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Preface

The detective story, whether it be in the form of a novel, a television programme, or a
cinema film, has always exerted a fascination for people from all walks of life. Much
of the appeal of the detective story lies in the way in which a series of seemingly
disconnected observations fit a narrative structure where all pieces of information
are eventually revealed to the reader, or viewer, make a whole and logical nexus. The
story which emerges by the end of the plot as to how, and just as importantly why,
the perpetrator committed the crime, is shown by some device, such as a confession
by the “guilty” character, to be a true description of the circumstances surrounding
the crime.

Detective stories have, at their core, some important and fundamental truths about
how humans perceive what is true from what is false. The logical arguments used
are woven together with elements of evidence taken from widely differing types
of observation. Some observations will be hearsay, others may be more material
observations such as blood staining. All these facts will be put together in some
logical way to create a case against one of the characters in the story.

However, detective stories do have a tendency to neglect one of the more important
elements of real investigation. That element is uncertainty. The interpretation of real
observations is usually subject to uncertainty, for example, the bloodstain on the
carpet may “match” the suspect in some biochemical way, but was the blood which
made the bloodstain derived from the suspect, or one of the other possible individuals
who could be described as a “match”. Statistical science is the science of uncertainty,
and it is only appropriate that statistics should provide at least part of the answer
to some of the uncertain parts of evidence encountered in criminal investigations.
That part of evidence upon which it is possible to throw some illumination is that
evidence generated by forensic scientists. This tends to be numerical by nature, and
is thus amenable to analysis by statisticians.

ix
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x PREFACE

The are though, two roles for statistics in forensic science. The first is a need
for forensic scientists to be able to take their laboratory data from experiments,
and interpret that data in the same way that any observational scientist would do.
This strand of statistical knowledge is commonly used by all sorts of scientists, and
guides to it can be found in any handbook of applied statistical methods. The second
role of statistical science is in the interpretation of observations from the case work
with which forensic scientist may become involved. This strand of application of
statistical methods in forensic science has been termed evidence evaluation. These
days a number of books exist outlining statistical evidence evaluation techniques,
all of them excellent, but unfortunately none of them aimed towards those who are
relatively new to statistical science, and require a certain technical insight into the
subject.

This volume attempts to bridge the gap in the literature by commencing with
the use of statistics to analyse data generated during laboratory experiments, then
progressing to address the issue of how observations made by, and reported to the
forensic scientist may be considered as evidence.

Finally, I should like to acknowledge the assistance of Bruce Worton, Colin Aitken,
Breedette Hayes, Gzregorz Zadora, James Curran, Nicola Martin, Nicola Clayson,
Mandy Jay, Franco Taroni, John Kingston, Dave Barclay, Tom Nelson and Burkhard
Schaffer. R (R development core team, 2004) was used to create all diagrams and
calculations which appear in this volume. My gratitude is also due to all those
forensic scientists who have allowed me the use of their data in this volume.
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1 A short history of
statistics in the law

The science of statistics refers to two distinct, but linked, areas of knowledge. The
first is the enumeration of types of event and counts of entities for economic, so-
cial and scientific purposes, the second is the examination of uncertainty. It is in
this second guise that statistics can be regarded as the science of uncertainty. It is
therefore natural that statistics should be applied to evidence used for legal purposes
as uncertainty is a feature of any legal process where decisions are made upon the
basis of evidence. Typically, if a case is brought to a court it is the role of the court
to discern, using evidence, what has happened, then decide what, if anything, has to
be done in respect of the alleged events. Courts in the common law tradition are not
in themselves bodies which can directly launch investigations into events, but are
institutions into which evidence is brought for decisions to be made. Unless all the
evidence points unambiguously towards an inevitable conclusion, different pieces
of evidence will carry different implications with varying degrees of force. Modern
statistical methods are available which are designed to measure this ‘weight’ of
evidence.

1.1 History
Informal notions of probability have been a feature of decision making which date
to at least as far in the past as the earliest writing. Many applications were, as
related by Franklin (2001), to the process of law. Ancient Egypt seems to have two
strands, one of which relates to the number of reliable witnesses willing to testify
for or against a case, evidence which remains important today. The other is the
use of oracles and is no longer in use. Even in the ancient world there seems to
have been scepticism about the information divulged by oracles, sometimes two or
three being consulted and the majority opinion followed. Subsequently the Jewish
tradition made the assessment of uncertainty central to many religious and legal

Introduction to Statistics for Forensic Scientists David Lucy
C© 2005 John Wiley & Sons, Ltd.
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2 A SHORT HISTORY OF STATISTICS IN THE LAW

practices. Jewish law is notable in that it does not admit confession, a wholly worthy
feature which makes torture useless. It also required a very high standard of proof
which differed according to the seriousness of any alleged offence. Roman law
had the concept of onus of proof, but the wealthier sections of Roman society were
considered more competent to testify then others. The Roman judiciary were allowed
some latitude to judge in accordance with the evidence. In contrast to Jewish law,
torture was widespread in Roman practice. In fact in some circles the evidence from
a tortured witness was considered of a higher quality than had the same witness
volunteered the evidence, particularly if they happened to be a member of the slave
classes.

