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Series Foreword
Developments in Forensic Science

The world of forensic science is changing at a very fast pace. This is in terms of the
provision of forensic science services, the development of technologies and knowledge,
and the interpretation of analytical and other data as it is applied within forensic
practice. Practicing forensic scientists are constantly striving to deliver the very best
for the judicial process, and as such need a reliable and robust knowledge base within
their diverse disciplines. It is hoped that this book series will be a valuable resource for
forensic science practitioners in the pursuit of such knowledge.

The Forensic Science Society is the professional body for forensic practitioners in the
United Kingdom. The Society was founded in 1959 and gained professional body status
in 2006. The Society is committed to the development of the forensic sciences in all of
its many facets, and in particular to the delivery of highly professional and worthwhile
publications within these disciplines through ventures such as this book series.

Dr Niamh Nic Daéid
Series Editor
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Foreword

I am delighted to be able to write the foreword for this, the first textbook of stable
isotope forensics.

The breadth of material covered is wide, ranging from fundamentals to policy issues,
and therefore this text will be of benefit to practitioners, researchers and investigators,
indeed to anyone who has an interest in this new forensic discipline.

The year 2001 saw the formation of the Forensic Isotope Ratio Mass Spectrometry
(FIRMS) Network. Since then much has been achieved in terms of advancing the
forensic application of stable isotope analysis, this textbook being the latest significant
step.

These advances have been made in the face of considerable challenges resulting from
the novelty and complexity of the technique. Isotope forensics has already proved a
powerful tool in the investigation and prosecution of high-profile crimes, including
terrorism. Stable isotope analysis enables questions regarding the source and history of
illicit and other forensic materials to be addressed – questions which might otherwise
remain unanswered.

Isotope forensics is now being widely adopted for profiling illicit materials and
human provenancing. Stable isotope analysis has already been used successfully in two
major terrorist trials in the United Kingdom, and in a variety of investigations and trials
in the United Kingdom, Europe and the United States.

Dr Meier-Augenstein is to be commended for his vision in recognizing the forensic
potential of stable isotopes, for his energy in developing and optimizing the method-
ology, and in promoting the technique to end-users. He is also well aware of the risk
of contributing to a miscarriage of justice and recognizes that only an appropriate
regulatory framework can significantly mitigate that risk.

The development of suitable databases of reference materials and appropriate tools
for evaluation remain significant tasks; once complete the next decade should see isotope
forensics taking a deserved place in mainstream forensic science and, to a greater extent,
contributing to the efficient and effective delivery of justice.

Sean Doyle
Past Chair of the FIRMS Network

Principal Scientist, Forensic Explosives Laboratory, Defence Science
and Technology Laboratory

September 2009
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Introduction
Stable Isotope ‘Fingerprinting’ or Chemical ‘DNA’: A
New Dawn for Forensic Chemistry?

Starting with the conclusion first, I would say neither of the above two terms is appropri-
ate, although I am convinced information locked into the stable isotopic composition
of physical evidence may well represent a new dawn for forensic chemistry.

The title for this general introduction is a deliberate analogy to the term ‘DNA Fin-
gerprinting’ coined by Professor Sir Alec J. Jeffreys. I seek to draw the reader’s attention
to the remarkable analogy between the organic, life-defining material DNA and the
more basic (and, on their own, lifeless) chemical elements in their various isotopic
forms when examined in the context of forensic sciences, and human provenancing in
particular. At the same time, it has also been my intention to alert readers from the
start to the dangers of expecting miracles of stable isotope forensics. DNA evidence is at
its most powerful when it can be matched against a comparative sample or a database
entry and the same is true to a degree for the information locked into the isotopic
composition of a given material. One could argue that the random match probability
of 1 : 1 billion for a DNA match based on 10 loci and the theoretical match probability
of an accidental false-positive match of a multi-isotope signature were also seemingly
matched with multivariate or multifactor probabilistic equations being the common
denominator for both. If we consider a material such as hair keratin and we make the
simplifying assumption this material may exist naturally in as many different isotopic
states per element as there are whole numbers in the natural abundance range for each
isotope given in δ units of per mil (‰) (Fry, 2006), we can calculate a hypothetical
figure for the accidental match probability of such a multi-element isotope analysis that
is comparable to that of a DNA fingerprint.

