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 PREFACE           

 This  Preclinical Development Handbook: ADME and Biopharmaceutical Properties  
continues and extends the objective behind the entire  Handbook  series: an attempt 
to achieve a through overview of the current and leading - edge nonclinical approaches 
to evaluating the pharmacokinetic and pharmacodynamic aspects of new molecular 
entity development for therapeutics. The 38 chapters cover the full range of 
approaches to understanding how new molecules are absorbed and distributed in 
model systems, have their biologic effects, and then are metabolized and excreted. 
Such evaluations provide the fundamental basis for making decisions as to the pos-
sibility and means of pursuing clinical development of such moieties. Better perfor-
mance in this aspect of the new drug development process is one of the essential 
keys to both shortening and increasing the chance of success in developing new 
drugs. 

 The volume is unique in that it seeks to cover the entire range of available 
approaches to understanding the performance of a new molecular entity in as broad 
a manner as possible while not limiting itself to a superfi cial overview. Thanks to 
the persistent efforts of Mindy Myers and Gladys Mok, these 38 chapters, which are 
written by leading practitioners in each of these areas, provide coverage of the 
primary approaches to the problems of understanding the mechanisms that operate 
in  in vivo  systems to transfer a drug to its site of action and out. 

 I hope that this newest addition to our scientifi c banquet is satisfying and useful 
to all those practitioners working in or entering the fi eld.       
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2  MODELING AND INFORMATICS IN DRUG DESIGN

  1.1   INTRODUCTION 

 Modeling and informatics have become indispensable components of rational drug 
design (Fig.  1.1 ). For the last few years, chemical analysis through molecular model-
ing has been very prominent in computer - aided drug design (CADD). But currently 
modeling and informatics are contributing in tandem toward CADD. Modeling in 
drug design has two facets: modeling on the basis of knowledge of the drugs/leads/
ligands often referred to as ligand - based design and modeling based on the structure 
of macromolecules often referred to as receptor - based modeling (or structure - based 
modeling). Computer - aided drug design is a topic of medicinal chemistry, and before 
venturing into this exercise one must employ computational chemistry methods to 
understand the properties of chemical species, on the one hand, and employ com-
putational biology techniques to understand the properties of biomolecules on the 
other. Information technology is playing a major role in decision making in phar-
maceutical sciences. Storage, retrieval, and analysis of data of chemicals/biochemi-
cals of therapeutic interest are major components of pharmacoinformatics. Quite 

    FIGURE 1.1     A schematic diagram showing a fl owchart of activities in computer aided 
drug development. The fi gure shows that the contributions from modeling methods and 
informatics methods toward the drug development are parallel and in fact not really 
distinguishable. 
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often, the efforts based on modeling and informatics get thoroughly integrated 
with each other, as in the case of virtual screening exercises. In this chapter, the 
molecular modeling methods that are in vogue in the fi elds of (1) computational 
chemistry, (2) computational biology, (3) computational medicinal chemistry, and 
(4) pharmacoinformatics are presented and the resources available in these fi elds 
are discussed.    

  1.2   COMPUTATIONAL CHEMISTRY 

 Two - dimensional (2D) structure drawing and three - dimensional (3D) structure 
building are the important primary steps in computational chemistry for which 
several molecular visualization packages are available. The most popular of these 
are ChemDraw Ultra and Chem3D Pro, which are a part of the ChemOffi ce suite 
of software packages  [1] . ACD/ChemSketch  [2] , MolSuite  [3] , and many more of 
this kind are other programs for the same purpose. Refi nement has to be carried 
out on all the drawings and 3D structures so as to improve the chemical accuracy 
of the structure on the computer screen. Structure refi nement based on heuristic 
rules/cleanup procedures is a part of all these software packages. However, chemical 
accuracy of the 3D structures still remains poor even after cleanup. Further refi ne-
ment can be carried out by performing energy minimization using either molecular 
mechanical or quantum chemical procedures. By using these methods, the energy 
of a molecule can be estimated in any given state. Following this, with the help of 
fi rst and second derivatives of energy, it can be ascertained whether the given com-
putational state of the molecules belongs to a chemically acceptable state or not. 
During this process, the molecular geometry gets modifi ed to a more appropriate, 
chemically meaningful state  –  the entire procedure is known as geometry optimiza-
tion. The geometry optimized 3D structure is suitable for property estimation, 
descriptor calculation, conformational analysis, and fi nally for drug design exercise 
 [4 – 6] . 

  1.2.1    Ab Initio  Quantum Chemical Methods 

 Every molecule possesses internal energy ( U ), for the estimation of which quantum 
chemical calculations are suitable. Quantum chemical calculations involve rigorous 
mathematical derivations and attempt to solve the Schr ö dinger equation, which in 
its simplest form may be written as

    H EΨ Ψ=     (1.1)  

    Ĥ
Z

r d r r
Z Z

d d
i

a

i aai i jj ii

a b

a bb aa
el = − ∇( ) −

−
+

−
+

−∑∑∑ ∑∑ ∑
≠ ≠

1
2

1
2

1 1
2

2 ∑∑     (1.2)   

 where  ψ  represents the wavefunction,  E  represents energy,  ∇  represents the kinetic 
energy operator for electrons,  r i   defi nes the vector position of electron  i  with vector 
components in Bohr radii,  Z a   is the charge of fi xed nucleus  a  in units of the elemen-
tary charge, and  d a   is the vector position of nucleus  a  with vector components in 
Bohr radii. 
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 Exact solutions to Schr ö dinger equation cannot be provided for systems with 
more than one electron. Several ab initio  molecular orbital (MO) and  ab initio
density functional theory (DFT  ) methods were developed to provide expectation 
value for the energy. This energy can be minimized and thus the geometry of any 
molecule can be obtained, with high confi dence level, using quantum chemical 
methods. During this energy estimation, the wavefunctions of every molecule can be 
defi ned, which possess all the information related to the molecule. Thus, properties 
like relative energies, dipole moments, electron density distribution, charge distribu-
tion, electron delocalization, molecular orbital energies, molecular orbital shapes, 
ionization potential, infrared (IR) frequencies, and chemical shifts can be estimated 
using ab initio  computational chemistry methods. For this purpose, several quantum 
chemical methods like Hartree – Fock (HF), second order Moller – Plesset perturba-
tion (MP2), coupled cluster (CCSD  ), confi guration interaction (QCISD  ), many - body 
perturbation (MBPT), multiconfi guration self - consistent fi eld (MCSCF), complete 
active space self - consistent fi eld (CASSCF), B3LYP, and VWN were developed. At 
the same time to defi ne the wavefunction, a set of mathematical functions known as 
basis set  is required. Typical basis sets are 3 - 21G, 6 - 31G * , and 6 - 31+G * . Combination 
of the ab initio  methods and basis sets leads to several thousand options for estimat-
ing energy. For reliable geometry optimization of drug molecules, the HF/6 - 31+G * , 
MP2/6 - 31+G * , and B3LYP/6 - 31+G *  methods are quite suitable. When very accurate 
energy estimation is required, G2MP2 and CBS - Q methods can be employed. Gauss-
ian03, Spartan, and Jaguar are software packages that can be used to estimate reliable 
geometry optimization and very accurate energy estimation of any chemical species. 
In practice, quantum chemical methods are being used to estimate the relative sta-
bilities of molecules, to calculate properties of reaction intermediates, to investigate 
the mechanisms of chemical reactions, to predict the aromaticity of compounds, and 
to analyze spectral properties. Medicinal chemists are beginning to take benefi t from 
these by studying drug – receptor interactions, enzyme – substrate binding, and solva-
tion of biological molecules. Molecular electrostatic potentials, which can be derived 
from ab initio  quantum chemical methods, provide the surface properties of drugs 
and receptors and thus they offer useful information regarding complementarities 
between the two  [7 – 10] .  