European Medieval law looked to the Roman codes, but started to take a more
abstract view of law based on general principles. This included developments in
the theory of evidence such as half, quarter and finer grades of proof, and multiple
supporting strands forming what we today would call a case. There seem to have
been variable attitudes to the use of torture. Ordeal was used in the earlier period
to support the civil law in cases which were otherwise intractable. An important
tool for evidence evaluation with its beginnings in the Western European Medieval
was the development of a form of jury which has continued uninterrupted until the
present day. It is obvious that the ancient thinkers had some idea that the evidence
with which they were dealing was uncertain, and devised many ingenious methods of
making some sort of best decision in the face of the uncertainties, usually revolving
around some weighting scheme given to the various individual pieces of evidence,
and some process of summation. Nevertheless, it is apparent that uncertainty was
not thought about in the same way in which we would think about it today.

Informal enumeration types of analyses were applied as early as in the middle
of the 17th century to observational data with John Gaunt’s analysis of the London
Mortality bills (Gaunt, 1662, cited in Stigler, 1986), and it is at this point in time
that French mathematicians such as De Méré, Roberval, Pascal and Fermet started
to work on a more recognizably modern notion of probability in their attempts to
solve the problem of how best to divide up the stakes on interrupted dice games.

From there, ideas of mathematical probability were steadily developed into all
areas of science using large run, or frequentist, type approaches. They were also
applied to law, finding particular uses in civil litigation in the United States of
America where the methods of statistics have been used, and continue to be used,
to aid courts in their deliberations in such areas as employment discrimination and
antitrust legislation (Fienberg, 1988).

First suggested in the latter part of the nineteenth century by Poincaré, Darboux
and Appell (Aitken and Taroni, 2004, p. 153) was an intuitive and intellectually
satisfying method for placing a simple value on evidence. This employed a measure
called a likelihood ratio, and was the beginning of a more modern approach to
evidence evaluation in forensic science. A likelihood ratio is a statistical method
which can be used directly to assess the worth of observations, and is currently the
predominant measure for numerically based evidence.
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Since the inception of DNA evidence in forensic science in the courts of the
mid 1980s, lawyers, and indeed forensic scientists themselves, have looked towards
statistical science to provide precise evaluation of the worth of evidence which
follows the explicitly probabilistic approach to the evidential value of DNA matches.

1.2 Some recent uses of statistics in forensic science
A brief sample of the Journal of Forensic Sciences between the years 1999 and 2002
shows that about half of the papers have some sort of statistical content. These can
be classified into: regression and calibration, percentages, classical hypothesis tests,
means, standard deviations, classification and other methods. This makes knowledge
of numerical techniques at some level essential, either for publication in the literature,
or knowledgeable and informed reading.

The statistical methods used in the surveyed papers were:

1. Regression and calibration – regression is finding the relationship between one
thing and another. For example, Thompson et al. (1999) wished to compare
amounts of explosive residue detected by GC-MS with that detected by LC-UV. To
do this they undertook a regression analysis which told them that the relationship
was almost 1:1, that is, they would have more or less the same measurement from
either method. Calibration is in some senses the complement of regression in
that what you are trying to do is make an estimate of one quantity from another.
Migeot and De Kinder (2002) used calibration to make estimates of how many
shots an assault rifle had fired since its piston was last cleaned by the number of
carbon particles on the piston.

2. Percentages and enumeration statistics – counts and proportions of objects, em-
ployed universally as summary statistics.

3. Means, standard deviations and t-tests – a mean is a measure of location†. For
example, Solari and Abramovitch (2002) used stages in the development of teeth
to estimate ages for Hispanic detainees in Texas. They assigned known age indi-
viduals to 10 stages of third molar development and calculated the mean age for
the individuals falling in that age category. What they were then able to do was
to assign any unknown individual to a developmental category, thus suggesting
an expected age for that individual.

Standard deviations are measures of dispersion about a mean. In the example
above, Solari and Abramovitch (2002) also calculated the standard deviation for
age for each of their developmental categories. They were then able to gain some
idea of how wrong they would be in assigning any age to an unknown individual.

