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Preface

During the past ten years, since the introduction of microarray technology, neuros-

cientists became aware that highly complex gene expression networks are activated

in traumatic nervous system injuries and devastating neurodegenerative disorders

such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The classical

approach of studying single or small sets of genes or proteins has been quite

disappointing to dissect the intricate network of molecular reactions and failed to

provide a more complete picture of the pathophysiological and degenerative events.

Despite a great deal of initial skepticism, the advent of microarray technology that

allows the study of changes in gene expression at a (near) genome wide scale has

opened a new avenue for a molecular systems approach to neural degeneration and

repair. As a step further, proteome analysis, the ‘‘analysis of the entire PROTEin

complement expressed by a genOME’’, involves the simultaneous separation, iden-

tification and/or quantification of hundreds or thousands of proteins from a single

tissue sample.

There is a desperate need for a critical overview of the present state of research in

this field that has reached a certain state of maturation and acceptance and is at the

edge to be widely and routinely used among neuroscientists all over the world. Thus,

it appears to be timely to describe the potential as well as the limitations of the

application of these recent technologies to highly relevant neurological disorders

such as trauma, neurodegenerative disorders and neural tumors and their transition

into clinical applications (diagnosis, prevention, therapy).

This book highlights the state-of-the-art application of microarrays and proteo-

mics in systems neurobiology and translational neuroscience from genome research

to clinical application with particular emphasis on peripheral (PNS) and central

nervous system (CNS) injury and repair, neuropathic pain, ageing and neurodegen-

erative diseases such as AD, PD, and neurooncology. Microarray technology will not

only be critically compared with previously existing high-throughput gene expres-

sion technologies. As outlined in the following chapters, the genomic and proteomic

technologies have proven a tremendous impact on elucidating genetic networks and

molecular pathways underlying successful axonal plasticity, regeneration and retro-

grade axonal signaling in the damaged PNS and CNS. Moreover, the potential

of pharmacogenomics for future applications in personalized therapies, the

XI



development of new quantitative proteomics technologies (SILAC, ICAT, iTRAC),

and the impact of novel redox proteomics approaches to analyze protein modifica-

tions due to oxidative damage in nerve cell cultures and animal models of AD are

presented. On the other hand, gene expression profiling of gliomas has opened

entirely new perspectives on tumor classification and deciphering tumor hetero-

geneity, pathway-associated expression signatures, and lineage-specific molecular

signatures to localize the origin of a glial tumor.

We hope that this book provides useful information for a wide range of basic

researchers and biomedical and clinical scientists from the level of neurobiology/

medical students, postdocs to advanced specialists in academics as well as industry.

I am very grateful to all the people who contributed to this book, especially to

Dr. Andreas Sendtko and Claudia Grössl from Wiley-VCH.

Düsseldorf, January 2008 Hans Werner Müller
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1

Microarrays in Systems Neurobiology and Translational

Neuroscience – From Genome Research to Clinical Applications

Jeremy A. Miller and Daniel H. Geschwind

1.1

Introduction

Althoughmicroarray technology was introduced just 10 years ago, over 20 000 articles

have been published using this technology as of 2006, covering areas ranging from

soil ecology and yeast genomics to cancer andneurological disorders. Inneuroscience,

much of this represents publications since 2000, showing a remarkable trajectory as

well as reflecting early skepticism that has now given way to acceptance and apprecia-

tion (Figure 1.1).Q1 Entire transcriptomes can now be assayed on a single chip at a

reasonable cost, and technologies arebecoming cheaper andmore accurate day by day.

In basic neuroscience research,microarrays have been used to assess gene expression

differences across mouse strains [1], brain areas [2], cell types [3–5], and brain tumor

strains [6]. They have also been used to identify genes that play an important role in

neural stemcell biology [7,8],mousemodels of neurodevelopmental disorders [9], and

postmortem assessments of many neurodegenerative diseases such as Alzheimer’s

disease (AD) [2,10–15], Parkinson’s disease (PD) [16], Huntington’s disease (HD)

[17,18], amyotrophic lateral sclerosis (ALS) [19,20], and schizophrenia [21]. In addition

to providing a useful tool for basic neuroscience research,microarrays hold significant

promise clinically as patient classifiers in acute and chronic neurological diseases [22].

