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Preface 

This book is intended as a text for an introductory course at the graduate or senior 
undergraduate level. At the University of Wisconsin this is a three-credit course: 
Medical Physics 501 -Radiological Physics and Dosimetry, consisting of about 45 
lectures and 15 problem discussion sessions, each 50 minutes in length. By moving 
along briskly and by scheduling the exams at other times, the material in the book 
can be adequately covered in one semester. The chapters are designed to be taught 
in sequence from 1 through 16. 

The book is written on the assumption that the student has previously studied 
integral calculus and atomic or modern physics. Thus integrals are used without 
apology wherever necessary, and no introductory chapter to review atomic structure 
and elementary particles is provided. Chapter 1 in Johns and Cunningham’s book 
The Physics of Radiology, 3rd or 4th edition, for example, can be used for remedial 
review if needed. 

The present text is pragmatic and classical in approach, not necessarily developing 
equations from first principles, as is more often done by Anderson (1984) in his ad- 
mirable book Absorption of Ionizing Radiation. Missing details and derivations that are 
relevant to interaction processes may be found there, or in the incomparable classic 
The Atomic N m h  by Robley Evans, recently republished by Krieger. 

A challenging problem in writing this book was how to limit its scope so that it 
would fit a coherent course that could be taught in one semester and would not reach 
an impractical and unpublishable length. It had to be in a single volume for con- 
venient use as a text, as it was not intended to be a comprehensive reference like 

vii 
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the three-volume second edition of Radktwn Dosimety, edited by Attix, Roesch, and 
Tochilin. Although that treatise has been used for textbook purposes in some courses, 
it was never intended to be other than a reference. In limiting the scope of this text 
the following topic areas were largely omitted and are taught as separate courses in 
the University of Wisconsin Department of Medical Physics: radiotherapy physics, 
nuclear medicine, diagnostic radiological physics, health physics (radiation pro- 
tection), and radiobiology. Other texts are used for those courses. Radiation-gen- 
erating equipment is described in the courses on radiotherapy and diagnostic physics, 
as the design of such equipment is specific to its use. 

What is included is a logical, rather than historical, development of radiological 
physics, leading into radiation dosimetry in its broadest sense. There is no such thing 
as a p j k t  sequence-one that always builds on material that has gone before and 
never has to reach ahead for some as yet untaught fact. However, the present order 
of chapters has evolved from several years of trial-and-error classroom testing and 
works quite well. 

... 
V l l l  

A few specifics deserve mentioning: 
Extensive, but not exclusive, use is made of SI units. The older units in some 

instances offer advantages in convenience, and in any case they are not going to 
vanish down a “memory hole” into oblivion. The rad, rem, roentgen, curie, and 
erg will remain in the existing literature forever, and we should all be familiar with 
them. There is, moreover, no reason to restrain ourselves from using centimeters 
or grams when nature provides objects for which convenient-sized numbers will re- 
sult. I believe that units should be working for us, not the other way around. 

The recommendations of the International Commission on Radiation Units and 
Measurements (ICRU) are used as the primary basis for the radiological units in 
this book, as far as they go. However, additional quantities (e.g., collision kerma, 
energy transferred, net energy transferred) have been defined where they are needed 
in the logical development of radiological physics. 

Several important concepts have been more clearly defined or expanded upon, 
such as radiation equilibrium, charged-particle equilibrium, transient charged-par- 
ticle equilibrium, broadbeam attenuation, the reciprocity theorem (which has been 
extended to homogeneous but nonisotropic fields), and a rigorous derivation of the 
Kramers x-ray spectrum. 

Relegating neutron dosimetry to the last chapter is probably the most arbitrary 
and least logical chapter assignment. Initially it was done when the course was taught 
in two halves, with the first half alone being prerequisite for radiotherapy physics. 
Time constraints and priorities dictated deferring all neutron considerations until 
the second half. Now that the course (and text) has been unified, that reason is gone, 
but the neutron chapter remains number 16 because it seems to fit in best after all 
the counting detectors have been discussed. Moreover it provides an appropriate 
setting for introducing microdosimetry, which finds its main application in char- 
acterizing neutron and mixed n-y fields. 

’ 
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The tables in the appendixes have been made as extensive as one should hope to 
find in an introductory text. The references for all the chapters have been collected 
together at the back of the book to avoid redundancy, since some references are re- 
peated in several chapters. Titles of papers have been included. A comprehensive 
table of contents and index should allow the easy location of material. 

