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Preface

This book is intended to be used as the text for a course in combinatorics at the level

of beginning upper division students. It has been shaped by two goals: to make

some fairly deep mathematics accessible to students with a wide range of abilities,

interests, and motivations and to create a pedagogical tool useful to the broad spec-

trum of instructors who bring a variety of perspectives and expectations to such a

course.

The author’s approach to the second goal has been to maximize flexibility.

Following a basic foundation in Chapters 1 and 2, each instructor is free to pick

and choose the most appropriate topics from the remaining four chapters. As sum-

marized in the chart below, Chapters 3 – 6 are completely independent of each other.

Flexibility is further enhanced by optional sections and appendices, by weaving

some topics into the exercise sets of multiple sections, and by identifying various

points of departure from each of the final four chapters. (The price of this flexibility

is some redundancy, e.g., several definitions can be found in more than one place.)

Chapter 5 Chapter 3 Chapter 6Chapter 4

Chapter 2

Chapter 1

Turning to the first goal, students using this book are expected to have been

exposed to, even if they cannot recall them, such notions as equivalence relations,

partial fractions, the Maclaurin series expansion for ex, elementary row operations,

determinants, and matrix inverses. A course designed around this book should have

as specific prerequisites those portions of calculus and linear algebra commonly

found among the lower division requirements for majors in the mathematical and

computer sciences. Beyond these general prerequisites, the last two sections of

Chapter 5 presume the reader to be familiar with the definitions of classical adjoint
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(adjugate) and characteristic roots (eigenvalues) of real matrices, and the first two

sections of Chapter 6 make use of reduced row-echelon form, bases, dimension,

rank, nullity, and orthogonality. (All of these topics are reviewed in Appendix A3.)

Strategies that promote student engagement are a lively writing style, timely and

appropriate examples, interesting historical anecdotes, a variety of exercises (tem-

pered and enlivened by suitable hints and answers), and judicious use of footnotes

and appendices to touch on topics better suited to more advanced students. These

are things about which there is general agreement, at least in principle.

There is less agreement about how to focus student energies on attainable objec-

tives, in part because focusing on some things inevitably means neglecting others. If

the course is approached as a last chance to expose students to this marvelous sub-

ject, it probably will be. If approached more invitingly, as a first course in combi-

natorics, it may be. To give some specific examples, highlighted in this book are

binomial coefficients, Stirling numbers, Bell numbers, and partition numbers. These

topics appear and reappear throughout the text. Beyond reinforcement in the service

of retention, the tactic of overarching themes helps foster an image of combinato-

rics as a unified mathematical discipline. While other celebrated examples, e.g.,

Bernoulli numbers, Catalan numbers, and Fibonacci numbers, are generously repre-

sented, they appear almost entirely in the exercises. For the sake of argument, let us

stipulate that these roles could just as well have been reversed. The issue is that

beginning upper division students cannot be expected to absorb, much less appreci-

ate, all of these special arrays and sequences in a single semester. On the other

hand, the flexibility is there for willing admirers to rescue one or more of these

justly famous combinatorial sequences from the relative obscurity of the exercises.

While the overall framework of the first edition has been retained, everything

else has been revised, corrected, smoothed, or polished. The focus of many sections

has been clarified, e.g., by eliminating peripheral topics or moving them to the exer-

cises. Material new to the second edition includes an optional section on algo-

rithms, several new examples, and many new exercises, some designed to guide

students to discover and prove nontrivial results for themselves. Finally, the section

of hints and answers has been expanded by an order of magnitude.

The material in Chapter 3, Pólya’s theory of enumeration, is typically found clo-

ser to the end of comparable books, perhaps reflecting the notion that it is the last

thing that should be taught in a junior-level course. The author has aspired, not only

to make this theory accessible to students taking a first upper division mathematics

course, but to make it possible for the subject to be addressed right after Chapter 2.

Its placement in the middle of the book is intended to signal that it can be fitted in

there, not that it must be. If it seems desirable to cover some but not all of Chapter 3,

there are many natural places to exit in favor of something else, e.g., after the appli-

cation of Bell numbers to transitivity in Section 3.3, after enumerating the overall

number of color patterns in Section 3.5, after stating Pólya’s theorem in Section 3.6,

or after proving the theorem at the end of Section 3.6.