  1.2.2   Semiempirical Methods 

 The above defi ned  ab initio  methods are quite time consuming and become pro-
hibitively expensive when the drugs possess large number of atoms and/or a series 
of calculations need to be performed to understand the chemical phenomena. 
Semiempirical quantum chemical methods were introduced precisely to address this 
problem. In these methods empirical parameters are employed to estimate many 
integrals but only a few key integrals are solved explicitly. Although these calcula-
tions do not provide energy of molecules, they are quite reliable in estimating the 
heats of formation. Semiempirical quantum chemical methods (e.g., AM1, PM3, 
SAM1) are very fast in qualitatively estimating the chemical properties that are of 
interest to a drug discovery scientist. MOPAC and AMPAC are the software pack-
ages of choice; however, many other software packages also incorporate these 
methods. Qualitative estimates of HOMO and LUMO energies, shapes of molecular 
orbitals, and reaction mechanisms of drug synthesis are some of the applications of 
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semiempirical analysis  [5, 10] . When the molecules become much larger, especially 
in the case of macromolecules like proteins, enzymes, and nucleic acids, employing 
these semiempirical methods becomes impractical. In such cases, molecular mechan-
ical methods can be used to estimate the heats of formation and to perform geom-
etry optimization.  

  1.2.3   Molecular Mechanical Methods 

 Molecular mechanical methods estimate the energy of any drug by adding up the 
strain in all the bonds, angles, and torsions due to the energy   of the van der Waals 
and Coulombic interactions across all atoms in the molecule. It refl ects the internal 
energy of the molecule; although the estimated value is nowhere close to the actual 
internal energy, the relative energy obtained from these methods is indicative 
enough for chemical/biochemical analysis. It is made up of a number of components 
as given by

    E E E E E E Emm bonds angles vdw torsion charge misc= + + + + +     (1.3)   

 Molecular mechanical methods are also known as force fi eld methods because 
in these methods, the electronic effects are estimated implicitly in terms of force 
fi elds associated with the atoms. In Eq.  1.3 , the energy ( E ) due to bonds, angles, and 
torsional angles can be estimated using the simple Hooke ’ s law and its variations, 
whereas the van der Waals (vdw) interactions are estimated using the Lennard -
 Jones potential and the electrostatic interactions are estimated using Coulombic 
forces. The energy estimation, energy minimization, and geometry optimization 
using these methods are quite fast and hence suitable for studying the geometries 
and conformations of biomolecules and drug – receptor interactions. Since these 
methods are empirical in nature, parameterization of the force fi elds with the help 
of available spectral data or quantum chemical methods is required. AMBER, 
CHARMM, UFF, and Tripos are some of the force fi elds in wide use in computer -
 aided drug development  [5, 10] .  

  1.2.4   Energy Minimization and Geometry Optimization 

 Drug molecules prefer to adopt equilibrium geometry in nature, that is, a geometry 
that possesses a stable 3D arrangement of atoms in the molecule. The 3D structure 
of a molecule built using a 3D builder does not represent a natural state; slight 
modifi cations are required to be made on the built 3D structure so that it represents 
the natural state. For this purpose, the following questions need to be addressed: (1) 
Which minimal changes need to be made? (2) How much change needs to be made? 
(3) How does one know the representation at hand is the true representation of the 
natural state? To provide answers to these questions we can depend on energy, 
because molecules prefer to exist in thermodynamically stable states. This implies 
that if the energy of any molecule can be minimized, the molecule is not in a stable 
state and thus the current representation of the molecule may not be the true rep-
resentation of the natural state. This also implies that we can minimize the energy 
and the molecular structure in that energy minimum state probably represents a 
true natural state. Several methods of energy minimization have been developed by 
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computational chemists, some of which are nonderivative methods (simplex method) 
but many of which are dependent on derivative methods (steepest descent, Newton –
 Raphson, conjugate gradient, variable metrics, etc.) and involve the estimation of 
the gradient of the potential energy curve  [4 – 6] . The entire procedure of geometry 
modifi cation to reach an energy minimum state with almost null gradient is known 
as geometry optimization in terms of the structure of the molecule and energy 
minimization in terms of the energy of the molecule. All computational chemistry 
software packages are equipped with energy minimization methods — of which a few 
incorporate energy minimization based on  ab initio  methods while most include the 
semiempirical and molecular mechanics based energy minimization methods.  

  1.2.5   Conformational Analysis 

 Molecules containing freely rotatable bonds can adopt many different conforma-
tions. Energy minimization procedures lead the molecular structure to only one of 
the chemically favorable conformations, called the local minimum. Out of the several 
local minima on the potential energy (PE) surface of a molecule, the lowest energy 
conformation is known as the global minimum. It is important to note all the possi-
ble conformations of any molecule and identify the global minimum before taking 
up a drug design exercise (Fig.  1.2 ). This is important because only one of the pos-
sible conformations of a drug, known as its bioactive conformation, is responsible 
for its therapeutic effect. This conformation may be a global minimum, a local 
minimum, or a transition state between local minima. As it is very diffi cult to identify 

    FIGURE 1.2     Flowchart showing the sequence of steps during molecular modeling of drug 
molecules. 
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the bioactive conformation of many drug molecules, it is common practice to assume 
the global minima to be bioactive. The transformation of drug molecules from one 
conformer to another can be achieved by changing the torsional angles. The com-
putational process of identifying all local minima of a drug molecule, identifying the 
global minimum conformation, and, if possible, identifying the bioactive conforma-
tion is known as conformational analysis. This is one of the major activities in com-
putational chemistry.   