For the authors-to-be among this book’s readers: This book was begun in 1977 
and completed in 1986. It started from classroom notes that were handed out to stu- 
dents to supplement other texts. These’notes gradually evolved into chapters that 
were modified repeatedly, to keep what worked with the students, and change what 
didn’t. This kind of project is not for anyone with a short attention span. 

The original illustrations for this book were drawn by F. Orlando Canto. Kathryn 
A. McSherry and Colleen A. Schutz of the office staff were very helpful. I also thank 
the University of Wisconsin Department of Medical Physics for allowing me to use 
their copying equipment. 

Finally, it is a pleasure to acknowledge that the preparation of this book could 
not have been accomplished without the dedicated partnership and enthusiasm of 
my wife Shirley. Not only did she do all the repetitious typing, during a time before 
a word processor was available, but she never complained about the seemingly end- 
less hours I spent working on it. 

HERB ATTIX 
Mndison, Wisconsin 
August 1986 
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Ionizing Radiation 

I. INTRODUCTION 
Radiological physics is the science of ionizing radiation and its interaction with mat- 
ter, with special interest in the energy thus absorbed. Radiation dosimetry has to 
do with the quantitative determination of that energy. It would be awkward to try 
to discuss these matters without providing at the outset some introduction to the 
necessary concepts and terminology. 

Radiological physics began with the discovery of x-rays by Wilhelm Rontgen, of 
radioactivity by Henri Becquerel, and of radium by the Curies in the 1890s. Within 
a very short time both x-rays and radium became useful tools in the practice of med- 
icine. In fact, the first x-ray photograph (of Mrs. Rontgen’s hand) was made by 
Rontgen late in 1895, within about a month ofhis discovery, and physicians on both 
sides of the Atlantic were routinely using x-rays in diagnostic radiography within 
a year, thus setting some kind of record for the rapid adoption of a new technology 
in practical applications. 

The historical development of the science of radiological physics since then is itself 
interesting, and aids one in understanding the quantities and units used in this field 
today. However, such an approach would be more confusing than helpful in an in- 
troductory course. Historical reviews have been provided by Etter (1965), Parker 
and Roesch (1962), and by Roesch and Attix (1968). 

1 



2 IONIZING RADIATION 

II. 
Ionizing radiations are generally characterized by their ability to excite and ionize 
atoms of matter with which they interact. Since the energy needed to cause a valence 
electron to escape an atom is of the order of 4-25 eV, radiations must carry kinetic 
or quantum energies in excess of this magnitude to be called “ionizing.” As will 
be seen from Eq. (1. l), this criterion would seem to include electromagnetic radiation 
with wavelengths up to about 320 nm, which includes most of the ultraviolet (UV) 
radiation band (- 10-400 nm). However, for practical purposes these marginally 
ionizing W radiations are not usually considered in the context of radiological phys- 
ics, since they are even less capable of penetrating through matter than is visible light, 
while other ionizing radiations are generally more penetrating. 

The personnel hazards presented by optical lasers and by radiofrequency (RF) 
sources of electromagnetic radiation are often administratively included in the area 
of a health physicist’s responsibilities, together with ionizing radiation hazards. 
Moreover, the determination of the energy deposition in matter by these radiations 
is often referred to as “dosimetry”. However, the physics governing the interaction 
of such radiations with matter is totally different from that for ionking radiations, 
and this book will not deal with them. 

TYPES AND SOURCES OF IONIZING RADIATIONS 

The important types of ionizing radiations to be considered are: 

1. Electromagnetic radiation emitted from a nucleus or in annihilation 
reactions between matter and antimatter. The quantum energy of any electro- 
magnetic photon is given in keV by 

y-rays: 

1.2398 keV-nm - 
x 

where 1 A (Angstrom) = lo-’’ m, Planck’s constant is 

h = 6.626 x 10-34 J 
= 4.136 X lo-’’ keV s 

(note that 1.6022 X J = 1 keV), and the velocity of light in vacuo is 

c = 2.998 X lo8 mls 

= 2.998 X 10‘’ Als  

= 2.998 X 10” nmls 

Evidently, by Eq. (1.1) the quantum energy of a photon of 0. l-nm wavelength 
is 12.4 keV, within one part in 6000. 