This chapter summarizes the current state of microarray technology, presenting

several clinical applications. In the next section, gene expression technologies

leading up to microarray technologies are presented along with alternative high-

throughput techniques. Section 1.3 provides a primer on how to design and imple-

ment a successful microarray experiment and presents challenges to the field and

analytic methods that have been developed to get the most out of expression data.

The last section summarizes recent microarray experiments in the field of

neuroscience, highlighting key, representative papers documenting state-of-the-art

experimental design, clinical uses in brain cancer, and the use of peripheral blood as

a substitute for brain tissue in various neuropsychiatric conditions. Finally, genomic

DNA microarrays are briefly discussed, along with speculation on the future of

clinical microarray applications.
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1.2

Gene Expression Before Microarrays

Since the discovery of DNA in the early 1900s and the subsequent discovery of RNA

as the substrate for protein synthesis, gene expression assays have become an

essential component of disease research. Gene expression approaches initially took

a gene-centric view. A scientist would hypothesize a relationship between a gene and

a phenotype, and then test this hypothesis using methods such as Northern blot and

in situ hybridization. In Northern blot analysis, mRNA is denatured and separated by

weight on a gel using agarose gel electrophoresis, transferred onto a membrane, and

hybridized with complementary labeled probes [23]. Thus, gene expression corre-

lates with intensity of the labeling. In situ hybridization, on the contrary, involves

directly applying labeled probes to the tissues of interest to determine where the

mRNA is expressed in situ [24]. Although still important for studying single genes,

these high-resolution techniques are at a disadvantage with regard to the throughput

now available using techniques such as RT-PCR, serial analysis of gene expression

(SAGE), differential display, and microarrays. As is the case in complex, dynamic

tissues such as the brain and nervous system, there is often a trade-off between scale

and resolution [25].

1.2.1

High-Throughput Gene Expression Techniques

A paradigm shift occurred in the early 1990s, as technology improved and knowl-

edge of the genome became widely accessible. This challenged scientists to move

from a gene-by-gene study to developmethods that took into consideration the entire

Figure 1.1 Acceptance and use of microarrays in the twenty-first

century. Since the year 2000, publications on microarrays

have gained popularity in the area of neurosciences, indicating

their more widespread acceptance and use as a viable tool.

The X-axis indicates publication year, while the Y-axis indicates

number of publications turning up in PubMed searches for

‘‘microarray’’ and ‘‘brain’’.
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system of gene expression, moving from the unimolecular to the systems level [26].

One of the earliest methods using high-throughput techniques to identify a

large number of genes differentially expressed between two tissues or conditions

was differential-display reverse-transcription polymerase chain reaction (DDPCR)

[27]. In DDPCR, the 50 end of mRNA is bound to anchor primers and reverse

transcribed. A subset of this cDNA is then PCR amplified near its 30 end using

short arbitrary primers. The resulting amplified cDNAs from two samples are run

side by side on a gel, and any differentially displayed bands of interest can be excised

from the gel, reamplified, cloned, and sequenced. This method is relatively inex-

pensive and can test gene expression of all transcripts amplified simultaneously;

however, every interesting band has to be sequenced individually, and the comple-

tion of the human genome project has rendered such time-consuming sequencing

unnecessary.

Representational difference analysis (RDA) represents a more elegant genome-

wide subtraction method that, unlike DDPCR, does not require sifting through an

entire gel of genes to find some that are different [7,28,29]. In RDA, populations of

mRNA from two separate tissues are transcribed into cDNA, digested using re-

striction enzymes, converted into primers, and PCR amplified. These populations

are then cross-hybridized by combining an excess of one population (driver) and

using that to remove identical transcripts from the less concentrated population

(tester). By iteratively performing this process with each population as the driver

and the tester, and then shotgun cloning the subtraction products, libraries for

genes enriched in each tissue can be created. We have used this method coupled to

microarray screening, which provides a powerful approach to screening genetic

subtractions [7,28].