 Manual conformational search is one method where the chemical intuition of the 
chemist plays a major role in performing the conformational analysis. Here, a 
chemist/modeler carefully chooses all possible conformations of a given drug mol-
ecule and estimates the energy of each conformation after performing energy mini-
mization. This procedure is very effective and is being widely used. This approach 
allows the application of rigorous quantum chemical methods for the conforma-
tional analysis. The only limitation of this method arises from the ability and patience 
of the chemist. There is a possibility that a couple of important conformations are 
ignored in this approach. To avoid such problems, automated conformational analy-
sis methods were introduced. 

 Various automated methods of conformational analysis include systematic search, 
random search, Monte Carlo simulations, molecular dynamics, genetic algorithms, 
and expert systems (Table  1.1 )  [4, 5] . The systematic conformational search can be 
performed by varying systematically each of the torsion angles of the rotatable 
bonds of a molecule to generate all possible conformations. The step size for torsion 
angle change is normally 30 – 60 ° . The number of conformations across a C — C single 
bond would vary between 6 and 12. With an increase in the number of rotatable 
bonds, the total number of conformations generated becomes quite large. The 
 “ bump check ”  method reduces the number of possibilities; still, the total number of 
conformations generated can be in the tens of thousands for drug molecules. Obvi-
ously, most of the conformations are chemically nonsignifi cant.   

 The random conformational search method employs random change in torsional 
angle across rotatable bonds and performs energy minimization each time; thus, a 
handful of chemically meaningful conformations can be generated  [11 – 18] . 

 Molecular dynamics is another method of carrying out conformational search of 
fl exible molecules. The aim of this approach is to reproduce time - dependent motional 
behavior of a molecule, which can identify bound states out of several possible 

 TABLE 1.1    Different Methods of Conformational Analysis 

 Methods for Conformational 
Analysis  Remarks 

 Systematic search  Systematic change of torsions 
 Random search  Conformations picked up randomly 
 Monte Carlo method  Supervised random search 
 Molecular dynamics  Newtonian forces on atoms and time dependency 

incorporated in conformational search 
 Genetic algorithm  Parent – child relationship along with survival of the 

fi ttest techniques employed 
 Expert system  Heuristic methods based on rules and facts employed 
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states. The user needs to defi ne step size, time of run, and the temperature supplied 
to the system at the beginning of the computational analysis. A simulated annealing 
method allows  “ cooling down ”  of the system at regular time intervals by decreasing 
the simulation temperature. As the temperature approaches 0 K, the molecule is 
trapped in the nearest local minimum. It is used as the starting point for further 
simulation and the cycle is repeated several times  [19] .   

  1.3   COMPUTATIONAL BIOLOGY 

 Computational biology is a fast growing topic and it is really not practical to distin-
guish this topic from bioinformatics. However, we may broadly distinguish between 
the two topics as far as this chapter is concerned. Molecular modeling aspects of 
computational biology, which lead to structure prediction, may be discussed under 
this heading, whereas the sequence analysis part, which leads to target identifi cation, 
may be discussed under the section of pharmacoinformatics. Structure prediction of 
biomolecules (often referred to as  “ structural bioinformatics ” ) adopts many aspects 
of computational chemistry. For example, energy minimization of protein receptor 
structure is one important step in computational biology. Molecular mechanics, 
molecular simulations, and molecular dynamics are employed in performing con-
formational analysis of macromolecules. 

 A rational drug design approach is very much dependent on the knowledge of 
receptor protein structures and is severely limited by the availability of target 
protein structure with experimentally determined 3D coordinates. Proteins exhibit 
four tiered organization: (1) primary structure defi ning the amino acid sequence, (2) 
secondary structure with α  - helical and  β  - sheet folds, (3) tertiary structure defi ning 
the folding of secondary structure held by hydrogen bonds, and (4) quaternary 
structure involving noncovalent association between two or more independent pro-
teins. Methods for identifying the primary amino acid sequence in proteins are now 
well developed; however, this knowledge is not suffi cient enough to understand the 
function of the proteins, the drug – receptor mutual recognition, and designing drugs. 
Various experimental techniques like X - ray crystallography, nuclear magnetic reso-
nance, and electron diffraction are available for determining the 3D coordinates of 
the protein structure; however, there are many limitations. It is not easy to crystallize 
proteins and even when we succeed, the crystal structure represents only a rigid 
state of the protein rather than a dynamic state. Thus, the reliability of the experi-
mental data is not very high in biomolecules. Computational methods provide 
the alternative approach — although with equal uncertainty but at a greater speed. 
Homology modeling and ab initio  methods are being employed to elucidate the 
tertiary structure of various biomolecules. The 3D structures of proteins are useful 
in performing molecular docking, de novo  design, and receptor - based pharmaco-
phore mappings. The computational methods of biomolecular structure prediction 
are discussed next (Fig.  1.3 )  [20, 21] .   

  1.3.1    Ab Initio  Structure Prediction 

 This approach seeks to predict the native conformation of a protein from the amino 
acid sequence alone. The predictions made are based on fundamental understanding 
of the protein structure and the predictions must satisfy the requirements of free -



 energy function associated with lowest free - energy minima. The detailed represen-
tation of macromolecules should include the coordinates of all atoms of the protein 
and the surrounding solvent molecules. However, representing this large number of 
atoms and the interactions between them is computationally expensive. Thus, several 
simplifi cations have been suggested in the representations during the  ab initio  struc-
ture prediction process. These include (1) representation of side chains using a 
limited set of conformations that are found to be prevalent in structures from the 
Protein Data Bank (PDB) without any great loss in predictive ability  [22]  and (2) 
restriction of the conformations available to the polypeptides in terms of phi – psi 
( φ  –  ψ ) angle pairs  [23] . Building the protein 3D structure is initiated by predicting 
the structures of protein fragments. Local structures of the protein fragments are 
generated fi rst after considering several alternatives through energy minimization. 
A list of possible conformations is also extracted from experimental structures for 
all residues. Protein tertiary structures are assembled by searching through the 
combinations of these short fragments. During the assembling process, bump check-
ing and low energy features (hydrophobic, van der Waals forces) should be incor-
porated. The fi nal suggested structure is subjected to energy minimization and 
conformational analysis using molecular dynamics simulations.  Ab initio  structure 
prediction can be used to guide target selection by considering the fold of biological 
signifi cance. The  ab initio  macromolecular structure prediction methods, if success-
ful, are superior to the widely used homology modeling technique because no  a 
priori  bias is incorporated into the structure prediction  [24] .  