The practical range of photon energies emitted by radioactive atoms extends 
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from 2.6 keV (Ka characteristic x-rays from electron capture in :iAr) to the 6.1- 
and 7.1-MeV yrays from ‘;N. 
2. X-rays: Electromagnetic radiation emitted by charged particles (usually 
electrons) in changing atomic energy levels (called charactnistit orjZwrcrcence x-rays) 
or in slowing down in a Coulomb force field (continuous or brcmrstrdlung x-rays). 
Note that an x-ray and a y-ray photon of a given quantum energy have identical 
properties, differing only in mode of origin. Older texts sometimes referred to 
all lower-energy photons as x-rays and higher energy photons as y-rays, but this 
basis for the distinction is now obsolete. Most commonly, the energy ranges of 
x-rays are now referred to as follows, in terms of the generating voltage: 

0.1-20 kV 
20- 120 kV Diagnostic-range x-rays 
120-300 kV Orthovoltage x-rays 
300 kV- 1 MV 
1 MV upward Megavoltage x-rays 

Low-energy or “soft” x-rays, or “Grenz rays” 

Intermediate-energy x-rays 

3. If positive in charge, they are called positrons. If they are 
emitted from a nucleus they are usually referred to as @-rays (positive or negative). 
If they result from a charged-particle collision they are referred to as “&rays”. 
Intense continuous beams of electrons up to 12 MeV are available from Van de 
Graaff generators, and pulsed electron beams of much higher energies are avail- 
able from linear accelerators (“linacs”), betatrons, and microtrons. Descrip- 
tions of such accelerators, as encountered in medical applications, have been given 
by Johns and Cunningham (1974) and Hendee (1970). 
4. Usually obtained from acceleration by a Coulomb 
force field in a Van de Graaff, cyclotron, or heavy-particle linear accelerator. 
Alpha particles are also emitted by some radioactive nuclei. Types include: 

Proton-the hydrogen nucleus. 

F a t  Electrons: 

Hcwy Charged Purtich: 

Deuteron-the deuterium nucleus, consisting of a proton and neutron bound 
together by nuclear force. 

Triton-a proton and two neutrons similarly bound. 
Alpha particle-the helium nucleus, i.e., two protons and two neutrons. 3He 
particles have one less neutron. 

Other heavy charged particles consisting of the nuclei of heavier atoms, either 
fully stripped of electrons or in any case having a different number of electrons 
than necessary to produce a neutral atom. 
Pions-negative *-mesons produced by interaction of fast electrons or protons 
with target nuclei. 

5 .  Neutrons. 
fission], since they cannot themselves be accelerated electrostatically. 

Neutral particles obtained from nuclear reactions [e.g., (p, n) or 



4 IONIZING RADIATION 

The range of kinetic or photon energies most frequently encountered in appli- 
cations of ionizing radiations extends from 10 keV to 10 MeV, and relevant tab- 
ulations of data on their interactions with matter tend to emphasize that energy range. 
Likewise the bulk of the literature dealing with radiological physics focuses its at- 
tention primarily on that limited but useful band of energies. Recently, however, 
clinical radiotherapy has been extended (to obtain better spatial distribution, and/ 
or more direct cell-killing action with less dependence on oxygen) to electrons and 
x-rays up to about 50 MeV; and neutrons to 70 MeV, pions to 100 MeV, protons 
to 200 MeV, a-particles to lo3 MeV, and even heavier charged particles up to 10 
GeV are being investigated in this connection. Electrons and photons down to about 
1 keV are also proving to be of experimental interest in the context of radiological 
physics. 

The ICRU (International Commision on Radiation Units and Measurements, 
197 1) has recommended certain terminology in referring to ionizing radiations which 
emphasizes the gross differences between the interactions of charged and uncharged 
radiations with matter: 

1. Directly Ionizing Radiation. Fast charged particles, which deliver their energy 
to matter directly, through many small Coulomb-force interactions along the par- 
t icle ’ s t rack. 
2. X- or y-ray photons or neutrons (i.e., un- 
charged particles), which first transfer their energy to charged particles in the 
matter through which they pass in a relatively few large interactions. The resulting 
fast charged particles then in turn deliver the energy to the matter as above. 

It will be seen that the deposition of energy in matter by indirectly ionizing ra- 
diation is thus a two-stcp ~rouss .  In developing the concepts of radiological physics 
the importance of this fact will become evident. 

The reason why so much attention is paid to ionizing radiation, and that an ex- 
tensive science dealing with these radiations and their interactions with matter has 
evolved, stems from the unique effects that such interactions have upon the irradiated 
material. Biological systems (e.g., humans) are particularly susceptible to damage 
by ionizing radiation, so that the expenditure of a relatively trivial amount of energy 
( - 4 J/kg) throughout the body is likely to cause death, even though that amount 
of energy can only raise the gross temperature by about 0.001 OC. Clearly the ability 
of ionizing radiations to impart their energy to individual atoms, molecules, and 
biological cells has a profound effect on the outcome. The resulting high local con- 
centrations of absorbed energy can kill a cell either directly or through the formation 
of highly reactive chemical species such as free radicals* in the water medium that 
constitutes the bulk of the biological material. Ionizing radiations can also produce 
gross changes, either desirable or deleterious, in organic compounds by breaking 
molecular bonds, or in crystalline materials by causing defects in the lattice structure. 