1.2.2

Contemporaneous Alternatives to Microarrays

SAGE [30] is one of the several high-throughput sequencing methods that provide a

powerful technique for high-resolution assessment of gene expression in a relatively

small number of samples. In SAGE, cDNA is positionally anchored using restriction

digestion, and short nucleotide chains around 14 base pair (bp) are removed from

specific positions in each molecule, serving as tags, concatenated together into

polymers of such tags, many multiples of which can be processed in a single

sequencing run. Thus, small tags of each gene are present in proportion to their

abundance in the starting mRNA and can be counted by efficient sequencing and

bioinformatic identification of the gene fromwhich they originate. The resolution in

SAGE is limited only by the cost and time of sequencing, but it typically requires

about 2000 sequencing reactions for each SAGE library to identify 50 000 tags.

However, often one needs to sequence 1 million or more tags to identify low-

abundance species in a complex tissue such as the CNS. To compare two tissues,

several such libraries need to be prepared from each tissue, making this a high-

resolution but low-throughput approach (relative to sample numbers that can be

studied). In theory, this technique is sensitive enough to find anymRNA species and

1.2 Gene Expression Before Microarrays j3



has the advantage over differential display, as each sequencing run determines

multiple mRNA species. In practice, however, this technique is too expensive and

time consuming for massive parallelization and clinical use.

Massively parallel signature sequencing (MPSS) determines mRNA counts using

a principle similar to SAGE [31]. In MPSS, fluorescently labeled cDNAs from

the input sample are hybridized to a microbead cDNA library, and hybridized

beads are fluorescently sorted and placed on a 2D grid. All beads are then simulta-

neously decoded and digested 4 bp at a time by binding unique adaptors, which

can be read using a charge-coupled device (CCD). MPSS has all the advantages of

SAGE and can read many more mRNA species for similar time investment

(�250 000), but it requires special equipment and is expensive. Thus, for most, it

remains primarily a research tool for in-depth investigation of a few specific samples

of interest, although the recent advent of new sequencing technologies will signifi-

cantly decrease the price of these clone and count techniques.

1.2.3

Microarray Technologies

Microarrays balance sensitivity and throughput to allow efficient study of about

10 000 detected mRNA species in parallel in a large number of samples. This may

not allow themaximumdepth possible as withMPSS or SAGE but has the advantage

of high scalability. The first high-throughput gene expression study, published in

1987, was carried out by Augenlicht et al. who used a nylon membrane containing

4000 cDNA sequences to examine gene expression changes in colon cancer [32].

Once solid substrates replaced nylon in the 1990s, this method provided a relatively

cheap, quick, and reproducible way for high-throughput gene expression analysis.

Owing to the abundant clinical and research applications of this technology, many

groups and companies have created their own microarray platforms. Although an

entire chapter could be devoted to describing the similarities and differences of

these platforms (see [33]), there are two general categories of microarrays: one-color

arrays and two-color arrays.

1.2.3.1 One-Color Oligonucleotide Arrays

One-color oligonucleotide (oligo) arrays (or chips) marked the first of the commercial

microarray technologies [34–38] andwere releasedbyAffymetrix in 1996.These arrays

required the development of two novel methodologies. Light directed chemical syn-

thesis allows for the direct application of hundreds of thousands of nucleotides to

specific positions on the chip at once, bypassing the need for PCR-amplified cDNA

probes. By masking all array positions not associated with the applied nucleotide and

repeating this chemical coupling for each nucleotide using multiple masks, gene-

specific oligo probes, 25 bp in length, are synthetically created. After synthesis of the

array, laser fluorescence microscopy can detect hybridization of fluorescently labeled

cDNA (target). Expression values for each gene can then be deduced by averaging over

multiple probes and using mismatch probes (where the 13th bp has been purposely

changed) to account for nonspecific binding.
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1.2.3.2 Two-Color Arrays