  1.3.2   Homology Modeling 

 Homology or comparative modeling uses experimentally determined 3D structure 
of a protein to predict the 3D structure of another protein that has a similar amino 
acid sequence. It is based on two major observations: (1) structure of a protein 
is uniquely determined by its amino acid sequence and (2) during evolution, the 
structure is more conserved than the sequence such that similar sequences adopt 

    FIGURE 1.3     A list of computer - aided structure prediction methods with respect to their 
suitability to the available sequence similarity. 
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practically identical structure and distantly related sequences show similarity in 
folds. Homology modeling is a multistep method involving the following steps: (1) 
obtaining the sequence of the protein with unknown 3D structure, (2) template 
identifi cation for comparative analysis, (3) fold assignment based on the known 
chemistry and biology of the protein, (4) primary structure alignment, (5) backbone 
generation, (6) loop modeling, (7) side chain modeling, (8) model optimization, and 
(9) model validation. 

 The methodology adopted in homology modeling of proteins can be described 
as follows. The target sequence is fi rst compared to all sequences reported in the 
PDB using sequence analysis. Once a template sequence is found in the data bank, 
an alignment is made to identify optimum correlation between template and target. 
If identical residues exist in both the sequences, the coordinates are copied as such. 
If the residues differ, then only the coordinates of the backbone elements (N, C α , 
C, and O) are copied. Loop modeling involves shifting all insertions and deletions 
to the loops and further modifying them to build a considerably well resembling 
model. Modeling the side chains involves copying the conserved residues, which also 
includes substitution of certain rotamers that are strongly favored by the backbone. 
Model optimization is required because of the expected differences in the 3D 
structures of the target and the template. The energy minimizations can be per-
formed using molecular mechanics force fi elds (either well defi ned and/or self -
 parameterizing force fi elds). Molecular dynamic simulations offer fast, more reliable 
3D structure of the protein. Model validation is a very important step in homology 
modeling, because several solutions may be obtained and the scientifi c user should 
interfere and make a choice of the best generated model. Often, the user may have 
to repeat the process with increased caution  [20, 24] .

  1.3.3   Threading or Remote Homology Modeling 

 Threading (more formally known as  “ fold recognition ” ) is a method that may be 
used to suggest a general structure for a new protein. It is mainly adopted when 
pairwise sequence identity is less than 25% between the known and unknown struc-
ture. Threading technique is generally associated with the following steps: (1) iden-
tify the remote homology between the unknown and known structure; (2) align the 
target and template; and (3) tailor the homology model  [24] .   

  1.4   COMPUTATIONAL MEDICINAL CHEMISTRY 

 Representation of drug molecular structures can be handled using computational 
chemistry methods, whereas that of macromolecules can be handled using compu-
tational biology methods. However, fi nding the therapeutic potential of the chemical 
species and understanding the drug – receptor interactions  in silico  requires the fol-
lowing well developed techniques of computational medicinal chemistry. 

  1.4.1   Quantitative Structure – Activity Relationship ( QSAR ) 

 QSAR is a statistical approach that attempts to relate physical and chemical proper-
ties of molecules to their biological activities. This can be achieved by using easily 



calculatable descriptors like molecular weight, number of rotatable bonds, and log 
P . Developments in physical organic chemistry over the years and contributions of 
Hammett and Taft in correlating the chemical activity to structure laid the basis for 
the development of the QSAR paradigm by Hansch and Fujita. Table  1.2  gives an 
overview of various QSAR approaches in practice. The 2D and 3D QSAR 
approaches are commonly used methods, but novel ideas are being implemented in 
terms of 4D – 6D QSAR. The increased dimensionality does not add any additional 
accuracy to the QSAR approach; for example, no claim is valid which states that 
the correlation developed using 3D descriptors is better than that based on 2D 
descriptors.   

2D QSAR  Initially, 2D QSAR or the Hansch approach was in vogue, in which 
different kinds of descriptors from the 2D structural representations of molecules 
were correlated to biological activity. The basic concept behind 2D QSAR is that 
structural changes that affect biological properties are electronic, steric, and hydro-
phobic in nature. These properties can be described in terms of Hammett substituent 
and reaction constants, Verloop sterimol parameters, and hydrophobic constants. 
These types of descriptors are simple to calculate and allow for a relatively fast 
analysis.

 Most 2D QSAR methods are based on graph theoretical indices. The graph theo-
retical descriptors, also called the molecular topological descriptors, are derived from 
the topology of a molecule, that is, the 2D molecular structure represented as graphs. 
These topological connectivity indices representing the branching of a molecule 
were introduced by Rand í c  [25]  and further developed by Kier and Hall  [26, 27] . The 
graph theoretical descriptors include mainly the Kier – Hall molecular connectivity 
indices (chi) and the Weiner  [28, 29] , Hosoya  [30] , Zagreb  [31] , Balaban  [32] , kappa 
shape  [33] , and information content indices  [32] . The electrotopological state index 
(E - state)  [34]  combines the information related to both the topological environment 
and the electronic character of each skeletal atom in a molecule. The constitutional 
descriptors are dependent on the constitution of a molecule and are numerical 
descriptors, which include the number of hydrogen bond donors and acceptors, rotat-
able bonds, chiral centers, and molecular weight (1D)  [35] . Apart from that, several 
indicator descriptors, which defi ne whether or not a particular indicator is associated 
with a given molecule, are also found to be important in QSAR. The quantum chemi-
cal descriptors include the molecular orbital energies (HOMO, LUMO), charges, 
superdelocalizabilities, atom – atom and molecular polarizabilities, dipole moments, 
total and binding energies, and heat of formation. These are 3D descriptors derived 
from the 3D structure of the molecule and are electronic in nature  [36] . These param-
eters are also often clubbed with the 2D QSAR analysis. 

 TABLE 1.2    Different Dimensions in  QSAR

 1D QSAR: Affi nity correlates with p Ka , log  P , etc. 
 2D QSAR: Affi nity correlates with a structural pattern. 
 3D QSAR: Affi nity correlates with the three - dimensional structure. 
 4D QSAR: Affi nity correlates with multiple representations of ligand. 
 5D QSAR: Affi nity correlates with multiple representations of induced - fi t scenarios. 
 6D QSAR: Affi nity correlates with multiple representations of solvation models. 
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 Statistical data analysis methods for QSAR development are used to identify the 
correlation between molecular descriptors and biological activity. This correlation 
may be linear or nonlinear and accordingly the methods may be divided into linear 
and nonlinear approaches. The linear approaches include simple linear regression, 
multiple linear regression (MLR), partial least squares (PLS), and genetic 
algorithm – partial least squares (GA - PLS). Simple linear regression develops a 
single descriptor linear equation to defi ne the biological activity of the molecule. 
MLR is a step ahead as it defi nes a multiple term linear equation. More than one 
term is correlated to the biological activity in a single equation. PLS, on the other 
hand, is a multivariate linear regression method that uses principal components 
instead of descriptors. Principal components are the variables found by principal 
component analysis (PCA), which summarize the information in the original descrip-
tors. The aim of PLS is to fi nd the direct correlation not between the descriptors 
and the biological activity but between the principal component and the activity. 
GA - PLS integrates genetic algorithms with the PLS approach. Genetic algorithms 
are an automatic descriptor selection method that incorporates the concepts of 
biological evolution within itself. An initial random selection of descriptors is made 
and correlated to the activity. This forms the fi rst generation, which is then mutated 
to include new descriptors, and crossovers are performed between the equations to 
give the next generation. Equations with better predictability are retained and the 
others are discarded. This procedure is continually iterated until the desired pre-
dictability is obtained or the specifi ed number of generations have been developed. 
The nonlinear approaches include an Artifi cial Neural Network (ANN) and 
machine learning techniques. Unlike the linear approaches, nonlinear approaches 
work on a black box principle; that is, they develop a relation between the descrip-
tors and the activity to predict the activity, but do not give the information on how 
the correlation was made or which descriptors are more contributing. The ANN 
algorithm uses the concept of the functioning of the brain and consists of three 
layers. The fi rst layer is the input layer where the structural descriptors are given as 
an input; second is the hidden layer, which may be comprised of more than one 
layer. The input is processed in this part to give the predicted values to the third 
output layer, which gives the result to the user. The user can control the input given 
and the number of neurons and hidden layers but cannot control the correlating 
method  [37 – 40] . 