Optional Sections 1.3 and 1.10 can be omitted with the understanding that exer-

cises in subsequent sections involving probability or algorithms should be assigned

with discretion. With the same caveat, Section 1.4 can be omitted by those not
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intending to go on to Sections 6.1, 6.2, or 6.4. The material in Section 6.3, touching

on mutually orthogonal Latin squares and their connection to finite projective

planes, can be covered independently of Sections 1.4, 6.1, and 6.2.

The book contains much more material then can be covered in a single semester.

Among the possible syllabi for a one semester course are the following:

� Chapters 1, 2, and 4 and Sections 3.1–3.3

� Chapters 1 (omitting Sections 1.3, 1.4, & 1.10), 2, and 3, and Sections 5.1

& 5.2

� Chapters 1 (omitting Sections 1.3 & 1.10), 2, and 6 and Sections 4.1 – 4.4

� Chapters 1 (omitting Sections 1.4 & 1.10) and 2 and Sections 3.1 – 3.3,

4.1 – 4.3, & 6.3

� Chapters 1 (omitting Sections 1.3 & 1.4) and 2 and Sections 4.1 – 4.3, 5.1, &

5.3–5.7

� Chapters 1 (omitting Sections 1.3, 1.4, & 1.10) and 2 and Sections 4.1 – 4.3,

5.1, 5.3–5.5, & 6.3

Many people have contributed observations, suggestions, corrections, and con-

structive criticisms at various stages of this project. Among those deserving special

mention are former students David Abad, Darryl Allen, Steve Baldzikowski, Dale

Baxley, Stanley Cheuk, Marla Dresch, Dane Franchi, Philip Horowitz, Rhian

Merris, Todd Mullanix, Cedide Olcay, Glenn Orr, Hitesh Patel, Margaret Slack,

Rob Smedfjeld, and Masahiro Yamaguchi; sometime collaborators Bob Grone,

Tom Roby, and Bill Watkins; correspondents Mark Hunacek and Gerhard Ringel;

reviewers Rob Beezer, John Emert, Myron Hood, Herbert Kasube, André Kézdy,

Charles Landraitis, John Lawlor, and Wiley editors Heather Bergman, Christine

Punzo, and Steve Quigley. I am especially grateful for the tireless assistance of

Cynthia Johnson and Ken Rebman.

Despite everyone’s best intentions, no book seems complete without some errors.

An up-to-date errata, accessible from the Internet, will be maintained at URL

http://www.sci.csuhayward.edu/�rmerris

Appropriate acknowledgment will be extended to the first person who communi-

cates the specifics of a previously unlisted error to the author, preferably by

e-mail addressed to

merris@csuhayward.edu

RUSSELL MERRISHayward California

Preface xi





1

The Mathematics of Choice

It seems that mathematical ideas are arranged somehow in strata, the ideas in each

stratum being linked by a complex of relations both among themselves and with those

above and below. The lower the stratum, the deeper (and in general the more difficult)

the idea. Thus, the idea of an irrational is deeper than the idea of an integer.

— G. H. Hardy (A Mathematician’s Apology)

Roughly speaking, the first chapter of this book is the top stratum, the surface layer

of combinatorics. Even so, it is far from superficial. While the first main result, the

so-called fundamental counting principle, is nearly self-evident, it has enormous

implications throughout combinatorial enumeration. In the version presented here,

one is faced with a sequence of decisions, each of which involves some number of

choices. It is from situations like this that the chapter derives its name.

To the uninitiated, mathematics may appear to be ‘‘just so many numbers and

formulas.’’ In fact, the numbers and formulas should be regarded as shorthand

notes, summarizing ideas. Some ideas from the first section are summarized by

an algebraic formula for multinomial coefficients. Special cases of these numbers

are addressed from a combinatorial perspective in Section 1.2.

Section 1.3 is an optional discussion of probability theory which can be omitted

if probabilistic exercises in subsequent sections are approached with caution.

Section 1.4 is an optional excursion into the theory of binary codes which can be

omitted by those not planning to visit Chapter 6. Sections 1.3 and 1.4 are partly

motivational, illustrating that even the most basic combinatorial ideas have real-

life applications.

In Section 1.5, ideas behind the formulas for sums of powers of positive integers

motivate the study of relations among binomial coefficients. Choice is again the

topic in Section 1.6, this time with or without replacement, where order does or

doesn’t matter.

To better organize and understand the multinomial theorem from Section 1.7,

one is led to symmetric polynomials and, in Section 1.8, to partitions of n.