† Location in this context is a measure of any central tendency, for instance, male stature in the United Kingdom
tends towards 5′8′′.
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t-tests tell you how different are two samples based on the means and standard
deviations of those samples. For example, Koons and Buscaglia (2002) used
t-tests on elemental compositions from glass found at a crime scene to that found
on a suspect to tell whether the two samples of glass possibly came from the same
source.

4. Classification – this allows the researcher to assign categories on the basis of some
measurement. Stojanowski and Siedemann (1999) used neck bone measurements
from known sex skeletons and a discriminant function analysis to calculate a
feature rule which would allow them to categorize skeletal remains as male, or
female.

5. Other methods – these include χ2‡ tests and Bayesian methods.

1.3 What is probability?
When we speak of probability what is it we mean? Everybody uses the expression
‘probably’ to express belief favouring one possible outcome, or world state, over
other possible outcomes, but does the term probability confer other meanings?

Examining the sorts of things which constitute mathematical ideas of probability
there seem to be two different sorts. The first are the aleatory§ probabilities, such
events as the outcomes from dice throwing and coin tossing. Here the system is
known, and the probabilities deduced from knowledge of the system. For instance,
with a fair coin I know that in any single toss it will land with probability 0.5 heads,
and probability 0.5 tails. I also know that in a long run of tosses roughly half will be
heads, and roughly half tails.

A second type of probability is epistemic. This is where we have no innate knowl-
edge of the system from which to deduce probabilities for outcomes, but can by
observation induce knowledge of the system. Suppose one were to examine a repre-
sentative number of people and found that 60% of them were mobile telephone users.
Then we would have some knowledge of the structure of mobile telephone owner-
ship amongst the population, but because we had not examined every member of
the population to see whether or not they were a mobile telephone user, our estimate
based on those we had looked at would be subject to a quantifiable uncertainty.

Scientists often use this sort type of generalization to suggest possible mechanisms
which underly the observations. This type of empiricism employs, by necessity, some
form of the uniformitarian assumption. The uniformitarian assumption implies that
processes observed in the present will have been in operation in the past, and will be
in operation in the future. A form of the uniformitarian assumption is, to some extent,
an inevitable feature of all sciences based upon observation, but it is the absolute

‡ Pronounced ‘chi-squared’.
§ Aleatory just means by chance and is not a word specific to statistics.
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cornerstone of statistics. Without accepting the assumption that the processes which
cause some members of a population to take on certain characteristics are at work in
the wider population, any form of statistical inference, or estimation, is impossible.

To what extent probabilities from induced and deduced systems are different is
open to some debate. The deduced probability cannot ever be applied to anything
other than a notional system. A die may be specified as fair, but any real die will
always have minor inconsistencies and flaws which will make it not quite fair. To
some extent the aleatory position is artificial and tautological. When a fair die is
stipulated then we know the properties in some absolute sense of the die. It is not
possible to have this absolute knowledge about any actual observable system. We
simply use the notion as a convenient framework from which to develop a calculus
of probability, which, whenever it is used, must be applied to probability systems
which are fundamentally epistemic. Likewise, because all inferences made about
populations are based on the observation of a few members of that population, some
degree of deduced aleatory uncertainty is inevitable as part of that inference.

As all real probabilities are induced by observation, and are essentially frequen-
cies, does this mean that a probability can only ever be a statement about the relative
proportions of observations in a population? And, if so, is it nonsense to speak of
the probability for a single event of special interest?

An idea of a frequency being attached to an outcome for a single event is ridiculous
as the outcome of interest either happens or does not happen, From a single throw
of a six-sided die we cannot have an outcome in which the die lands 1/6 with its
six face uppermost, it either lands with the six face uppermost, or it does not. There
is no possible physical state of affairs which correspond to a probability of 1/6 for
a single event. Were one to throw the six-sided die 12 times then the physical state
corresponding to a probability of 1/6 would be the observation of two sixes. But
there can be no single physical event which corresponds to a probability of 1/6.

The only way in which a single event can be quantified by a probability is to
conceive of that probability as a product of mind, in short to hold an idealist inter-
pretation of probability (Hacking, 1966). This is what statisticians call subjective
probability (O’Hagen, 2004) and is an interpretation of probability which stipulates
that probability is a function of, and only exists in, the mind of those interested in the
event in question. This is why they are subjective, not because they are somehow un-
founded or made up, but because they rely upon idealist interpretations of probability.