Indirectly Ionizing Radiation. 

*A free radical is an atom or compound in which there is an unpaired electron, such as H or CH,. 
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Even structural steel will be damaged by large enough numbers of fast neutrons, 
suffering embrittlement and possible fracture under mechanical stress. 

Discussing the details of such radiation effects lies beyond the scope of this book, 
however. Here we will concentrate on the basic physics ofthe interactions, and meth- 
ods for measuring and describing the energy absorbed in terms that are useful in 
the various applications of ionizing radiation. 

111. DESCRIPTION OF IONIZING RADIATION FIELDS 

A. Consequences of the Random Nature of Radiation 
Suppose we consider a point P in  a field of ionizing radiation, and ask: “HOW many 
ruys (i.e., photons or particles) will strike Pper  unit time?” The answer is of course 
zero, since a point has no cross-sectional area with which the rays can collide. There- 
fore, the first step in describing the field at P is to associate some nonzero volume 
with the point. The simplest such volume would be a sphere centered at P, as shown 
in Fig. 1.1, which has the advantage of presenting the same cross-sectional target 
area to rays incident from all directions. The next question is how large this imag- 
inary sphere should be. That depends on whether the physical quantities we wish 
to define with respect to the radiation field are stochastic or nonrtochostic. 

A stochastic quantity has the following characteristics: * 

a. 

b. 

C.  

a. 

Its values occur randomly and hence cannot be predicted. However, the 
probability of any particular value is determined by a probability distri- 
bution. 
It is defined for finite (i.e. noninfinitesimal) domains only. Its values vary 
discontinuously in space and time, and it is meaningless to speak of its gra- 
dient or rate of change. 
In principle, its values can each be measured with an arbitrarily small error. 
The expectdon valuc N, of a stochastic quantity is the mean 15 of its measured 
values N as the number n of observations approaches 00. That is, + N, 
as n --* a. 

A nonstochastic quantity, on the other hand, has these characterstics: 

a. 
b. 

For given conditions its value can, in principle, be predicted by calculation. 
It is, in general, a “point function” defined for infinitesimal volumes; hence 
it is a continuous and differentiable function of space and time, and one may 
speak of its spatial gradient and time rate of change. In accordance with com- 
mon usage in physics, the argument of a legitimate differential quotient may 
always be assumed to be a nonstochastic quantity. 

‘Further discussion of stochastic vs. nonstochastic physical quantities will be found in ICRU (1971) and 
ICRU (1980). 



6 IONIZING RADIATION 

GREAT CIRCLE 
AREA a OR da 

VOLUME V OR dV 
CROSSING 

R AY 
MASS m OR dm 

FIGURE 1.1. 
the spherical surface S. 

Characterking the radiation field at a point Pin tcrmr of the radiation traversing 

c. Its value is equal to, or based upon, the expectattion value of a related stochastic 
quantity, ifone exists. Although nonstochastic quantities in general need not 
be related to stochastic quantities, they are so related in the context of ionizing 
radiation. 

It can be seen from these considerations that the volume of the imaginary sphere 
surrounding point Pin Fig. 1.1 may be small but must befinite if we are dealing with 
stochastic quantities. It may be infinitesimal (dV) in reference to nonstochastic quan- 
tities. Likewise the great-circle area (da) and contained mass (dm) for the sphere, as 
well as the irradiation time (dt), may be expressed as infinitesimals in dealing with 
nonstochastic quantities. Since the most common and useful quantities for describing 
ionizing radiation fields and their interactions with matter are all nonstochastic, we 
will defer further discussion of stochastic quantities (except when leading to non- 
stochastic quantities) until a later chapter (16) dealing with microdosimetry, that is, the 
determination of energy spent in small but finite volumes. Microdosimetry is of par- 
ticular interest in relation to biological-cell damage. 

In general one can assume that a “constant” radiation field is strictly random 
with respect to how many rays arrive at a given point per unit area and time interval. 
It can be shown (e.g., see Beers, 1953) that the number of rays observed in repetitions 
of the measurement (assuming a fixed detection efficiency and time interval, and 
no systematic change of the field vs. time) will follow a Poisson distribution. For large 
numbers of events this may be approximated by the normal (Gaussian) distribution. 
If N, is the expectation value of the number of rays detected per measurement, the 
standard deviation of a single random measurement N relative to N, is equal to 

u = f i e d 7  (1.2a) 

and the corresponding percentage standard deviation is 

lOOa 100 100 s = -  = - = -  
Nt f i - J - 7 7  

(1.2b) 

That is, a single measurement would have a 68.3% chance of lying within fa 
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due to the stochastic nature of the field itself. Likewise N would have a 95.5 % chance 
of lying within f 2a of N,, or a 99.7 % chance within f3a. 