Elementary symmetric functions and their association with power sums lie at the

Combinatorics, Second Edition, by Russell Merris.
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heart of Section 1.9. The final section of the chapter is an optional introduction to

algorithms, the flavor of which can be sampled by venturing only as far as

Algorithm 1.10.3. Those desiring not less but more attention to algorithms can

find it in Appendix A2.

1.1. THE FUNDAMENTAL COUNTING PRINCIPLE

How many different four-letter words, including nonsense words, can be produced

by rearranging the letters in LUCK? In the absence of a more inspired approach,

there is always the brute-force strategy: Make a systematic list.

Once we become convinced that Fig. 1.1.1 accounts for every possible rearran-

gement and that no ‘‘word’’ is listed twice, the solution is obtained by counting the

24 words on the list.

While finding the brute-force strategy was effortless, implementing it required

some work. Such an approach may be fine for an isolated problem, the like of which

one does not expect to see again. But, just for the sake of argument, imagine your-

self in the situation of having to solve a great many thinly disguised variations of

this same problem. In that case, it would make sense to invest some effort in finding

a strategy that requires less work to implement. Among the most powerful tools in

this regard is the following commonsense principle.

1.1.1 Fundamental Counting Principle. Consider a (finite) sequence of deci-

sions. Suppose the number of choices for each individual decision is independent

of decisions made previously in the sequence. Then the number of ways to make the

whole sequence of decisions is the product of these numbers of choices.

To state the principle symbolically, suppose ci is the number of choices for deci-

sion i. If, for 1 � i < n, ciþ1 does not depend on which choices are made in

LUCK LUKC LCUK LCKU LKUC LKCU

ULCK ULKC UCLK UCKL UKLC UKCL

CLUK CLKU CULK CUKL CKLU CKUL

KLUC KLCU KULC KUCL KCLU KCUL

Figure 1.1.1. The rearrangements of LUCK.
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decisions 1; . . . ; i, then the number of different ways to make the sequence of

decisions is c1 � c2 � � � � � cn.

Let’s apply this principle to the word problem we just solved. Imagine yourself

in the midst of making the brute-force list. Writing down one of the words involves

a sequence of four decisions. Decision 1 is which of the four letters to write first, so

c1 ¼ 4. (It is no accident that Fig. 1.1.1 consists of four rows!) For each way of

making decision 1, there are c2 ¼ 3 choices for decision 2, namely which letter

to write second. Notice that the specific letters comprising these three choices

depend on how decision 1 was made, but their number does not. That is what is

meant by the number of choices for decision 2 being independent of how the pre-

vious decision is made. Of course, c3 ¼ 2, but what about c4? Facing no alternative,

is it correct to say there is ‘‘no choice’’ for the last decision? If that were literally

true, then c4 would be zero. In fact, c4 ¼ 1. So, by the fundamental counting

principle, the number of ways to make the sequence of decisions, i.e., the number

of words on the final list, is

c1 � c2 � c3 � c4 ¼ 4� 3� 2� 1:

The product n� ðn� 1Þ � ðn� 2Þ � � � � � 2� 1 is commonly written n! and

read n-factorial:	 The number of four-letter words that can be made up by rearrang-

ing the letters in the word LUCK is 4! ¼ 24.

What if the word had been LUCKY? The number of five-letter words that can be

produced by rearranging the letters of the word LUCKY is 5! ¼ 120. A systematic

list might consist of five rows each containing 4! ¼ 24 words.

Suppose the word had been LOOT? How many four-letter words, including non-

sense words, can be constructed by rearranging the letters in LOOT? Why not apply

the fundamental counting principle? Once again, imagine yourself in the midst of

making a brute-force list. Writing down one of the words involves a sequence of

four decisions. Decision 1 is which of the three letters L, O, or T to write first.

This time, c1 ¼ 3. But, what about c2? In this case, the number of choices for deci-

sion 2 depends on how decision 1 was made! If, e.g., L were chosen to be the first

letter, then there would be two choices for the second letter, namely O or T. If, how-

ever, O were chosen first, then there would be three choices for the second decision,

L, (the second) O, or T. Do we take c2 ¼ 2 or c2 ¼ 3? The answer is that the funda-

mental counting principle does not apply to this problem (at least not directly).

The fundamental counting principle applies only when the number of choices for

decision iþ 1 is independent of how the previous i decisions are made.