Contemporaneous with the development of oligonucleotide arrays, a separate yet

equally powerful method for running massively parallel gene expression experi-

ments was created [39–43] in which thousands of cDNA probes between 0.2 and

2.5 kb in length were PCR amplified and printed onto poly-L-lysine-coated micro-

scope glass slides using one of two printing techniques. In mechanical microspot-

ting (or passive dispensing) – currently the more popular method – the target is

loaded into a dispensing pin using capillary action and placed onto the cDNA

microarray by directly contacting the slide. Drop-on-demand (or inkjet) printers

use pins with piezoelectric fittings to drop a precise amount of the target onto the

slide using an electrical current, without actually having the pins contact the slide.

Once synthesized, these cDNA arrays, unlike their one-color counterparts, detect the

differential expression between two reference samples, each of which is labeled with

separate dyes (typically Cy3-dUTP and Cy5-dUTP). Hybridization fluorescence sig-

nals from each dye are detected separately with a dual-wavelength laser scanner and

combined into a single pseudocolor image using computer software. Recently, most

two-color platforms have shifted from cDNA probes to longer oligonucleotides

(30–60 bp), as oligos are generally more customizable, potentially more target

specific, and less difficult to amplify and purify than cDNAs. The Agilent platform

is an example of a commercial two-color platform based on oligonucleotides [44].

1.2.3.3 Bead-Based Arrays

Most current microarray systems, whether one-color (Affymetrix) or two-color

(Agilent), are based on oligos attached to a solid substrate, each with a known address.

Illumina universal bead arrays [45,46], however, consist of densely packed wells,

�3mm in diameter, which are randomly filled with beads containing 75 bp chimeric

oligos. These wells are etched either into bundles of fiber-optic strands or onto spe-

cialized chips. Each array has an average coverage of �30 beads per feature, with the

exact number variable due to the random filling of wells. For each bead, oligonucleo-

tides consist of a 25 bp bead identifier followed by a 50 bp gene-specific probe, and

�700000 such oligos are attached to each bead. Bead types are decoded by repeated

hybridization (and subsequent dehybridization) of fluorescently labeled cDNA se-

quences complementary to the bead identifiers. Fluorophores are chosen such that

each bead has a unique sequence of fluorescent signals (e.g., red-green-none-red-red-

none-green-red after eight hybridizations). After decoding, cRNA from one sample

is fluorescently labeled and scanned, and the absolute abundance of transcript is

determined by averaging the intensities of each bead containing that transcript.

1.3

Designing and Implementing a Microarray Experiment – From Start to Finish

Many articles and guides on the basic design of microarray experiments in the field

of neuroscience are available [47–50]. Here, we highlight some of the key issues,

starting with the basics.
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1.3.1

Choosing the Proper Microarray Platform

Given optimal conditions, all microarray platforms work very well; however, con-

ditions are never optimal, and issues such as experimental assay, local expertise,

cost, and gene coverage all play a role in platform selection. A two-color design is

most suited for comparative assays, for example, if the experimental goal is to

compare multiple tissues from a single subject (tumor versus normal tissue, cere-

bellum versus cortex, etc.). However, experiments seeking to correlate gene expres-

sion with phenotype (such as aging) in a single tissue tend to use one-color arrays;

although two-color arrays can be used, by comparing each sample with the same

reference sample [41,51]. This choice should be dictated by the statistical design of

the analysis, so as to allow optimal power to detect the desired changes.

Another issue to consider is cost versus reproducibility. Laboratory-made spotted

oligo arrays cost significantly less than factory-born arrays, whether one-color or two-

color, but require more effort to make. All microarrays are prone to batch effects,

which can be removed by proper normalization [52,53], but may be more significant

in homemade arrays. Thus, in a research-based experiment, custom arrays may be

appropriate, whereas biomarker assays would more likely require factory-made

arrays since thousands of identical arrays will eventually have to be made quickly.