For example, the widest possible natural abundance range for carbon-13 (13C) is
110‰ (Fry, 2006), so for the purpose of this example we could say keratin can assume
110 different integer 13C values. Analysing hair keratin for its isotopic composition with
regard to the light elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O) and
sulfur (S) could thus theoretically yield a combined specificity ranging from 1 : 638
million to 1 : 103.95 billion. In fact, one can calculate that the analysis of hair keratin
for its isotopic composition with regard to hydrogen, carbon, nitrogen, oxygen and
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xxii INTRODUCTION

sulfur would theoretically yield a combined specificity of 1 : 1 billion, thus suggesting
a ‘stable isotope fingerprint’ based on these four letters of the chemical alphabet may
have the same accidental match probability as a DNA fingerprint that ultimately is
based on the four letters of the DNA alphabet, A (adenine), C (cytosine), G (guanine)
and T (thymine) (see Box). However, it should be stressed that it has as yet not been
fully explored if this hypothetical level of random match probability and, hence, level
of discrimination is actually achievable given that actually assumed natural abundance
ranges of organic materials are usually much narrower than the widest possible range.
We will learn more about that in the course of this book. Thus, forensic scientists
and statisticians such as Jurian Hoogewerff and Jim Curran suggest more conservative
estimates, and put the potentially realized random match probability of stable isotope
fingerprints at levels between 1 : 10 000 and 1 : 1 million, depending on the nature and
history of the material under investigation. However, even at these lower levels, stable
isotope profiling is a potentially powerful tool.

Analogies between DNA and stable isotopes of light elements

Biological DNA versus Chemical ‘DNA’

Alphabet of Biological DNA comprises Alphabet of Chemical ‘DNA’ comprises
the letters the letters

A 2H
C 13C
G 15N
T 18O

[U] [34S]

Random match probability of Biological DNA is approximately 1 : 1 billion (1 × 109) for a DNA profile
based on 10 loci.
Random match probability of a five-element stable isotope profile can theoretically range from 1 : 693
million (6.93 × 108) to as high as 1 : 1.04 × 1011.
Note this is for illustrative purposes only and does not denote any equivalence between DNA bases and
chemical elements.

While one can make a good case that isotopic abundances of 2H, 13C, 15N and 34S
are independent variables, and figures representing their abundance range can hence
be combined in a probabilistic equation, the same is not entirely the case for 2H and
18O, which when originating both from water behave like dependent variables. More
relevant to this issue is the question if and to what degree isotopic abundance varies for
any given material or compound. While across all materials and compounds known to
man 13C isotopic abundance may indeed stretch across a range of 110 units, its range
in a particular material such as coca leaves may only extend to 7 units (Ehleringer et al.,
2000).
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Another reason why the analogy between DNA fingerprinting and stable isotope
profiling should only be used in conjunction with qualifying statements is the fact
that both a DNA fingerprint and a physical fingerprint are immutable – they do not
change over time. Drawing on an example from environmental forensics, calling a gas
chromatography or gas chromatography-mass spectrometry profile from a sample of
crude oil spillage a fingerprint of that oil is a misnomer since ageing processes such
as evaporation will lead to changes in the oil’s composition with regard to the relative
abundance of its individual constituents. Incidentally, due to isotopic fractionation
during evaporation the isotopic composition of any residual compound will have
changed as compared to its isotopic composition at the point of origin. A more apt
analogy would therefore be the use of the term stable isotope signature. Just as a
person’s signature can change over time or under the burden of stress, so can the
stable isotopic composition of the residual sample have changed by the time it ends
up in our laboratories. Furthermore, in the same way a forensic expert relies on more
than one physicochemical characteristic as well as drawing on experience and contextual
information to arrive at an interpretation regarding similarity or dissimilarity, the stable
isotope scientist combines measured data with experience, expertise and contextual
information to come to a conclusion as to what the stable isotope signature does or
does not reveal.

Despite these caveats it is easy to see why the prospect of potentially having such
powerful a tool at one’s disposal for combating crime and terrorism has caused a lot of
excitement in both the end-user and scientific communities. However, if the history of
applying DNA fingerprinting in a forensic context has taught us anything then it is this –
great potential is no substitute for good forensic science and good forensic science
cannot be rushed or packaged to meet externally driven agendas. At first there was no
great interest in this new forensic technique; however, after a few spectacular successes
demand for what seemed to be the silver bullet to connect suspect perpetrators to
victims or crime scenes increased faster than research, still concerned with answering
underlying fundamental questions, could keep up with – and history has all but repeated
itself recently on the subject of low template DNA. Good forensic science cannot be
rushed, but is the outcome of good forensic science research and, in turn, becomes the
foundation of good forensic practice. While the former requires proper funding, the
latter requires proper regulation, and both requirements must be addressed and met.