The approximation of N, by the mean value N in Eqs. (1.2a,b) is necessary be- 
cause N, is unknown but can be approached as closely as desired by the mean value 
m of n measurements, i.e., N --* N, as n + 00. It is useful to know how closely 
is likely to approximate N, for a given number of measurements n. This information 
is conveyed by the standard deviation of the mean value 

- 

relative to N,: 

(1.3a) 

and the corresponding percentage standard deviation is 

100u' 100 100 100 
S' = - - (1.3b) 

where NT = nx is the total number of rays detected in all n measurements com- 
bined. will have a 68.3% chance of lying within fa' of N,. Notice in Eq. (1.3b) 
that it makes no difference how many measurements (n) are made in acquiring a given 
total count NT, and thus a given value of S'. 

It is important to emphasize that the foregoing statements of standard deviation 
in Eqs. (1.2) and (1.3) are based exclusively upon the stochastic nature of radiation 
fields, not taking account of instrumental or other experimental fluctuations. Thus 
one should expect to observe experimentally greater standard deviations than these, 
but never smaller. An estimate of the precision (i.e., proximity to N,) of any single 
random measurement N made by a radiation detector should be determined from 
the data of n such measurements by means of the equation: 

NC - = Z T  

112 
1 "  

u [- c (Ni - ")'] 
n - 1 i = l  

(1.4a) 

instead of Eq. (1.2a). Here Ni is the value obtained in the zth measurement, and 
= (CNi) /n .  

An estimate of the precision of the mean value 
wise be obtained from the experimental data by 

of n measurements should like- 

(1.4b) 

in place of Eq. (1.3a), since u' = a/&. 
It should also be pointed out that the expectation value N, of the measurements 

is not necessarily the physically correct value, and in fact will not be if the measuring 
instrument is improperly calibrated or is otherwise biased. N, is merely the value 
of approached as n --* 00. 

An example will illustrate the meaning of Eq. 1.3a: 
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EX8mpk 1.1. A y-ray detector having 100% counting efficiency is positioned in 
a constant field, making 10 measurements of equal duration, At = 100 s (exactly). 
The average number of rays detected ("counts'') per measurement is 1.00 X lo5. 
What is the mean value of the count rate, including a statement of its precision (i.e., 
standard deviation)? 

In Eq. (1.3a) = 1.00 x lo5 counts, n = 10 measurements, and so 

Thus the count rate is: 
- 
N 
At 100 s 

1.00 x lo5 f 10' counts _ -  - 

= 1.00 X lo3 f 1 ds (S.D.) 

This standard deviation is due entirely to the stochastic nature of the field, since the 
detector counts every incident ray. 

B. Simple Description of Radiation Fields by Nonstochastic Quantities 

1. FLUENCE 
Referring to Fig. 1.1, let N, be the expectation value of the number of rays striking 
a finite sphere surrounding point Pduringa time interval extending from an arbitrary 
starting time to to a later time t. If the sphere is reduced to an infinitesimal at P with 
a great-circle area of&, we may define a quantity called thefluence, 9, as the quotient 
of the differential of N, by ah: 

which is usually expressed in units of m-' or cm-' 

2. 
9 may be defined by (1.5) for all values of t  through the interval from t = to (for which 
Q = 0) to t = t,,, (for which Q = QmaX). Then at any time t within the interval we 
may define theflux dnrrity orfluence rate at P as 

FLUX DENSITY (OR FLUENCE RATE) 

where d 9  is the increment of fluence during the infinitesimal time interval dt at time 
t ,  and the usual units of flux density are m-' s-' or cm-' s - ' .  

Since the flux density cp may be defined by means of Eq. (1.6) for all values of 
t ,  we may thereby determine the function (o( t ) ,  and express the fluence at Pfor the 
time interval from to to t ,  by the definite integral 
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F II 

9 

For the case of a time-independent field, p(f) is constant and Eq. (1.7) simplifies 
to 

* ( to ,  t i )  = Q . ( t i  - to) = Q Ai (1.8) 

It should be noted that Q and @ express the sum of rays incident from all directions, 
and irrespective of their quantum or kinetic energies, thereby providing a bare min- 
imum of useful information about the field. However, different types of rays are 
usually not lumped together; that is, photons, neutrons, and different kinds of charged 
particles are measured and accounted for separately as far as possible, since their 
interactions with matter are fundamentally different. 

