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Preface

Courses in probability and statistics are becoming very popular, both at the college
and at the high school level, primarily because they are crucial in the analysis of data
derived from samples and designed experiments and in statistical process control
in manufacturing. Curiously, while these topics have put statistics at the forefront
of scientific investigation, they are given very little emphasis in textbooks for these
courses.

This book has been written to provide instructors with material on these important
topics so that they may be included in introductory courses. In addition, it provides
instructors with examples that go beyond those commonly used. I have developed
these examples from my own long experience with students and with teachers in
teacher enrichment programs. It is hoped that these examples will be of interest in
themselves, thus increasing student motivation in the subjects and providing topics
students can investigate in individual projects.

Although some of these examples can be regarded as advanced, they are presented
here in ways to make them accessible at the introductory level. Examples include a
problem involving a run of defeats in baseball, a method of selecting the best candidate
from a group of applicants for a position, and an interesting set of problems involving
the waiting time for an event to occur.

Connections with geometry are frequent. The fact that the medians of a triangle
meet at a point becomes an extremely useful fact in the analysis of bivariate data;
problems in conditional probability, often a challenge for students, are solved using
only the area of a rectangle. Graphs allow us to see many solutions visually, and the
computer makes graphic illustrations and heretofore exceedingly difficult computa-
tions quick and easy.

Students searching for topics to investigate will find many examples in this book.
I think then of the book as providing both supplemental applications and novel

explanations of some significant topics, and trust it will prove a useful resource for
both teachers and students.

It is a pleasure to acknowledge the many contributions of Susanne Steitz-Filler,
my editor at John Wiley & Sons. I am most deeply grateful to my wife, Cherry; again,
she has been indispensable.

John Kinney
Colorado Springs

April 2009
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Chapter 1

Probability and Sample
Spaces

CHAPTER OBJECTIVES:

� to introduce the theory of probability
� to introduce sample spaces
� to show connections with geometric series, including a way to add them

without a formula
� to show a use of the Fibonacci sequence
� to use the binomial theorem
� to introduce the basic theorems of probability.

WHY STUDY PROBABILITY?

There are two reasons to study probability. One reason is that this branch of math-
ematics contains many interesting problems, some of which have very surprising
solutions. Part of its fascination is that some problems that appear to be easy are, in
fact, very difficult, whereas some problems that appear to be difficult are, in fact, easy
to solve. We will show examples of each of these types of problems in this book.
Some problems have very beautiful solutions.

The second, and compelling, reason to study probability is that it is the mathe-
matical basis for the statistical analysis of experimental data and the analysis of sample
survey data. Statistics, although relatively new in the history of mathematics, has
become a central part of science. Statistics can tell experimenters what observations
to take so that conclusions to be drawn from the data are as broad as possible. In
sample surveys, statistics tells us how many observations to take (usually, and counter-
intuitively, relatively small samples) and what kinds of conclusions can be taken from
the sample data.

A Probability and Statistics Companion, John J. Kinney
Copyright © 2009 by John Wiley & Sons, Inc.
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2 Chapter 1 Probability and Sample Spaces

Each of these areas of statistics is discussed in this book, but first we must establish
the probabilistic basis for statistics.

Some of the examples at the beginning may appear to have little or no practical
application, but these are needed to establish ideas since understanding problems
involving actual data can be very challenging without doing some simple problems
first.

PROBABILITY

A brief introduction to probability is given here with an emphasis on some unusual
problems to consider for the classroom. We follow this chapter with chapters on
permutations and combinations, conditional probability, geometric probability, and
then with a chapter on random variables and probability distributions.

We begin with a framework for thinking about problems that involve randomness
or chance.

SAMPLE SPACES

An experimenter has four doses of a drug under testing and four doses of an inert
placebo. If the drugs are randomly allocated to eight patients, what is the probability
that the experimental drug is given to the first four patients?

This problem appears to be very difficult. One of the reasons for this is that
we lack a framework in which to think about the problem. Most students lack a
structure for thinking about probability problems in general and so one must be
created. We will see that the problem above is in reality not as difficult as one might
presume.

Probability refers to the relative frequency with which events occur where there
is some element or randomness or chance. We begin by enumerating, or showing,
the set of all the possible outcomes when an experiment involving randomness is
performed. This set is called a sample space.

We will not solve the problem involving the experimental drug here but instead
will show other examples involving a sample space.