A realist interpretation of probability would be one which is concerned with
frequencies and numbers of outcomes in long runs of events, and making inferences
about the proportions of outcomes in wider populations. A realist interpretation of
probability would not be able to make statements about the outcome of a single event
as any such statement must necessarily be a belief as it cannot exist in the observable
world, and therefore requires some ideal notion of probability. Realist positions
imply that there is something in the observed world which is causing uncertainty,
uncertainty being a property external to the mind of the observer. Some might argue
that these external probabilities are propensities of the system in question to behave
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in a specific way. Unfortunately the propensity theory of probability generates the
same problem for a realist conception when applied to a single event because a
propensity cannot be observed directly, and would have to be a product of mind. In
many respects realist interpretations can be more productive for the scientist because
of the demands that some underlying explanatory factor be hypothesized or found.
This is in contrast to idealist positions where a cause for uncertainty is desirable, but
not absolutely necessary, as the uncertainty resides in the mind.

This distinction between realist and idealist is not one which is seen in statistical
sciences, and indeed the terms are not used. There are no purely realist statisticians;
all statisticians are willing to make probabilistic statements about single events, so
all statisticians are to some degree idealistic about their conception of probability.
However, a debate in statistics which mirrors the realist/idealist positions is that of
the frequentist/Bayesian approaches. There is a mathematical theorem of probability
called Bayes’ theorem, which we will encounter in Section 9.2, and Bayesians are a
school of statisticians named after the theorem. The differences between Bayesians
and frequentists are not mathematical, Bayes’ theorem is a mathematical theorem
and, given the tenets of probability theory, Bayes’ theorem is correct. The differ-
ences are in this interpretation of the nature of probability. Frequentists tend to argue
against subjective probabilities, and for long-run frequency based interpretations of
probability. Bayesians are in favour of subjective notions of probability, and think
that all quantities which are uncertain can be expressed in probabilistic terms.

This leads to a rather interesting position for forensic scientists. On the one
hand they do experimental work in the laboratory where long runs of repeated results
are possible; on the other hand they have to interpret data as evidence which relates
to singular events. The latter aspect of the work of the forensic scientist is explicitly
idealistic because events in a criminal or civil case happened once and only once, and
require a subjective interpretation of probability to interpret probabilities as degrees
of belief. The experimental facet of forensic science can easily accommodate a more
realist view of probability.

The subjective view of probability is the one which most easily fits common-
sense notions of probability, and the only one which can be used to quantify uncer-
tainty about single events. There are some fears amongst scientists that a subjective
probability is an undemonstrated probability without foundation or empirical sup-
port, and indeed a subjective probability can be that. But most subjective probabilities
are based on frequencies observed empirically, and are not, as the term subjective
might imply, somehow snatched out of the air, or made up.

There is a view of the nature of probability which can side-step many of the
problems and debates about the deeper meaning of just what probability is. This is
an instrumentalist position (Hacking, 1966) where one simply does not care about
the exact interpretation of probability, but rather one simply views it as a convenient
intellectual devise to enable calculations to be made about uncertainty. The instru-
mentalist’s position implies a loosely idealist background, where probability is a
product of mind, and not a fundamental component of the material world.
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2 Data types, location
and dispersion

All numeric data can be classified into one or more types. For most types of data the
most basic descriptive statistics are a measure of central tendency, called location,
and some measure of dispersion, which to some extent is a measure of how good is a
description the measure of central tendency. The concepts of location and dispersion
do not apply to all data types.

2.1 Types of data
There are three fundamental types of data:

1. Nominal data are simply classified into discrete categories, the ordering having
no significance. Biological sex usually comes in male/female, whereas gender
can be male/female/other. Things such as drugs can be classified by geographi-
cal area such as South American, Afghan, Northern Indian or Oriental. Further
descriptions by some measure of location, and dispersion, are not really relevant
to data of this type.

2. Ordinal data are again classified into discrete categories; this time the order-
ing does have significance. The development of the third molar (Solari and
Abramovitch, 2002) was classified into 10 stages. Each class related to age, and
therefore the order in which the classes appear is important.

3. Continuous data types can take on any value in an allowed range. The concentra-
tion of magnesium in glass is a continuous data type which can range from 0%
to about 5% before the glass becomes a substance which is not glass. Within that
range magnesium can adopt any value such as 1.225% or 0.856%.

Introduction to Statistics for Forensic Scientists David Lucy
C© 2005 John Wiley & Sons, Ltd.
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8 DATA TYPES, LOCATION AND DISPERSION

Table 2.1 Table of year and �9-THC (%) for marijuana
seizures: these data are simulated (with permission) from
ElSohly et al. (2001) and are more fully listed in Table 2.2

Seizure Year �9-THC (%)

1 1986 9.26
2 1987 7.58
3 1987 7.65
4 1986 10.29
5 1986 8.29
6 1987 7.85
7 1986 8.40
...