3. ENERGY FLUENCE 
The simplest field-descriptive quantity which takes into account the energies of the 
individual rays is the enngyfuence 4, for which the energies of all the rays are summed. 

Let R be the expectation value of the total energy (exclusive of rest-mass energy) 
carried by all the N, rays striking a finite sphere surrounding point P (see Fig. 1.1) 
during a time interval extending from an arbitrary starting time to to a later time 
t * .  If the sphere is reduced to an infinitesimal at P with a great-circle area of da, we 
may define a quantity called the etlergyjuence, 4, as the quotient of the differential 
of R by da: 

dR q = -  
da 

which is usually expressed in units of J m-* or erg cm-‘. 

and (1.9) are related by 
For the special case where only a single energy E of rays is present, Eqs. (1.5) 

R = EN, (1.9a) 

and 

9 = E@ (1.9b) 

Individual particle and photon energies are ordinarily given in MeV or keV, which 
is the kinetic energy acquired by a singly charged particle in falling through a po- 
tential difference of one million or one thousand volts, respectively. Energies in MeV 

‘ICRU (1980) calls R the radzanf energy, and defines it as “the energy of particles (excluding rest energy) 
emitted, transferred, or received.” 



10 IONIZING RADIATION 

can be converted into ergs and joules through the following statements of equiva- 
lence : 

1 MeV = 1.602 X erg = 1.602 X J 

1 erg = J = 6.24 X lo5 MeV (1.10) 

1 J = 6.24 X 10'' MeV = lo7 erg 

4. 
9 may be defined by Eq. (1.9) for all values of t  throughout the interval from t = 
to (for which Q = 0) to t = tmax (for. which 4 = Qma). Then at any time f within 
the interval we may define the energyjux h i p  or mrgy$uence rate at P as: 

ENERGY FLUX DENSITY (OR ENERGY FLUENCE RATE) 

(1.11) 

where &If is the increment of energy fluence during the infinitesimal time interval 
dt at time t ,  and the usual units of energy flux density are J m-' s-' or erg cm-' 
S-'. 

By identical arguments to those employed in deriving Eqs. (1.7) and (1.8), one 
may write the following corresponding relations for *: 

I1 

*(to,  4 )  = 1 rL(0 dt (1.12) 
I0 

and for constant $(t) ,  

* ( to ,  ti) = $ * (ti - to) = $ At (1.13) 

For monoenergetic rays of energy E the energy flux density $ may be related to 

$ = Ev (1.13a) 

the flux density (p by an equation similar to (1.9b): 

C. Differential Distributions vs. Energy and Angle of Incidence 
The quantities introduced in Section 1II.B are widely useful in practical applications 
of ionizing radiation, but for some purposes are lacking in sufficient detail. Most 
radiation interactions are dependent upon the energy of the ray as well as its type, 
and the sensitivity of radiation detectors typically depends on the direction of in- 
cidence of the rays striking it. Thus one sometimes needs a more complete description 
of the field. 

In principle one could measure the flux density at any time t and point P as a 
function of the kinetic or quantum energy E and of the polar angles of incidence 6 
and 8 (see Fig. 1.2), thus obtaining the dtJmentiafJ%x hi& 

P'(e, P ,  E )  (1.14) 

typically expressed in units of m-* s-' sr-' keV-'. 
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r 2  s i n f l d s d e  
d f i =  ,2 = s inf ld8dB 

FIGURE 1.2. Polar coordinates. The element of solid angle is dQ. 

Instead of the flux density distribution one could have chosen the distribution of 
energy flux density, or (for a given time period) the fluence or energy fluence, ex- 
pressed in the proper units. The following discussion of flux density distributions 
can be applied to these other quantities as well. 

Since the element of solid angle is dQ = sin 8 do d6, as shown in Fig. 1.2,  it can 
be seen that the number of rays per unit time having energies between E and E + 
dE which pass through the element of solid angle dfl  at the given angles 8 and (3 before 
striking the small sphere at P, per unit great-circle area of the sphere, is given by 

~ ' ( 8 ,  P ,  E )  dQ dE (1.15) 

typically expressed in m-' s- '  or cm-' s-' .  Integrating this quantity over all angles 
and energies will of course give the flux density cp: 

E m ,  

cp = 1" 1 cp'(8, (3, E) sin 8 d8 d(3 dE (1.16) 
8 = O  O = O  E = O  

also in m-2 s - '  or om-* s- '  