To enumerate all possible rearrangements of the letters in LOOT, begin by dis-

tinguishing the two O’s. maybe write the word as LOoT. Applying the fundamental

counting principle, we find that there are 4! ¼ 24 different-looking four-letter words

that can be made up from L, O, o, and T.

*The exclamation mark is used, not for emphasis, but because it is a convenient symbol common to most

keyboards.
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Among the words in Fig. 1.1.2 are pairs like OLoT and oLOT, which look dif-

ferent only because the two O’s have been distinguished. In fact, every word in the

list occurs twice, once with ‘‘big O’’ coming before ‘‘little o’’, and once the other

way around. Evidently, the number of different words (with indistinguishable O’s)

that can be produced from the letters in LOOT is not 4! but 4!=2 ¼ 12.

What about TOOT? First write it as TOot. Deduce that in any list of all possible

rearrangements of the letters T, O, o, and t, there would be 4! ¼ 24 different-look-

ing words. Dividing by 2 makes up for the fact that two of the letters are O’s. Divid-

ing by 2 again makes up for the two T’s. The result, 24=ð2� 2Þ ¼ 6, is the number

of different words that can be made up by rearranging the letters in TOOT. Here

they are

TTOO TOTO TOOT OTTO OTOT OOTT

All right, what if the word had been LULL? How many words can be produced

by rearranging the letters in LULL? Is it too early to guess a pattern? Could the

number we’re looking for be 4!=3 ¼ 8? No. It is easy to see that the correct answer

must be 4. Once the position of the letter U is known, the word is completely deter-

mined. Every other position is filled with an L. A complete list is ULLL, LULL,

LLUL, LLLU.

To find out why 4!/3 is wrong, let’s proceed as we did before. Begin by distin-

guishing the three L’s, say L1, L2, and L3. There are 4! different-looking words that

can be made up by rearranging the four letters L1, L2, L3, and U. If we were to make

a list of these 24 words and then erase all the subscripts, how many times would,

say, LLLU appear? The answer to this question can be obtained from the funda-

mental counting principle! There are three decisions: decision 1 has three choices,

namely which of the three L’s to write first. There are two choices for decision 2

(which of the two remaining L’s to write second) and one choice for the third deci-

sion, which L to put last. Once the subscripts are erased, LLLU would appear 3!

times on the list. We should divide 4! ¼ 24, not by 3, but by 3! ¼ 6. Indeed,

4!=3! ¼ 4 is the correct answer.

Whoops! if the answer corresponding to LULL is 4!/3!, why didn’t we get 4!/2!

for the answer to LOOT? In fact, we did: 2! ¼ 2.

Are you ready for MISSISSIPPI? It’s the same problem! If the letters were all

different, the answer would be 11!. Dividing 11! by 4! makes up for the fact that

there are four I’s. Dividing the quotient by another 4! compensates for the four S’s.

LOoT LOTo LoO T LoT O LTOo LToO
OLoT OToL
oLO T oTOL
TLOo

OLTo

oLTO

TLoO

OoLT

oOLT

TOLo

OoTL

oOTL

TOoL

OTLo

oTLO

ToLO ToOL

Figure 1.1.2. Rearrangements of LOoT.
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Dividing that quotient by 2! makes up for the two P’s. In fact, no harm is done if

that quotient is divided by 1! ¼ 1 in honor of the single M. The result is

11!

4! 4! 2! 1!
¼ 34; 650:

(Confirm the arithmetic.) The 11 letters in MISSISSIPPI can be (re)arranged in

34,650 different ways.*

There is a special notation that summarizes the solution to what we might call

the ‘‘MISSISSIPPI problem.’’

1.1.2 Definition. The multinomial coefficient

n

r1; r2; . . . ; rk

� �
¼ n!

r1!r2! � � � rk!
;

where r1 þ r2 þ � � � þ rk ¼ n.

So, ‘‘multinomial coefficient’’ is a name for the answer to the question, how

many n-letter ‘‘words’’ can be assembled using r1 copies of one letter, r2 copies

of a second (different) letter, r3 copies of a third letter, . . . ; and rk copies of a

kth letter?