 The QSAR model developed by any statistical method has to be validated to 
confi rm that it represents the true structure – activity relationship and is not a chance 
correlation. This may be done by various methods such as the leave - one - out and 
leave - multiple - out cross - validations and the bootstrap method. The randomization 
test is another validation approach used to confi rm the adequacy of the training set. 
Attaching chemical connotation to the developed statistical model is an important 
aspect. A successful QSAR model not only effectively predicts the activity of new 
species belonging to the same series but also should provide chemical clues for 
future improvement. This requirement, as well as the recognition that the 3D rep-
resentation of the chemicals gives more detailed information, led to the develop-
ment of 3D QSAR.  

3D QSAR  3D QSAR methods are an extension of the traditional 2D QSAR 
approach, wherein the physicochemical descriptors are estimated from the 3D struc-



tures of the chemicals. Typically, properties like molecular volume, molecular shape, 
HOMO and LUMO energies, and ionization potential are the properties that can 
be calculated from the knowledge of the 3D coordinates of each and every atom of 
the molecules. When these descriptors of series of molecules can be correlated to 
the observed biological activity, 3D QSAR models can be developed. This approach 
is different from the traditional QSAR only in terms of the descriptor defi nition 
and, in a sense, is not really 3D in nature. 

Molecular fi elds (electrostatic and steric), which can be estimated using probe -
 based sampling of 3D structure of molecules within a molecular lattice, can be cor-
related with the reported numeric values of biological activity. Such methods proved 
to be much more informative as they provide differences in the fi elds as contour 
maps. The widely used CoMFA (comparative molecular fi eld analysis) method is 
based on molecular fi eld analysis and represents real 3D QSAR methods  [41] . A 
similar approach was adopted in developing modules like CoMSIA (comparative 
molecular similarity index analysis)  [42] , SOMFA (self - organizing molecular fi eld 
analysis)  [43] , and COMMA (comparative molecular moment analysis)  [44] . Utiliza-
tion and predictivity of CoMFA itself has improved suffi ciently in accordance with 
the objectives to be achieved by it  [45] . Despite the formal differences between the 
various methodologies, any QSAR method must include some identifi ers of chemi-
cal structures, reliably measured biological activities, and molecular descriptors. In 
3D QSAR, alignment (3D superimposition) of the molecules is necessary to con-
struct good models. The main problems encountered in 3D QSAR are related to 
improper alignment of molecules, greater fl exibility of the molecules, uncertainties 
about the bioactive conformation, and more than one binding mode of ligands. 
While considering the template, knowledge of the bioactive conformation of any 
lead compound would greatly help the 3D QSAR analysis. As discussed in Section 
 1.2.5 , this may be obtained from the X - ray diffractions or conformation at the 
binding site, or from the global minimum structure. Alignment of 3D structures of 
molecules is carried out using RMS atoms alignment, moments alignment, or fi eld 
alignment. The relationship between the biological activity and the structural param-
eters can be obtained by multiple linear regression or partial least squares analysis. 
Given next are some details of the widely used 3D QSAR approach CoMFA. 

   C  o  MFA  (Comparative Molecular Field Analysis)     DYLOMMS (dynamic lattice -
 oriented molecular modeling system) was one of the initial developments by Cramer 
and Milne to compare molecules by aligning in space and by mapping their molecu-
lar fi elds to a 3D grid. This approach when used with partial least squares based 
statistical analysis gave birth to the CoMFA approach  [46] . The CoMFA methodol-
ogy is a 3D QSAR technique that allows one to design and predict activities of 
molecules. The database of molecules with known properties is suitably aligned in 
3D space according to various methodologies. After consistently aligning the mole-
cules within a molecular lattice, a probe atom (typically carbon) samples the steric 
and electrostatic interactions of the molecule. Charges are then calculated for each 
molecule using any of the several methods proposed for partial charge estimation. 
These values are stored in a large spreadsheet within the module (SYBYL software) 
and are then accessed during the partial least squares (PLS) routine, which attempts 
to correlate these fi eld energy terms with a property of interest by the use of PLS 
with cross - validation, giving a measure of the predictive power of the model. 
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Electrostatic maps are generated, indicating red contours around regions where 
high electron density (negative charge) is expected to increase   activity, and blue 
contours where low electron density (partial positive charge) is expected to increase 
activity. Steric maps indicate areas where steric bulk is predicted to increase (green) 
or decrease (yellow) activity  [41, 45] . Figure  1.4  shows a typical contour map from 
CoMFA analysis.   CoMSIA  [42] , CoMMA  [44] , GRID  [47] , molecular shape analysis 
(MSA)  [48] , comparative receptor surface analysis (CoRSA)  [49] , and Apex - 3D  [50]  
are other 3D QSAR methods that are being employed successfully.     

4D QSAR  4D QSAR analysis developed by Vedani and colleagues incorporates 
the conformational alignment and pharmacophore degrees of freedom in the 
development of 3D QSAR models. It is used to create and screen against 3D - 
pharmacophore QSAR models and can be used in receptor - independent or 
receptor - dependent modes. 4D QSAR can be used as a CoMFA preprocessor to 
provide conformations and alignments; or in combination with CoMFA to combine 
the fi eld descriptors of CoMFA with the grid cell occupancy descriptors (GCODs) 
of 4D QSAR to build a  “ best ”  model; or in addition to CoMFA because it treats 
multiple alignments, conformations, and embedded pharmacophores, which are 
limitations of CoMFA  [51] .  