1. ENERGY SPECTRA 
Simpler, more useful differential distributions of flux density, fluence, energy flux 
density, or energy fluence are those which are functions of only one of the variables 
8, 0, ur E. When E is the chosen variable, the resulting differential distribution is 
called the energy spectrum of the quantity. For example the energy spectrum of the flux 
density summed over all directions is written as cp'(E), in typical units of m-' s- '  
keV-' or cm-' s- '  keV-I: 
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2* 

p ' ( E )  = 1' s p'(8, 0, E) sin 8 (iB d0 (1.17) 
e = o  o = o  

Integration of (o'(E) over all energies of the rays present then gives the flux density: 

p Emax 

(1.18) 

To illustrate such a spectrum, Fig. 1 . 3 ~  shows how a "flat" distribution of photon 
flux density v ' ( E )  would be plotted as the ordinate vs. the quantum energy as ab- 
scissa. Fig. 1.36 shows the corresponding spectrum of energy flux density $'(E),  
where 

$'(El = E(o'(E) (1.19) 

That is, the ordinates in Fig. 1.3b are E times those in 1 . 3 ~ .  The unit ordinarily used 
for the factor E in Eq. (1.19) is the erg or joule, so that @ ( E )  is expressed in J me* 
s-' keV-' or erg cm-' s-' keV-'. These units convey the concept intended more 
clearly than would be the case if the factor E were chosen also be in keV, thus allowing 
cancellation of the energy units and leaving only m-' s-I. The joule (preferably) 
and the erg are the units commonly employed in describing gross energy transport 
in radiological physics [see Eq. (1.1 O)]. 

An equation corresponding to (1.18) can also be written for $: 
Etll*X Em, 

E = O  0 
9 = j p ( E ) d E  = j Ecp'(E) dE (1.20) 

In carrying out this integration in dosed form it will be necessary for E to be in 
the same units throughout (e.g., keV), contrary to the immediately foregoing com- 
ments. The result will then be in keV/(area) (time), which can be converted to other 
energy units by Eq. (1.10). For numerical integration of (1.20), one may employ 
$ ' ( E )  in J m-' s-' keV-' (or erg cm-' s-' keV-I) and still use limits and energy 
intervals dE expressed in keV. 

0 

'0 PHOTON ENERGY Ey, (keV) 

FIGURE 1.30. A flat spectrum of photon flux density cp'(E). 
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FIGURE 1.36. Spectrum of energy flux density y ' ( E )  corresponding to Fig. 1 . 3 ~ .  

2. ANGULAR DISTRIBUTIONS 
If the field is symmetrical with respect to the vertical (2) axis shown in Fig. 1.2, it 
will be convenient to describe it in terms of the differential distribution of, say, the 
flux density as a function of the polar angle 8 only. This distribution per unit polar 
angle is given by 

~ 2 %  pEmaX 

p'(8) = 1 1 p'( 8, P ,  E) sin 8 dB dE 
8 = 0  E = O  

(1.21) 

so that the flux-density component consisting of the particles of all energies arriving 
at P through the annulus lying between the two polar angles 8 = 8, and 8, would 
be 

(1.22) 

where p'(8) can be expressed in rn-' s-l radian-', for example. For &limits of 0 
and T ,  this integral of course gives p. 

Alternatively one can obtain the differential distribution of flux density per unit 
solid angle, for particles of all energies, as 

(1.23) 

in typical units of rn-' s - '  sr-I. This may be integrated over all directions to again 
obtain the total flux density: 

2* 

cp = jr p'(8, 6 )  sin 8 do dp (1.24) 
e = o  E = O  

For a field that is symmetrical about the z-axis, p'(8, p) is independent ofp; hence 
Eq. (1.24) can be integrated over all &values to obtain 
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I-* 

(1.25) 

Comparing this equation with Eq. (1.22) over the limits 0 = 0 to 7 reveals that, for 
the case of z-axis symmetry, ~ ' ( 0 )  is related to p'(8, f l )  by 

p'(0) = (27  sin 0) p'(B, @), (1.26) 

where p'(0) has the units m-* s-'  radian-' and p'(@, a) is given in m-' s-'  sr-'. 
Figure 1.4 illustrates this relationship for the case of a completely isotropic field (solid 
curves), and for the case where p'(0, @) is still @-independent but varies as some 
function of @(dashed curves). p'(0, 6) is arbitrarily taken as (1 - B/r) in the latter 
case shown. 

Sometimes one is interested in expressing the flux density of particles of all ener- 
gies as a function only of the azimuthal angle 8. Then p'(8,B) from Eq. (1.23) may 
be used, where one usually sets 8 = d 2 .  

