). The nature of the molecular clock appears to be the telomere shortening.
The length and amount of telomeric DNA in human fibroblasts decrease as a func-
tion of serial passage (division) during aging in vitro and possibly in vivo (Harley
et al., 1990). When the telomeres become very short, the DNA ends will be open,
and the cell will perceive it as damaged DNA, and consequently the senescence
process will be triggered. One strong line of evidence that supports this replicative
senescence model involves the overexpression of a telomerase (Bodnar et al., 1998).
Normal human cells in culture undergo a certain number of mitotic divisions and
then start replicative senescence. When the cells overexpressed hTRT that encodes
the human telomerase catalytic subunit via transfection, the telomeres in these cells
were elongated, and the cells kept dividing vigorously even after the control cells
had entered nondividing status. The hTRT-overexpressing cells had a significantly
prolonged replicative life span (Bodnar et al., 1998).

1.5.4 Telomere biology in plants

The telomere length remains constant throughout the life cycle of, for example,
Arabidopsis and Silene latifolia (Riha et al., 1998; Fitzgerald et al., 1999), although
the exception has been reported in barley: there is a significant reduction (50 kb)
in telomere length during embryogenesis (Kilian et al., 1995). Telomere shortening
in the SAM is likely trivial because the meristem cells, like stem cells in animals,
possess telomerase activity. On the basis of homology to the human telomerase
reverse transcriptase (hTERT), an Arabidopsis thaliana cDNA named AtTERT was
cloned (Fitzgerald et al., 1999; Oguchi et al., 1999). The cDNA contains an open
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reading frame of 3372 bp, encoding a protein with a predicted size of 131 kDa
and isoelectric point of 9.9. The AtTERT protein contains the conserved reverse
transcriptase motifs 1, 2 and A-E as well as the TERT-specific T motif. Reverse
transcription polymerase chain reaction analysis and an assay of telomerase activity
revealed that both AtTERT mRNA and telomerase activity are abundant in the SAM
but are not detectable in rosette leaves. However, it should be noted that no detailed
analysis of changes in telomere length in young versus senescent SAM has been
reported, perhaps due to technical difficulties in collecting enough meristem tissues
for analysis.

The cell culture system, like in animals, has been employed for the studies of
telomere in plants, although the mitotic senescence process in the cultured plant
cells has not been well characterized. Opposite to the situation in cultured animal
cells, the telomere length in cultured plant cells does not shorten but increases upon
a prolonged culture (Kilian et al., 1995; Riha et al., 1998).

The effect of telomere shortening on plant growth and development has been an-
alyzed in Arabidopsis mutant plants in which the telomerase gene was knocked out
due to T-DNA insertion. The telomerase-null plants displayed a slow loss of telom-
eric DNA, ∼500 bp per generation (the Arabidopsis telomeres are about 2–5 kb),
which is 10 times slower than that observed in telomerase-deficient mice (Fitzgerald
et al., 1999). The first several generations of the telomerase-null plants developed
normally. The later generations, beginning in the sixth generation, exhibited an ex-
tended life span compared with wild-type plants. However, the later generations
also displayed some developmental abnormalities including altered phyllotaxy, ab-
normal leaf shape and reduced fertility (Riha et al., 2001). Therefore, the extended
life span might have resulted from reduced fertility; as discussed above, the SAM
of male-sterile plants had much longer proliferative longevity (Hensel et al., 1994).
The meristems of telomerase-null plants of very late generations were enlarged
(however disorganized) and, in some cases, dedifferentiated into a callusoid mass,
and failed to produce leaves and/or flowers (Riha et al., 2001). Only a few mutants
were able to survive into the ninth generation and none survived later than the tenth
generation (Riha et al., 2001) because of genome instability (Siroky et al., 2003;
McKnight and Shippen, 2004).

It is therefore unlikely that telomere shortening plays an important role in con-
trolling proliferative senescence in plants (Gan, 2003).