EXAMPLE 1.1 A Production Line

Items coming off a production line can be classified as either good (G) or defective (D). We
observe the next item produced.

Here the set of all possible outcomes is

S = {G, D}

since one of these sample points must occur.
Now suppose we inspect the next five items that are produced. There are now 32 sample

points that are shown in Table 1.1.
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Table 1.1

Point Good Runs Point Good Runs

GGGGG 5 1 GGDDD 2 2
GGGGD 4 2 GDGDD 2 4
GGGDG 4 3 DGGDD 2 3
GGDGG 4 3 DGDGD 2 5
GDGGG 4 3 DDGGD 2 3
DGGGG 4 2 DDGDG 2 4
DGGGD 3 3 DDDGG 2 2
DGGDG 3 4 GDDGD 2 4
DGDGG 3 4 GDDDG 2 3
DDGGG 3 2 GDDGD 2 4
GDDGG 3 3 GDDDD 1 2
GDGDG 3 5 DGDDD 1 3
GDGGD 3 4 DDGDD 1 3
GGDDG 3 3 DDDGD 1 3
GGDGD 3 4 DDDDG 1 2
GGGDD 3 2 DDDDD 0 1

We have shown in the second column the number of good items that occur with each
sample point. If we collect these points together we find the distribution of the number of good
items in Table 1.2.

It is interesting to see that these frequencies are exactly those that occur in the binomial
expansion of

25 = (1 + 1)5 = 1 + 5 + 10 + 10 + 5 + 1 = 32

This is not coincidental; we will explain this subsequently.
The sample space also shows the number of runs that occur. A run is a sequence of like

adjacent results of length 1 or more, so the sample point GGDGG contains three runs while
the sample point GDGDD has four runs.

It is also interesting to see, in Table 1.3, the frequencies with which various numbers of
runs occur.

Table 1.2

Good Frequency

0 1
1 5
2 10
3 10
4 5
5 1
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Table 1.3

Runs Frequency

1 2
2 8
3 12
4 8
5 2

We see a pattern but not one as simple as the binomial expansion we saw previously. So
we see that like adjacent results are almost certain to occur somewhere in the sequence that is
the sample point. The mean number of runs is 3. If a group is asked to write down a sequence
of, say, G’s and D’s, they are likely to write down too many runs; like symbols are very likely
to occur together. In a baseball season of 162 games, it is virtually certain that runs of several
wins or losses will occur. These might be noted as remarkable in the press; they are not. We
will explore the topic of runs more thoroughly in Chapter 12.

One usually has a number of choices for the sample space. In this example, we could
choose the sample space that has 32 points or the sample space {0, 1, 2, 3, 4, 5} indicating the
number of good items or the set {1, 2, 3, 4, 5} showing the number of runs. So we have three
possible useful sample spaces.

Is there a “correct” sample space? The answer is “no”. The sample space chosen for an
experiment depends upon the probabilities one wishes to calculate. Very often one sample
space will be much easier to deal with than another for a problem, so alternative sample spaces
provide different ways for viewing the same problem. As we will see, the probabilities assigned
to these sample points are quite different.

We should also note that good and defective items usually do not come off production lines
at random. Items of the same sort are likely to occur together. The frequency of defective items
is usually extremely small, so the sample points are by no means equally likely. We will return
to this when we consider acceptance sampling in Chapter 2 and statistical process control in
Chapter 11. �

EXAMPLE 1.2 Random Arrangements

The numbers 1, 2, 3, and 4 are arranged in a line at random.
The sample space here consists of all the possible orders, as shown below.

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1234∗ 2134∗ 3124∗ 4123

1243∗ 2143 3142 4132∗

1324∗ 2314∗ 3214∗ 4231∗

1342∗ 2341 3241∗ 4213∗

1423∗ 2413 3412 4312

1432∗ 2431∗ 3421 4321

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
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S here contains 24 elements, the number of possible linear orders, or arrangements of
4 distinct items. These arrangements are called permutations. We will consider permutations
more generally in Chapter 2.

A well-known probability problem arises from the above permutations. Suppose the
“natural” order of the four integers is 1234. If the four integers are arranged randomly, how
many of the integers occupy their own place? For example, in the order 3214, the integers 2
and 4 are in their own place. By examining the sample space above, it is easy to count the
permutations in which at least one of the integers is in its own place. These are marked with
an asterisk in S. We find 15 such permutations, so 15/24 = 0.625 of the permutations has at
least one integer in its own place.