7 -  

6- 

G 5 -  

-s 
6 

m- 

Y 

4- 

G. 3- 

0 30" 60" 90° 120" 150" 180" 

e 
FIGURE 1.4. Isotropic radiation field expressed in terms of its flux-density distribution per 
unit solid angle, tp'(0, fJ) = constant = 1 rn-'s-' sr-* (lower solid curve). The same field is also 
shown in terms of its distribution per unit polar angle, cp'(0), in m-' s-' radian-' (upper solid 
curve). These two curves are related by the factor 2n sin 0, which is also true if tp'(e, p) is a 

function of 0 only [e.g., see dashed curves for ?'(a, 8) = 1 - (9/180°)]. 
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D. An Alternative Definition of Fluence 
Chilton (1978, 1979) has proven the validity of an alternative definition of fluence, 
namely: 

T h e  fluence at a point P is numerically equal to the expectation value of the sum of the 
particle track lengths (assumed to be straight) that occur in an infinitesimal volume dV 
at P, divided by dV. 

This statement was shown to be true for nonisotropic as well as isotropic fields, 
irrespective of the shape of the volume. Thus one need not require a spherical volume 
to define fluence in this way. Moreover this definition lends itself to dosimetry cal- 
culations by the Monte Carlo method. 

E. Planar Fluence 
PlanarJluence is the number of particles crossing a fixed plane in either direction (i.e., 
summed by scalar addition) per unit area of the plane. The name “planar fluence” 
was given to it by Roesch and Attix (1968), who also defined a vector-sum quantity 
corresponding to the planar flux density that they called the nclflow, that is, the num- 
ber of particles per unit time passing through unit area of the plane in one sense (say 
side A to side 23) minus those going the other way (B + A). This quantity is of little 
dosimetric relevance, however. Although vectorial methods are convenient for field 
calculations, as shown by Rossi and Roesch (1962) and Brahme (1981), radiation 
dosimetry finally requires scalar, not vector, addition of the effects of individual par- 
ticles. 

The concept of net flow was first put forward in the context of radiological physics 
by Whyte (1959). He dealt with the flow of energy carried by particles, and applied 
the name “plane intensity” to the vector sum of the energy flowing through a fixed 
plane. Whyte’s illustrative diagram is reproduced in Fig. 1.5, which will be used 
here to discuss fluence vs. planar fluence. 

A plane homogeneous beam of radiation is shown perpendicularly incident upon 
a flat scattering (but not absorbing) foil. All particles are shown for simplicity being 
scattered through the same angle 8, at any azimuthal angle 0. A spherical and a flat 
detector of equal cross-sectional area are shown positioned above and below the foil. 
The flat detector is oriented parallel to the foil, and thus is perpendicular to the beam 
of incident radiation. The number of incident particles striking each detector above 
the foil is clearly the same, and the planar fluence with respect to the plane of the 
flat detector is identical to the fluence in the same field. This can only be true in a 
plane-parallel beam, orthogonal to the Rat detector, as shown. 

The number of scattered particles striking the spherical detector below the foil 
is I l/cos 81 times the number striking the flat detector, which in turn is the same as 
the number it  received above the foil. Thus the fluence is I l/cos 81 times the planar 
fluence. This increase in fluence contributes to an effect sometimes seen in broad- 
beam geometry, in which the fluence behind an attenuating layer can be greater than 
that incident (see Chapter 3, Section V). 
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Incoming beam 

I 
scattered rays 

FIGURE 1.5. 
on fluence vs. planar fluence. (After Whyte, 1959.) 

Particles scattered through an angle B in a nonabsorbing foil, illustrating effect 

The effect of radiation striking a detector depends on the penetrating power of 
the radiation. Consider the two limiting cases in which: (a) the radiation penetrates 
straight through both detectors shown in Fig. 1.5, and (b) the radiation is stopped 
and absorbed in both detectors. For both cases we will take the response of the de- 
tector to be proportional to the energy imparted in it. 

For case (a) we will also assume that the energy imparted is approximately pro- 
portional to the total track length of the rays crossing the detector, or to the fluence 
according to the Chilton definition. This assumption is by no means proven at this 
point, but it is reasonably good for homogeneous radiation crossing a small, easily 
penetrated detector. The spherical detector in Fig. 1.5 will read more below the foil 
in proportion to the number of rays striking it, which is I l/cos 01 times the number 
striking it above the foil. The average length of the paths in the sphere is obviously 
the same above and below. The number of rays striking the flat detector is the same 
above and below the foil, but the length of each track within the detector is I l/cos 