1.6 Closing remarks

The term senescence has been used by both plant and animal scientists, but the exact
meanings of the term could be different. This chapter tried to clarify the difference.
At the cellular level, there are two types of senescence: mitotic and postmitotic senes-
cence. Although plants exhibit both these types of senescence, mitotic or replicative
or proliferative senescence in plants has been much less studied than the compara-
ble processes in yeasts, animals, and humans, and postmitotic senescence in plants.
Nonetheless, reasonable progresses have been made toward the understanding of
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physiological, molecular and genetic mechanisms of mitotic senescence in plants.
It is known that many environmental stresses and fruit development can promote
mitotic senescence in SAM, and that, unlike in animals, telomere and telomerase
play little role in modulating plant mitotic senescence.
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2 Chlorophyll catabolism and leaf coloration
Stefan Hörtensteiner and David W. Lee

2.1 Introduction

Chlorophyll (chl) breakdown is an integral part of the senescence syndrome, char-
acterized by physiological and biochemical changes that aim at the recycling of
nutrients from senescing tissues, like leaves and fruits. Thus, worldwide, an esti-
mated 109 tons of chl is degraded every year, but the fate of chl was enigmatic for a
long time (Hendry et al., 1987). Only 15 years ago, the first final degradation product
could be identified as a linear tetrapyrrolic, nonfluorescent chlorophyll catabolite
(NCC) (Kräutler et al., 1991), and a pathway involved in the formation of NCCs has
been elucidated gradually since then. Most helpful for the elucidation of breakdown
intermediates and reactions (Table 2.1) was the availability of stay-green mutants
that are affected in chl catabolic steps. Most of the reactions of chl breakdown are
now known, and genes for some of the catabolic enzymes have been cloned recently.
The current knowledge will be outlined in this review.

Autumnal leaf coloration in deciduous trees is a most spectacular phenomenon
that attracts millions of people every year (Hendry et al., 1987). The loss of chl and
unmasking of retaining carotenoids together with the new synthesis of anthocyanins
represent the biochemical basis of the polychromatic beauty of autumnal leaves.
Whereas the chemical structures and the biosynthetic pathways of the involved
pigments are rather well established, the biological function of leaf coloration is
poorly understood. Several hypotheses have been presented in the literature and
will be discussed here.

2.2 Chlorophyll catabolites

2.2.1 Green catabolites

2.2.1.1 Chlorins
Green-colored pigments that are derived from chl have been identified in a number
of different species and include chlides, pheides, 132-hydroxy chl, pyropheide and
pyropheophytin (Schoch et al., 1981; Ziegler et al., 1988). Their importance for a
chl degradation pathway that ultimately leads to the disappearance of green color
has not been unequivocally established for all of them. Whereas the occurrence of
pigments like pheide, chlide and pheophytins well fits the concept of chl breakdown
ending in the formation of NCCs (Figure 2.1), colorless derivatives of pyro forms or
of 132-hydroxylated forms of chl have so far escaped detection. Arguably, the latter



Ta
bl

e
2.

1
O

ve
rv

ie
w

ov
er

ch
lc

at
ab

ol
ic

en
zy

m
es

Id
en

tifi
ca

tio
n/

ge
ne

E
nz

ym
e

A
bb

re
vi

at
io

n
lo

cu
s

in
A

ra
bi

do
ps

is
L

oc
al

iz
at

io
n

R
ef

er
en

ce

I
C

hl
or

op
hy

ll
b

re
du

ct
as

e
C

B
R

E
nz

ym
e

ac
tiv

ity
Pl

as
tid

s,
th

yl
ak

oi
d

Sc
he

um
an

n
et

al
.(

19
98

,1
99

9)
II

H
yd

ro
xy

ch
lo

ro
ph

yl
la

re
du

ct
as

e
C

A
R

E
nz

ym
e

ac
tiv

ity
Pl

as
tid

s
Sc

he
um

an
n

et
al

.(
19

98
)

II
I

C
hl

or
op

hy
lla

se
C

L
H

A
tC

L
H

1:
A

t1
g1

96
70

A
tC

L
H

2:
A

t5
g4

38
60

Pl
as

tid
s,

va
cu

ol
e?

T
su

ch
iy

a
et

al
.(

19
99

)

IV
M

g-
de

ch
el

at
as

e
(m

et
al

-c
he

la
tin

g
su

bs
ta

nc
e)

M
C

S
E

nz
ym

e
ac

tiv
ity

Pl
as

tid
s

Su
zu

ki
an

d
Sh

io
i(

20
02

)
V

Ph
eo

ph
or

bi
de

a
ox

yg
en

as
e

PA
O

A
t3

g4
48

80
Pl

as
tid

s,
in

ne
r

en
ve

lo
pe

Pr
už
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