Then, local expertise has also to be taken into account. If all of the current lab

personnel were trained using a specific kind of array, then the continued use of those

arrays would decrease both experimental time and error. One more advantage of

homemade arrays is that they are not vulnerable to changes in designs of manu-

facturers during the course of a series of experiments, as has been the case with

every commercial platform so far.

The final issue to consider when choosing an array platform is customizability

versus scalability. Both homemade and Agilent two-color arrays allow for the quick

and cheap creation of arrays containing any target of interest. For example, if an

experimenter aims to test the expression of multiple splice variants of a gene or to

make a biomarker assay for testing the expression of 100 specific genes, such

arrays would be appropriate. Nimblegen, which uses a mirror-based masking

system, has the maximum synthetic flexibility and offers custom arrays on a

commercial platform [54]. A wide variety of configurations are available, but the

cost is far higher than homemade spotted arrays. Spotted array technologies do

not lag far behind, however, as just about every microarray platform currently has

an array to test the expression of every known human transcript. All of these

factors have to be taken into account while choosing a proper platform for the

experiment at hand.

1.3.2

Preparing the Tissue for Hybridization

After selecting the microarray platform, tissue must be acquired and prepared in

such a way to avoid inducing unwanted changes in gene expression. An experiment
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using postmortem tissue must carefully control for gender, ethnicity, and cause of

death to avoid outlier arrays [22,47,55]. Once tissue is acquired it must be properly

cared for, as excessive postmortem interval, changes in pH or temperature, or

improper tissue handling at any stage can lead to RNA degradation [50]. Nonlinear

or excessive PCR can selectively amplify smaller segments of cDNA, leading to

increased variability, while improper tissue preservation can make a sample

completely unusable. Generally, an experiment should include duplicate spots or

arrays to quantitatively assess variability due to human error or choice of array

platform, thus, effectively determining the sensitivity of the experiment [50].

The precise steps to be taken between tissue acquisition and target hybridization

depend highly on the experiment at hand and generally involve the use of a series of

well-characterized procedures and commercially available kits. Generally, mRNA or

total RNA samples are extracted from the tissue or cells of interest and converted

into their cDNA sequences. In the case of genomic DNA assays, DNA is cut into

manageable sizes. When necessary, the cDNA is then amplified. Finally, each sam-

ple is fluorescently labeled using one or two dyes, as required.

1.3.3

Single-Cell Assays and Tissue Heterogeneity

Under ideal conditions, microarrays can detect mRNA in relative abundances as

low as one part per 500 000 [39,43], allowing for a resolution of 3–10 copies per

cell in simple tissues and cell lines. In practice, however, while these species may

be detected, their detection may not be reliable enough to ascertain differential

expression; so it is safer to assume reliable detection at the 1/100 000 level. In the

nervous system and other complex tissues consisting of multiple cell types with

uniquely expressed transcripts, resolution of cell type specific species is ham-

pered [50]. To increase resolution, therefore, many microarray experiments now

use single-cell assays to filter individual cell types of interest from heterogeneous

tissue before assessing changes in gene expression [25], although this also has its

costs.

Many cell purification assays, including flow cytometry, microaspiration, and

laser-capture microdissection (LCM), have arisen to combat tissue heterogeneity

in different situations. Flow cytometry allows thousands of cells per second to be

counted, examined, and separated based on any of a number of characteristics of the

cells [56]. This method is generally used to quickly obtain large quantities of a single

cell type. Several studies have recently demonstrated the use of automated flow

sorting [3,4] for purifying neurons from developing and adult brains [4]. In addition,

fluorescence can also be appliedmanually [5], although it is more tedious. The use of

automated sorting allows for large-scale purification of thousands of neurons in a

single sort. Cells can be labeled by tracer injection [3] or in genetically modifiedmice

[4], which are now available in many forms via the GENSAT project [57]. Micro-

aspiration, on the contrary, involves patching onto individual cells and removing

them one at a time [58]. This process is much more painstaking than flow cytometry

and provides many fewer cells; however, it can provide much more accurate
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