Now what happens as we increase the number of integers? This leads to the well-known
“hat check” problem that involves n people who visit a restaurant and each check a hat, receiving
a numbered receipt. Upon leaving, however, the hats are distributed at random. So the hats are
distributed according to a random permutation of the integers 1, 2, . . . , n. What proportion of
the diners gets his own hat?

If there are four diners, we see that 62.5% of the diners receive their own hats. Increasing
the number of diners complicates the problem greatly if one is thinking of listing all the orders
and counting the appropriate orders as we have done here. It is possible, however, to find the
answer without proceeding in this way. We will show this in Chapter 2.

It is perhaps surprising, and counterintuitive, to learn that the proportion for 100 people
differs little from that for 4 people! In fact, the proportion approaches 1 − 1/e = 0.632121
as n increases. (To six decimal places, this is the exact result for 10 diners.) This is our
first, but by no means our last, encounter with e = 2.71828 . . . , the base of the system of
natural logarithms. The occurrence of e in probability, however, has little to do with natural
logarithms. �

The next example also involves e.

EXAMPLE 1.3 Running Sums

A box contains slips of paper numbered 1, 2, and 3, respectively. Slips are drawn one at a time,
replaced, and a cumulative running sum is kept until the sum equals or exceeds 4.

This is an example of a waiting time problem; we wait until an event occurs. The event
can occur in two, three, or four drawings. (It must occur no later than the fourth drawing.)

The sample space is shown in Table 1.4, where n is the number of drawings and the sample
points show the order in which the integers were selected.

Table 1.4

n Orders

(1,3),(3,1),(2,2)
2

(2,3),(3,2),(3,3)
(1,1,2),(1,1,3),(1,2,1),(1,2,2)

3
(1,2,3),(2,1,1),(2,1,2),(2,1,3)

4 (1,1,1,1),(1,1,1,2),(1,1,1,3)
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Table 1.5

n Expected value

1 2.00
2 2.25
3 2.37
4 2.44
5 2.49

We will show later that the expected number of drawings is 2.37.

What happens as the number of slips of paper increases? The approach used here becomes
increasingly difficult. Table 1.5 shows exact results for small values of n, where we draw until
the sum equals or exeeds n + 1.

While the value of n increases, the expected length of the game increases, but at a de-
creasing rate. It is too difficult to show here, but the expected length of the game approaches
e = 2.71828 . . . as n increases.

This does, however, make a very interesting classroom exercise either by generating ran-
dom numbers within the specified range or by a computer simulation. The result will probably
surprise students of calculus and be an interesting introduction to e for other students. �

EXAMPLE 1.4 An Infinite Sample Space

Examples 1.1, 1.2, and 1.3 are examples of finite sample spaces, since they contain a finite
number of elements. We now consider an infinite sample space.

We observe a production line until a defective (D) item appears. The sample space now is
infinite since the event may never occur. The sample space is shown below (where G denotes
a good item).

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

GD

GGD

GGGD

.

.

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We note that S in this case is a countable set, that is, a set that can be put in one-to-one

correspondence with the set of positive integers. Countable sample spaces often behave as if
they were finite. Uncountable infinite sample spaces are also encountered in probability, but
we will not consider these here. �
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EXAMPLE 1.5 Tossing a Coin

We toss a coin five times and record the tosses in order. Since there are two possibilities on
each toss, there are 25 = 32 sample points. A sample space is shown below.

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

TTTTT TTTTH TTTHT TTHTT THTTT HTTTT

HHTTT HTHTT HTTHT TTTHH THTHT TTHHT

HTTHH HTTTH THTTH TTHTH HHHHT THTHH

THHTH THHHT TTHHH HTHTH THHTT HHHTT

HTHHT HHTHT HHHHT HHHTH HHTHH HTHHH

THHHH HHHHH

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is also possible in this example simply to count the number of heads, say, that occur. In

that case, the sample space is

S1 = {0, 1, 2, 3, 4, 5}

Both S and S1 are sets that contain all the possibilities when the experiment is performed
and so are sample spaces. So we see that the sample space is not uniquely defined. Perhaps one
can think of other sets that describe the sample space in this case. �

EXAMPLE 1.6 AP Statistics

A class in advanced placement statistics consists of three juniors (J) and four seniors (S). It is
desired to select a committee of size two. An appropriate sample space is