5D QSAR  The 4D QSAR concept has been extended by an additional degree of 
freedom — the fi fth dimension — allowing for multiple representations of the topol-
ogy of the quasi - atomistic receptor surrogate. While this entity may be generated 
using up to six different induced - fi t protocols, it has been demonstrated that the 

FIGURE 1.4     Steric and electrostatic contour map for the dual model showing the contri-
butions from each model. “ A ”  depicts the contributions made by the  α  - model and  “ G ”
depicts the contributions made by the γ  -  and model. (Reproduced with permission from The 
American Chemical Society; S. Khanna, M. E. Sobhia, P. V. Bharatam J Med Chem
2005;48:3015.)



simulated evolution converges to a single model and that 5D QSAR, due to the fact 
that model selection may vary throughout the entire simulation, yields less biased 
results than 4D QSAR, where only a single induced - fi t model can be evaluated at 
a time (software Quasar)  [52, 53] .  

  6 D   QSAR      A recent extension of the Quasar concept to sixth dimension (6D 
QSAR) allows for the simultaneous consideration of different solvation models  [54] . 
This can be achieved explicitly by mapping parts of the surface area with solvent 
properties (position and size are optimized by the genetic algorithms) or implicitly. 
In Quasar, the binding energy is calculated as

    E E E T S Ebinding ligand-receptor desolvation,ligand interna= − − −Δ ll strain induced fit− E     (1.4)     

  1.4.2   Pharmacophore Mapping 

 A pharmacophore may be defi ned as the spatial arrangement of a set of key features 
present in a chemical species that interact favorably with the receptor leading to 
ligand – receptor binding and which is responsible for the observed therapeutic 
effect. It is the spatial arrangement of key chemical features that are recognized by 
a receptor and are thus responsible for biological response. Pharmacophore models 
are typically used when some active compounds have been identifi ed but the 3D 
structure of the target protein or receptor is unknown. It is possible to derive phar-
macophores in several ways, by analogy to a natural substrate, by inference from a 
series of dissimilar biologically active molecules (active analogue approach) or by 
direct analysis of the structure of known ligand and target protein. 

 A pharmacophoric map is a 3D description of a pharmacophore developed by 
specifying the nature of the key pharmacophoric features and the 3D distance map 
among all the key features. Figure  1.5  shows a pharmacophore map generated from 
the DISCO software module of SYBYL. A pharmacophore map may be generated 
from the superimposition of the active compounds to determine their common 
features. Given a set of active molecules, the mapping of a pharmacophore involves 
two steps: (1) analyzing the molecules to identify pharmacophoric features, and (2) 
aligning the active conformations of the molecules to fi nd the best overlay of the 
corresponding features. Various pharmacophore mapping algorithms differ in the 
way they handle the conformational search, feature defi nition, tolerance defi nition, 
and feature alignment  [55] . During pharmacophore mapping, generation and opti-
mization of the molecules and the location of ligand points and site points (projec-
tions from ligand atoms to atoms in the macromolecule) are carried out. Typical 
ligand and site points are hydrogen bond donors, hydrogen bond acceptors, and 
hydrophobic regions such as centers of aromatic rings. A pharmacophore map iden-
tifi es both the bioactive conformation of each active molecule and how to superim-
pose and compare, in three dimensions, the various active compounds. The mapping 
technique identifi es what type of points match in what conformations of the 
compounds.   

 Besides ligand - based automated approaches, pharmacophore maps can also be 
generated manually. In such cases, common structural features are identifi ed from 
a set of experimentally known active compounds. Conformational analysis is carried 
out to generate different conformations of the molecules and interfeature distances 
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are inferred to develop the fi nal models. The receptor mapping technique is also 
currently in practice to develop pharmacophore models. The important residues 
required for binding the pharmacophores are identifi ed, which are employed for 
generating the receptor - based pharmacophores. The structure of protein can be used 
to generate interaction sites or grids to characterize favorable positions for 
ligands.

 After a pharmacophore map has been derived, there are two ways to identify 
molecules that share its features and thus elicit the desired response. First is the 
de novo  drug design, which seeks to link the disjoint parts of the pharmacophore 
together with fragments in order to generate hypothetical structures that are chemi-
cally novel. Second is the 3D database searching, where large databases comprising 
3D structures are searched for those that match to a pharmacophoric pattern. One 
advantage of the second method is that it allows the ready identifi cation of existing 
molecules, which are either easily available or have a known synthetic route 
 [56, 57] . Pharmacophore mapping methods are described next. 

Distance Comparison Method ( DISCO)  The various steps involved in DISCO -
 based generation of a pharmacophore map are conformational analysis, calculation 
of the location of the ligand and site points, fi nding potential pharmacophore maps, 
and graphics analysis of the results. In the process of conformational search, 3D 
structures can be generated using any building program like CONCORD, from 
crystal structures, or from conformational searching and energy minimization with 
any molecular or quantum mechanical technique. Comparisons of all the duplicate 
conformations are excluded while comparing all the conformations. If each corre-
sponding interatomic distance between these atoms in the two conformations is less 

FIGURE 1.5     A pharmacophore map developed from a set of GSK3 inhibitors. The phar-
macophore features include hydrogen bond acceptor atoms, hydrogen bond donor atoms, 
hydrogen bond donor site, hydrogen bond acceptor site, and hydrophobic centers. This 3D 
picture also shows the distance relationship between various pharmacophoric features present 
in the map. 



than a threshold (0.4    Å ), then the higher energy conformation is rejected. DISCO 
calculates the location of site points, which can be the location of ligand atoms, or 
other atom - based points, like centers of rings or a halogen atom, which are points 
of potential hydrophobic groups. The other point is the location of the hydrogen 
bond acceptors or donors. The default locations of site hydrogen bond donor and 
acceptor points are based on literature compilations of observed intermolecular 
crystallographic contacts in proteins and between the small molecules. Hydrogen 
bond donors and acceptors such as OH and NH 2  groups can rotate to change the 
locations of the hydrogen atom. 

 During the process of performing pharmacophore mapping in DISCO, the user 
may input the tolerance for each type of interpoint distance. The user may direct 
the DISCO algorithm to consider all the potential points and to stop when a phar-
macophore map with a certain total number of points is found. Alternatively, the 
user may specify the types of points, and the maximum and minimum number of 
each, that every superposition must include. It can also be directed to ignore specifi c 
compounds if they do not match a pharmacophore map found by DISCO. The user 
may also specify that only the input chirality is used for certain molecules and that 
only certain conformations below a certain relative energy should be considered. 