1.1.3 Example. After cancellation,

9

4; 3; 1; 1

� �
¼ 9� 8� 7� 6� 5� 4� 3� 2� 1

4� 3� 2� 1� 3� 2� 1� 1� 1

¼ 9� 8� 7� 5 ¼ 2520:

Therefore, 2520 different words can be manufactured by rearranging the nine letters

in the word SASSAFRAS. &

In real-life applications, the words need not be assembled from the English

alphabet. Consider, e.g., POSTNET{ barcodes commonly attached to U.S. mail

by the Postal Service. In this scheme, various numerical delivery codesz are repre-

sented by ‘‘words’’ whose letters, or bits, come from the alphabet ;
n o

. Correspond-

ing, e.g., to a ZIPþ 4 code is a 52-bit barcode that begins and ends with . The 50-

bit middle part is partitioned into ten 5-bit zones. The first nine of these zones are

for the digits that comprise the ZIPþ 4 code. The last zone accommodates a parity

* This number is roughly equal to the number of members of the Mathematical Association of America

(MAA), the largest professional organization for mathematicians in the United States.
{ Postal Numeric Encoding Technique.
zThe original five-digit Zoning Improvement Plan (ZIP) code was introduced in 1964; ZIPþ4 codes

followed about 25 years later. The 11-digit Delivery Point Barcode (DPBC) is a more recent variation.
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check digit, chosen so that the sum of all ten digits is a multiple of 10. Finally, each

digit is represented by one of the 5-bit barcodes in Fig. 1.1.3. Consider, e.g., the ZIP

þ4 code 20090-0973, for the Mathematical Association of America. Because the

sum of these digits is 30, the parity check digit is 0. The corresponding 52-bit

word can be found in Fig. 1.1.4.

20090-0973
Figure 1.1.4

We conclude this section with another application of the fundamental counting

principle.

1.1.4 Example. Suppose you wanted to determine the number of positive

integers that exactly divide n ¼ 12. That isn’t much of a problem; there are six

of them, namely, 1, 2, 3, 4, 6, and 12. What about the analogous problem for

n ¼ 360 or for n ¼ 360; 000? Solving even the first of these by brute-force list

making would be a lot of work. Having already found another strategy whose

implementation requires a lot less work, let’s take advantage of it.

Consider 360 ¼ 23 � 32 � 5, for example. If 360 ¼ dq for positive integers d

and q, then, by the uniqueness part of the fundamental theorem of arithmetic, the

prime factors of d, together with the prime factors of q, are precisely the prime

factors of 360, multiplicities included. It follows that the prime factorization of d

must be of the form d ¼ 2a � 3b � 5c, where 0 � a � 3, 0 � b � 2, and 0 � c � 1.

Evidently, there are four choices for a (namely 0, 1, 2, or 3), three choices for b, and

two choices for c. So, the number of possibile d’s is 4� 3� 2 ¼ 24. &

1.1. EXERCISES

1 The Hawaiian alphabet consists of 12 letters, the vowels a, e, i, o, u and the

consonants h, k, l, m, n, p, w.

(a) Show that 20,736 different 4-letter ‘‘words’’ could be constructed using the

12-letter Hawaiian alphabet.

0   =

5   =

1   =

6   =

2   =

7   =

3   =

8   =

4   =

9   =

Figure 1.1.3. POSTNET barcodes.
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(b) Show that 456,976 different 4-letter ‘‘words’’ could be produced using the

26-letter English alphabet.*

(c) How many four-letter ‘‘words’’ can be assembled using the Hawaiian

alphabet if the second and last letters are vowels and the other 2 are

consonants?

(d) How many four-letter ‘‘words’’ can be produced from the Hawaiian

alphabet if the second and last letters are vowels but there are no restrictions

on the other 2 letters?

2 Show that

(a) 3!� 5! ¼ 6!.

(b) 6!� 7! ¼ 10!.

(c) ðnþ 1Þ � ðn!Þ ¼ ðnþ 1Þ!.
(d) n2 ¼ n!½1=ðn� 1Þ!þ 1=ðn� 2Þ!�.
(e) n3 ¼ n!½1=ðn� 1Þ!þ 3=ðn� 2Þ!þ 1=ðn� 3Þ!�.

3 One brand of electric garage door opener permits the owner to select his or her

own electronic ‘‘combination’’ by setting six different switches either in the

‘‘up’’ or the ‘‘down’’ position. How many different combinations are possible?

4 One generation back you have two ancestors, your (biological) parents. Two

generations back you have four ancestors, your grandparents. Estimating 210 as

103, approximately how many ancestors do you have

(a) 20 generations back?

(b) 40 generations back?