S = {JJ, JS, SJ, SS}

where we have shown the class of the students selected in order. One might also simply count
the number of juniors on the committee and use the sample space

S1 = {0, 1, 2}

Alternatively, one might consider the individual students selected so that the sample space,
shown below, becomes

S2 = {J1J2, J1J3, J2J3, S1S2, S1S3, S1S4, S2S3, S2S4, S3S4,

J1S1, J1S2, J1S3, J1S4, J2S1, J2S2, J2S3, J2S4, J3S1,

J3S2, J3S3, J3S4}

S2 is as detailed a sample space one can think of, if order of selection is disregarded, so
one might think that these 21 sample points are equally likely to occur provided no priority
is given to any of the particular individuals. So we would expect that each of the points in S2

would occur about 1/21 of the time. We will return to assigning probabilities to the sample
points in S and S2 later in this chapter. �
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EXAMPLE 1.7 Let’s Make a Deal

On the television program Let’s Make a Deal, a contestant is shown three doors, only one of
which hides a valuable prize. The contestant chooses one of the doors and the host then opens
one of the remaining doors to show that it is empty. The host then asks the contestant if she
wishes to change her choice of doors from the one she selected to the remaining door.

Let W denote a door with the prize and E1and E2 the empty doors. Supposing that the
contestant switches choices of doors (which, as we will see in a later chapter, she should do),
and we write the contestant’s initial choice and then the door she finally ends up with, the
sample space is

S = {(W, E1), (W, E2), (E1, W), (E2, W)}
�

EXAMPLE 1.8 A Birthday Problem

A class in calculus has 10 students. We are interested in whether or not at least two of the
students share the same birthday. Here the sample space, showing all possible birthdays, might
consist of components with 10 items each. We can only show part of the sample space since it
contains 36510 = 4.196 9 × 1025 points! Here

S = {(March 10, June 15, April 24, . . .), (May 5, August 2, September 9, . . . .)}
It may seem counterintuitive, but we can calculate the probability that at least two of the

students share the same birthday without enumerating all the points in S. We will return to this
problem later. �

Now we continue to develop the theory of probability.

SOME PROPERTIES OF PROBABILITIES

Any subset of a sample space is called an event. In Example 1.1, the occurrence of
a good item is an event. In Example 1.2, the sample point where the number 3 is to
the left of the number 2 is an event. In Example 1.3, the sample point where the first
defective item occurs in an even number of items is an event. In Example 1.4, the
sample point where exactly four heads occur is an event.

We wish to calculate the relative likelihood, or probability, of these events. If we
try an experiment n times and an event occurs t times, then the relative likelihood
of the event is t/n. We see that relative likelihoods, or probabilities, are numbers
between 0 and 1. If A is an event in a sample space, we write P(A) to denote the
probability of the event A.

Probabilities are governed by these three axioms:

1. P(S) = 1.

2. 0 ≤ P(A) ≤ 1.

3. If events A and B are disjoint, so that A ∩ B = ∅, then
P(A ∪ B) = P(A) + P(B).
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Axioms 1 and 2 are fairly obvious; the probability assigned to the entire sample
space must be 1 since by definition of the sample space some point in the sample
space must occur and the probability of an event must be between 0 and 1. Now if an
event A occurs with probability P(A) and an event B occurs with probability P(B)
and if the events cannot occur together, then the relative frequency with which one
or the other occurs is P(A) + P(B). For example, if a prospective student decides to
attend University A with probability 2/5 and to attend University B with probability
1/5, she will attend one or the other (but not both) with probability 2/5 + 1/5 = 3/5.

This explains Axiom 3.
It is also very useful to consider an event, say A, as being composed of distinct

points, say ai,with probabilities p(ai). By Axiom 3 we can add these individual
probabilities to compute P(A) so

P(A) =
n∑

i=1

p(ai)

It is perhaps easiest to consider a finite sample space, but our conclusions also
apply to a countably infinite sample space. Example 1.4 involved a countable infinite
sample space; we will encounter several more examples of these sample spaces in
Chapter 7.

Disjoint events are also called mutually exclusive events.
Let A denote the points in the sample space where event A does not occur. Note

that A and A are mutually exclusive so

P(S) = P(A ∪ A) = P(A) + P(A) = 1

and so we have

Fact 1. P(A) = 1 − P(A).
Axiom 3 concerns events that are mutually exclusive. What if they are not mutually
exclusive?

Refer to Figure 1.1.

A BA�B

Figure 1.1