Not surprisingly, therefore, even at the time of writing this book we still have a
mountain to climb if we are to turn stable isotope forensics into a properly validated
forensic analytical tool or technique that is fit-for-purpose. Even though this technique
has been successfully applied in a number of high-profile criminal cases where salient
questions could be answered by comparative analysis, this should not blind us to the
fact that a considerable amount of time, effort, money and careful consideration still
has to be spent to develop and finely hone this technique into the sharp investigative
tool it promises to be.

Similar to DNA, data have to be generated and databases have to be compiled for
a statistically meaningful underpinning of this technique and the interpretation of its
analytical results. Equally important, if not more so, all the steps from sample collection,
storage and preparation through to the analytical measurement and final data reduction
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have to be carefully examined either to avoid process artefacts or, if unavoidable, to
quantify such artefacts and develop fit-for-purpose correction protocols to avoid stable
isotope forensics suffering the same fate as low template DNA.

One way of ensuring appropriate and well-advised use of this technique in a foren-
sic context is to advise and instruct upcoming generations of forensic scientists in
this technique as early as possible. Fortunately, in spite of the aforementioned draw-
backs, this is possible for two main reasons; (i) Thanks to end-user interest, there is a
sufficient amount of actual case work and associated background research, and their
results provide part of the foundations on which this book is built. (ii) Contrary to the
misconception of many an analytical chemist, there is a huge body of knowledge and
insight gained in scientific areas ranging from archaeology, biochemistry, environmen-
tal chemistry, geochemistry, palaeoecology to zoology, to name but a few, that is based
on stable isotope chemistry and stable isotope analytical techniques.

In this book, the theory, instrumentation, potential and pitfalls of stable isotope
analytical techniques are discussed in such a way as to provide an appreciation of this
analytical technique. To this end some of the physical chemistry background relating
to such aspects as mass discrimination, isotopic fractionation and mass balance is only
touched upon, while some of the practical consequences of the aforementioned on
the analytical process, the kind of information obtainable or the level of uncertainty
associated with stable isotope data from a particular type of sample are discussed in
finer detail. There are a number of excellent books and review articles dealing with the
fundamental principles of stable isotope techniques, both from the instrumentation
side and a physical chemistry point of view, which the interested reader is strongly
encouraged to use for further study. These books and review articles are listed separately
in the ‘Recommended Reading’ section at the back of this book.

In the main, what follows will focus on stable isotopes of light elements of which
all organic material is comprised, and why and how stable isotope composition of an
organic material can yield an added dimension of information with regard to ‘Who,
Where and When?’.
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Part I
How it Works
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Chapter I.1
What are Stable Isotopes?

Of the 92 natural chemical elements, almost all occur in more than one isotopic
form – the vast majority of these being stable isotopes, which do not decay, unlike
radioisotopes, which are not stable and, hence, undergo radioactive decay. In this
context, ‘almost all’ means with the exception of 21 elements, including fluorine and
phosphorous, which are mono-isotopic. The word isotope was coined by Professor
Frederick Soddy at the University of Glasgow, and borrows its origin from the two
Greek words isos (ισoζ) meaning ‘equal in quantity or quality’ and topos (τoπoζ)
meaning ‘place or position’, with isotope thus meaning ‘in an equal position’ (of the
periodic table of chemical elements). Frederick Soddy was later awarded the Nobel Prize
in Chemistry in 1921 for his work on the origin and nature of isotopes. By coining this
term he referred to the fact that isotopes of a given chemical element occupy the same
position in the periodic table of elements since they share the same number of protons
and electrons, but have a different number of neutrons. Therefore, as is so often mis-
takenly thought, the word isotope does not denote radioactivity. As mentioned above,
radioactive isotopes have their own name – radioisotopes. Non-radioactive or stable
isotopes of a given chemical element share the same chemical character and only differ
in atomic mass (or mass number A), which is the sum of protons and neutrons in the
nucleus.

Moving from the smallest entity upwards, atoms are comprised of positively charged
protons and neutral neutrons, which make up an atom’s nucleus, and negatively charged
electrons, which make up an atom’s shell (‘electron cloud’). Due to charge balance
constraints, the number of protons is matched by the number of electrons. A chemical
element and its position in the periodic table of elements is determined by the number
of protons in its nucleus. The number of protons determines the number of electrons
in the electron cloud, and the configuration of this electron cloud in turn determines
chemical characteristics such as electronegativity and the number of covalent chemical
bonds a given element can form. Owing to this link, the number of protons in the
atomic nucleus of a given chemical element is always the same and is denoted by the
atomic number Z , while the number of neutrons (in its nucleus) may vary. Since
the number of neutrons (N) has no effect on the number of electrons in the electron
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