(c) In round numbers, what do you estimate is the total population of the

planet?

(d) What’s wrong?

5 Make a list of all the ‘‘words’’ that can be made up by rearranging the letters in

(a) TO. (b) TOO. (c) TWO.

6 Evaluate multinomial coefficient

(a)
6

4; 1; 1

� �
: (b)

6

3; 3

� �
. (c)

6

2; 2; 2

� �
.

*Based on these calculations, might it be reasonable to expect Hawaiian words, on average, to be longer

than their English counterparts? Certainly such a conclusion would be warranted if both languages had the

same vocabulary and both were equally ‘‘efficient’’ in avoiding long words when short ones are available.

How efficient is English? Given that the total number of words defined in a typical ‘‘unabridged

dictionary’’ is at most 350,000, one could, at least in principle, construct a new language with the same

vocabulary as English but in which every word has four letters—and there would be 100,000 words to

spare!
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(d)
6

3; 2; 1

� �
: (e)

6

1; 3; 2

� �
. (f)

6

1; 1; 1; 1; 1; 1

� �
.

7 How many different ‘‘words’’ can be constructed by rearranging the letters in

(a) ALLELE? (b) BANANA? (c) PAPAYA?

(d) BUBBLE? (e) ALABAMA? (f) TENNESSEE?

(g) HALEAKALA? (h) KAMEHAMEHA? (i) MATHEMATICS?

8 Prove that

(a) 1þ 2þ 22 þ 23 þ � � � þ 2n ¼ 2nþ1 � 1.

(b) 1� 1!þ 2� 2!þ 3� 3!þ � � � þ n� n! ¼ ðnþ 1Þ!� 1.

(c) ð2nÞ!=2n is an integer.

9 Show that the barcodes in Fig. 1.1.3 comprise all possible five-letter words

consisting of two ’s and three ’s.

10 Explain how the following barcodes fail the POSTNET standard:

(a)

(b)

(c)

11 ‘‘Read’’ the ZIPþ4 Code

(a)

(b)

12 Given that the first nine zones correspond to the ZIPþ4 delivery code 94542-

2520, determine the parity check digit and the two ‘‘hidden digits’’ in the

62-bit DPBC

(Hint: Do you need to be told that the parity check digit is last?)

13 Write out the 52-bit POSTNET barcode for 20742-2461, the ZIPþ4 code at

the University of Maryland used by the Association for Women in

Mathematics.

14 Write out all 24 divisors of 360. (See Example 1.1.4.)

15 Compute the number of positive integer divisors of

(a) 210. (b) 1010. (c) 1210. (d) 3110.

(e) 360,000. (f) 10!.
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16 Prove that the positive integer n has an odd number of positive-integer divisors

if and only if it is a perfect square.

17 Let D ¼ d1; d2; d3; d4f g and R ¼ r1; r2; r3; r4; r5; r6f g. Compute the number

(a) of different functions f : D! R.

(b) of one-to-one functions f : D! R.

18 The latest automobile license plates issued by the California Department of

Motor Vehicles begin with a single numeric digit, followed by three letters,

followed by three more digits. How many different license ‘‘numbers’’ are

available using this scheme?

19 One brand of padlocks uses combinations consisting of three (not necessarily

different) numbers chosen from 0; 1; 2; . . . ; 39f g. If it takes five seconds to

‘‘dial in’’ a three-number combination, how long would it take to try all

possible combinations?

20 The International Standard Book Number (ISBN) is a 10-digit numerical code

for identifying books. The groupings of the digits (by means of hyphens)

varies from one book to another. The first grouping indicates where the book

was published. In ISBN 0-88175-083-2, the zero shows that the book was

published in the English-speaking world. The code for the Netherlands is ‘‘90’’

as, e.g., in ISBN 90-5699-078-0. Like POSTNET, ISBN employs a check digit

scheme. The first nine digits (ignoring hyphens) are multiplied, respectively,

by 10, 9, 8; . . . ; 2, and the resulting products summed to obtain S. In 0-88175-

083-2, e.g.,

S ¼ 10� 0þ 9� 8þ 8� 8þ 7� 1þ 6� 7þ 5� 5þ 4� 0

þ 3� 8þ 2� 3 ¼ 240:

The last (check) digit, L, is chosen so that Sþ L is a multiple of 11. (In our

example, L ¼ 2 and Sþ L ¼ 242 ¼ 11� 22.)