 The DISCO algorithm involves fi nding the reference molecule, which is the one 
with the fewest conformations. The search begins by associating the conformations 
of each molecule with each other. DISCO then calculates the distances between 
points in each 3D structure. Then it prepares the corresponding tables that relate 
interpoint distances in the current reference conformation and distances in every 
other 3D structure. Distances correspond if the point types are the same. These 
distances differ by no more than the tolerance limits. The clique - detection algorithm 
then identifi es the largest clique of distances common between the reference XYZ 
set and every other 3D structure. It then forms union sets for the cliques of each 
molecule. Finally, the sets with cliques that meet the group conditions are searched 
 [58, 59] .  

CATALYST  According to the pharmacophore mapping software CATALYST, a 
conformational model is an abstract representation of the accessible conformational 
space of a ligand. It is assumed that the biologically active conformation of a ligand 
(or a close approximation thereof) should be contained within this model. A phar-
macophore model (in CATALYST called a hypothesis) consists of a collection of 
features necessary for the biological activity of the ligands arranged in 3D space, 
the common ones being hydrogen bond acceptor, hydrogen bond donor, and hydro-
phobic features. Hydrogen bond donors are defi ned as vectors from the donor atom 
of the ligand to the corresponding acceptor atom in the receptor. Hydrogen bond 
acceptors are analogously defi ned. Hydrophobic features are located at the cen-
troids of hydrophobic atoms. CATALYST features are associated with position 
constraints that consist of the ideal location of a particular feature in 3D space sur-
rounded by a spherical tolerance. In order to map the pharmacophore, it is not 
necessary for a ligand to possess all the appropriate functional groups capable of 
simultaneously residing within the respective tolerance spheres of the pharmacoph-
oric features. However, the fewer features an inhibitor maps to, the poorer is its fi t 
to them and the lower is its predicted affi nity  [60 – 63] .   
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  1.4.3   Molecular Docking 

 There are several possible conformations in which a ligand may bind to an active 
site, called the binding modes. Molecular docking involves a computational process 
of searching for a conformation of the ligand that is able to fi t both geometrically 
and energetically into the binding site of a protein. Docking calculations are required 
to predict the binding mode of new hypothetical compounds. The docking procedure 
consists of three interrelated components — identifi cation of the binding site, a search 
algorithm to effectively sample the search space (the set of possible ligand positions 
and conformations on the protein surface), and a scoring function. In most docking 
algorithms, the binding site must be predefi ned, so that the search space is limited 
to a comparatively small region of the protein. The search algorithm effectively 
samples the search space of the ligand – protein complex. The scoring function used 
by the docking algorithm gives a ranking to the set of fi nal solutions generated by 
the search. The stable structures of a small molecule correspond to minima on the 
multidimensional energy surface, and different energy calculations are needed to 
identify the best candidate. Different forces that are involved in binding are elec-
trostatic, electrodynamic, and steric forces and solvent related forces. The free 
energy of a particular conformation is equal to the solvated free energy at the 
minimum with a small entropy correction. All energy calculations are based on the 
assumption that the small molecule adopts a binding mode of lowest free energy 
within the binding site. The free energy of binding is the change in free energy that 
occurs upon binding and is given as

    ΔG G G Gbinding complex protein ligand= − +( )     (1.5)  

where  G  complex  is the energy of the complexed protein and ligand,  G  protein  is the free 
energy of noninteracting separated protein, and  G  ligand  is the free energy of nonin-
teracting separated ligand. 

 The common search algorithms used for the conformational search, which provide 
a balance between the computational expense and the conformational search, 
include molecular dynamics, Monte Carlo methods, genetic algorithms, fragment -
 based methods, point complementary methods, distance geometry methods, tabu 
searches, and systematic searches  [64] . 

 Scoring functions are used to estimate the binding affi nity of a molecule or an 
individual molecular fragment in a given position inside the receptor pocket. Three 
main classes of scoring functions are known, which include force fi eld - based methods, 
empirical scoring functions, and knowledge - based scoring functions. The force fi eld 
scoring functions use molecular mechanics force fi elds for estimating binding affi n-
ity. The AMBER and CHARMM nonbonded terms are used as scoring functions 
in several docking programs. In empirical scoring functions, the binding free energy 
of the noncovalent receptor – ligand complex is estimated using chemical interac-
tions. These scoring functions usually contain individual terms for hydrogen bonds, 
ionic interactions, hydrophobic interactions, and binding entropy, as in the case of 
SCORE employed in DOCK4 and B ö hm scoring functions (explained in detail in 
Section  1.4.4 ) used in FlexX. In empirical scoring functions, less frequent interac-
tions are usually neglected. Knowledge - based scoring functions try to capture the 
knowledge about protein – ligand binding that is implicitly stored in the Protein Data 
Bank by means of statistical analysis of structural data, for example, PMF and 



DrugScore functions, Wallqvist scoring function, and the Verkhivker scoring func-
tion  [5, 37, 65 – 67] . Various molecular docking software packages are available, such 
as FlexX  [68] , Flexidock  [58] , DOCK  [69] , and AUTODOCK  [70] . 

FlexX  FlexX is a fragment - based method for docking which handles the fl exibility 
of the ligand by decomposing the ligand into fragments and performs the incremen-
tal construction procedure directly inside the protein active site. It allows confor-
mational fl exibility of the ligand while keeping the protein rigid. The base fragment 
or the ligand core is selected such that it has the most potential interaction groups 
and the fewest alternative conformations. It is placed into the active site and joined 
to the side chains in different conformations. Placements of the ligand are scored 
on the basis of protein – ligand interactions and ranked after the estimation of 
binding energy. The scoring function of FlexX is a modifi cation of B ö hm ’ s function 
developed for the de novo  design program LUDI. Figure  1.6  shows details of the 
interaction between a ligand and a receptor, obtained from FlexX molecular 
docking.    

DOCK  DOCK is a simple minimization program that generates many possible 
orientations of a ligand within a user selective region of the receptor. DOCK is a 
program for locating feasible binding orientations, given the structures of a  “ ligand ”  
molecule and a  “ receptor ”  molecule  [69] . DOCK generates many orientations of 
one ligand and saves the best scoring orientation. The docking process is handled 

FIGURE 1.6     The result of docking a ligand in the active site of PPAR γ . The ligand has a 
hydrogen bonding interaction with histidine and tyrosine. 
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in four stages — ligand preparation, site characterization, scoring grid calculation, 
and fi nally docking. Site characterization is carried out by constructing site points, 
to map out the negative image of the active site, which are then used to construct 
orientations of the ligand. Scoring grid calculations are necessary to identify ligand 
orientations. The best scoring poses may be viewed using a molecular graphics 
program and the underlying chemistry may be analyzed. 

 There are many other widely used molecular docking software packages, like 
Flexidock (based on genetic algorithm), Autodock (based on Monte Carlo simula-
tions and annealing), MCDOCK (Monte Carlo simulations), FlexE (ensemble of 
protein structures to account for protein fl exibility), and DREAM++ (to dock com-
binatorial libraries).   