...
...

Table 2.2 Table of year and �9-THC (%) for marijuana
seizures: these data are simulated (with permission) from
ElSohly et al. (2001)

Year �9-THC (%)

1986 9.26 10.30
8.29 8.40
8.32 8.84
8.82 8.41
9.74 9.02

10.70 7.05
7.91 7.72
8.41 8.93
7.21 9.95
6.29 8.16

1987 7.59 7.66
7.85 7.91
6.61 7.42
6.91 8.46
8.34 8.12
7.97 7.15
9.09 7.93
7.93

The type of data sometimes restricts the approaches which can be used to examine
and make inferences about those data. For example, the idea of central tendency,
and a dispersion about the central tendency, is not really relevant to nominal data,
whereas both can be used to summarize ordinal and continuous data types.



JWBK035-02 JWBK035-Lucy September 23, 2005 15:42 Char Count= 0

2.3 DISTRIBUTIONS 9

There are a few of points of terminology with which it is necessary to be familiar:

� Nominal and ordinal data types are known collectively as discrete, because they
place entities into discrete exclusive categories.

� All the above data types are called variables.

� There are nominal and ordinal (occasionally continuous) variables which are
used to classify other variables, these are called factors. An example would be
�9-THC concentrations in marijuana seizures from various years in the 1980s
given in Table 2.1. Here ‘% �9-THC’ is a continuous variable and ‘year’ is an
ordinal variable which is being used as a factor to classify �9-THC.

2.2 Populations and samples
Generally in chemistry, biology and other natural sciences a sample is something
taken for the purposes of examination, for example a fibre and a piece of glass may
be found at the scene of a crime; these would be termed samples. In statistics a
sample has a different meaning. It is a sub-set of a larger set, known as a population.
In the table of dates and % �9-THC in Table 2.1, the % �9-THC column gives mea-
surements of the % �9-THC in a sample of marijuana seizures at the corresponding
date. In this case the population is marijuana seizures.

Populations and samples must be hierarchically arranged. For instance one could
examine the 1986 entries and this would be a sample of % �9-THC in a 1986
population of marijuana seizures. It could also be said that the sample was a sample
of the population of all marijuana seizures, albeit a small one. Were all marijuana
observed for 1986 this would be the population of marijuana for 1986, which could
for some purposes be regarded as a sample of all marijuana from the population of
marijuana from the 1980s. The population of marijuana from the 1980s could be
seen as a sample of marijuana from the 20th century.

It is important to realize that the notions of population and sample are not fixed in
nature, but are defined by the entities under examination, and the purposes to which
observation of those entities is to be put. However, populations and samples are
always hierarchically arranged in that a sample is always a sub-set of a population.

2.3 Distributions
Most generally a distribution is an arrangement of frequencies of some observation
in a meaningful order. If all 20 values for THC content of 1986 marijuana seizures
are grouped into broad categories, that is the continuous variable % THC is made
into an ordinal variable with many values, then the frequencies of THC content
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10 DATA TYPES, LOCATION AND DISPERSION

in each category can be tabulated. This table can be represented graphically as a
histogram†.

A histogram of simulated �9-THC frequencies from 1986 taken from Table 2.2,
is represented in Figure 2.1. In Figure 2.1 the horizontal axis is divided into 14
categories of 0.5% each, the vertical axis is labelled 0 to 10, and indicates the
counts, or frequency, of occurrences in that particular category. So for the first two
categories (5 → 6%) there are no values, the second category (6.0 → 6.5%) occurs
with a frequency 1, and so on.
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Figure 2.1 Histogram of simulated �9-THC (%) values for a sample of marijuana seizures
dating from 1986

The histogram in Figure 2.1, which gives the sample frequency distribution for
�9-THC in marijuana from 1986, has three important properties:

1. It has a single highest point at about 8.25% THC, the two ends of the distribution
(tails) having progressively lower frequencies as they get further from the highest
point. This property is called unimodal and indicates that there is some tendency
amongst 1986 marijuana consignments towards a THC content of about 8.25%.

2. The distribution is more or less symmetric about the 8.25% value.

3. The distribution is dispersed about the 8.25% point in some measurable way.

The histogram in Figure 2.2 is the sample distribution for THC in marijuana from
1987. Here the % THC tends towards a value of about 7.75%; the same properties
of dispersion about this value and a sort of symmetry can be seen as in Figure 2.1.

† A histogram is not to be confused with a bar chart, which looks similar, but in a bar chart height represents
frequency rather than the area of the rectangles. Usually in a histogram the categories are of equal ‘width’,
but this is not always the case.