  1.4.4    De Novo  Design 

De novo  design is a complementary approach to molecular docking: whereas in 
molecular docking already known ligands are employed, in de novo  design, ligands 
are built inside the ligand binding domain. This is an iterative process in which the 
3D structure of the receptor is used to build the putative ligand, fragment by frag-
ment, within the receptor groove. Two basic types of algorithms are being widely 
used in de novo  design. The fi rst one is the  “ outside - in - method, ”  in which the binding 
site is fi rst analyzed to determine which specifi c functional groups might bind tightly. 
These separated fragments are then connected together with standard linker units 
to produce the ligands. The second approach is the  “ inside - out - method, ”  where 
molecules are grown within the binding site so as to effi ciently fi t inside.  De novo
design is the only method of choice when the receptor structure is known but the 
lead molecules are not available. This method can also be used when lead molecules 
are known but new scaffolds are being sought. There are several programs devel-
oped by various researchers for constructing ligands de novo . GROW  [71] , GRID 
 [72] , CAVEAT  [73] , LUDI  [74 – 77] , LEAPFROG  [58] , GROUPBUILD  [78] , and 
SPROUT  [79]  are some of the  de novo  design programs that have found wide 
application.

GRID  The GRID program developed by Goodford  [72]  is an active site analysis 
method where the properties of the active site are analyzed by superimposition with 
a regular grid. Probe groups like water, methyl group, amine nitrogen, carboxyl 
oxygen, and hydroxyl are placed at the vertices of the grid and its interaction energy 
with the protein is calculated at each point using an empirical energy function that 
determines which kind of atoms and functional groups are best able to interact with 
the active site. The array of energy values is represented as a contour, which enables 
identifi cation of regions of attractions between the probe and the protein. It is not 
a direct ligand generation method but positions simple fragments.  

LUDI  LUDI, developed by B ö hm  [74 – 77] , is one of the most widely used auto-
mated programs available for de novo  design. It uses a knowledge - based approach 
based on rules about the energetically favorable interaction geometries of 
nonbonded contacts like hydrogen bonds and hydrophobic contacts between 
the functional groups of the protein and ligand. In LUDI the rules derived from 
statistical analysis of crystal packings of organic molecules are employed. LUDI is 



fragment based and works in three steps. It starts by identifying the possible hydro-
gen bonding donors and acceptors and hydrophobic interactions, both aliphatic and 
aromatic, in the binding site represented as interaction site points. The site points 
are positions in the active site where the ligand could form a nonbonded contact. 
A set of interaction sites encompasses the range of preferred geometries for a ligand 
atom or functional group involved in the putative interaction, as observed in the 
crystal structure analyses. LUDI models the H - donor and H - acceptor interaction 
sites and the aliphatic or aromatic interaction sites. The interaction sites are defi ned 
by the distance R , angle  α , and dihedral angle  ω . The fragments from a 3D database 
of small molecules are then searched for positioning into suitable interaction sites 
such that hydrogen bonds can be formed and hydrophobic pockets fi lled with hydro-
phobic groups. The suitably oriented fragments are then connected together by 
spacer fragments to the respective link sites to form the entire molecule. Figure  1.7  
shows LUDI generated fragment interaction sites inside the iNOS substrate binding 
domain.   

 An empirical but effi cient scoring function is used for prioritizing the hit frag-
ments given by LUDI. It estimates the free energy of binding ( ΔG ) based on the 

FIGURE 1.7     An example of  de novo  design exercise. In the substrate binding domain of 
inducible nitric oxide synthase, the stick representation shows the protein structure; ball - and -
 stick representation belongs to the designed ligand, and the gray sticks point out the interac-
tion sites  . 
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hydrogen bonding, ionic interactions, hydrophobic contact areas, and number of 
rotatable bonds in the ligand. The LUDI scoring function is given as

    Δ Δ Δ Δ Δ Δ Δ Δ
Δ Δ

G G G f R f G f R f
G A G N

= + +
+ +

∑ ∑o hb ion

lipo lipo rot

( ) ( ) ( ) ( )α α
RR G N+ Δ Δaro/aro aro/aro

    
(1.6)

  

 Δ  G  o  represents the constant contribution to the binding energy due to loss of trans-
lational and rotational entropy of the fragment.  Δ  G  hb  and  Δ  G  ion  represent the con-
tributions from an ideal neutral hydrogen bond and an ideal ionic interaction, 
respectively. The  Δ  G  lipo  term represents the contribution from lipophilic contact and 
the  Δ  G  rot  term represents the contribution due to the freezing of internal degrees 
of freedom in the fragment.  NR  is the number of acyclic sp 3  - sp 3  and sp 3  - sp 2  bonds.    

  1.5   PHARMACOINFORMATICS 

 Information technology provides several databases, data analysis tools, and knowl-
edge extraction techniques in almost every facet of life. In pharmaceutical sciences, 
several successful attempts are being made under the umbrella of pharmacoinfor-
matics (synonymously referred to as pharmainformatics) (Fig.  1.8 ). The scope and 
limitations of this fi eld are not yet understood. However, it may be broadly defi ned 
as the application of information technology in drug discovery and development. It 
encompasses all possible information technologies that eventually contribute to 
drug discovery. Chemoinformatics and bioinformatics contribute directly to drug 
discovery through virtual screening. Topics like neuroinformatics, immunoinformat-
ics, vaccine informatics, and biosystem informatics contribute indirectly by providing 
necessary inputs for pharmaceutical design in this area. Topics like metabolomics, 
toxicoinformatics, and ADME informatics are contributing to this fi eld by providing 
information regarding the fate of a NCE/lead  in vitro  and  in vivo  conditions. In this 
chapter some important aspects of these topics are presented. It is not easy to offer 
a comprehensive defi nition of this fi eld at this stage owing to the fact that several 
bold attempts are being made in this fi eld and initial signals related to a common 
platform are only emerging.  Drug Discovery Today  made initial efforts in this area 
by bringing out a supplement on this topic in which it was mainly treated as a sci-
entifi c discipline with the integration of both bioinformatics and chemoinformatics 
 [80, 81] . Recent trends in this area include several service - oriented themes including 
healthcare informatics  [82] , medicine informatics  [83] , and nursing informatics  [84] . 
Here we present an overview of the current status.   

  1.5.1   Chemoinformatics 

 Chemoinformatics deals with information storage and retrieval of chemical data. 
This has been pioneered principally by the American Chemical Society and 
Cambridge Crystallographic Databank. However, the term chemoinformatics came 
into being only recently when methods of deriving science from the chemical data-
bases was recognized. The integration of back - end technologies (for storing and 
representing chemical structure and chemical libraries) and front - end technologies 
(for assessing and analyzing the structures and data from the desktop) provides 