(a) Show that, when S is divided by 11, the quotient Q and remainder R satisfy

S ¼ 11Qþ R.

(b) Show that L ¼ 11� R. (When R ¼ 1, the check digit is X.)

(c) What is the value of the check digit, L, in ISBN 0-534-95154-L?

(d) Unlike POSTNET, the more sophisticated ISBN system can not

only detect common errors, it can sometimes ‘‘correct’’ them. Suppose,

e.g., that a single digit is wrong in ISBN 90-5599-078-0. Assuming

the check digit is correct, can you identify the position of the erroneous

digit?

(e) Now that you know the position of the (single) erroneous digit in part (d),

can you recover the correct ISBN?

(f) What if it were expected that exactly two digits were wrong in part (d).

Which two digits might they be?
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21 A total of 9! ¼ 362; 880 different nine-letter ‘‘words’’ can be produced by

rearranging the letters in FULBRIGHT. Of these, how many contain the four-

letter sequence GRIT?

22 In how many different ways can eight coins be arranged on an 8� 8

checkerboard so that no two coins lie in the same row or column?

23 If A is a finite set, its cardinality, oðAÞ, is the number of elements in A.

Compute

(a) oðAÞ when A is the set consisting of all five-digit integers, each digit of

which is 1, 2, or 3.

(b) oðBÞ, where B ¼ x 2 A : each of 1; 2; and 3 is among the digits of xf g
and A is the set in part (a).

1.2. PASCAL’S TRIANGLE

Mathematics is the art of giving the same name to different things.

— Henri Poincaré (1854–1912)

In how many different ways can an r-element subset be chosen from an n-element

set S? Denote the number by Cðn; rÞ. Pronounced ‘‘n-choose-r’’, Cðn; rÞ is just a

name for the answer. Let’s find the number represented by this name.

Some facts about Cðn; rÞ are clear right away, e.g., the nature of the elements of

S is immaterial. All that matters is that there are n of them. Because the only way to

choose an n-element subset from S is to choose all of its elements, Cðn; nÞ ¼ 1.

Having n single elements, S has n single-element subsets, i.e., Cðn; 1Þ ¼ n. For

essentially the same reason, Cðn; n� 1Þ ¼ n: A subset of S that contains all but

one element is uniquely determined by the one element that is left out. Indeed,

this idea has a nice generalization. A subset of S that contains all but r elements

is uniquely determined by the r elements that are left out. This natural one-to-

one correspondence between subsets and their complements yields the following

symmetry property:

Cðn; n� rÞ ¼ Cðn; rÞ:

1.2.1 Example. By definition, there are Cð5; 2Þ ways to select two elements

from A;B;C;D;Ef g. One of these corresponds to the two-element subset A;Bf g.
The complement of A;Bf g is C;D;Ef g. This pair is listed first in the following one-

to-one correspondence between two-element subsets and their three-element

complements:
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A;Bf g $ C;D;Ef g; B;Df g $ A;C;Ef g;
A;Cf g $ B;D;Ef g; B;Ef g $ A;C;Df g;
A;Df g $ B;C;Ef g; C;Df g $ A;B;Ef g;
A;Ef g $ B;C;Df g; C;Ef g $ A;B;Df g;
B;Cf g $ A;D;Ef g; D;Ef g $ A;B;Cf g:

By counting these pairs, we find that Cð5; 2Þ ¼ Cð5; 3Þ ¼ 10. &

A special case of symmetry is Cðn; 0Þ ¼ Cðn; nÞ ¼ 1. Given n objects, there is

just one way to reject all of them and, hence, just one way to choose none of them.

What if n ¼ 0? How many ways are there to choose no elements from the empty

set? To avoid a deep philosophical discussion, let us simply adopt as a convention

that Cð0; 0Þ ¼ 1.

A less obvious fact about choosing these numbers is the following.

1.2.2 Theorem (Pascal’s Relation). If 1 � r � n, then

Cðnþ 1; rÞ ¼ Cðn; r � 1Þ þ Cðn; rÞ: ð1:1Þ

Together with Example 1.2.1, Pascal’s relation implies, e.g., that Cð6; 3Þ ¼
Cð5; 2Þ þ Cð5; 3Þ ¼ 20.

Proof. Consider the ðnþ 1Þ-element set x1; x2; . . . ; xn; yf g. Its r-element subsets

can be partitioned into two families, those that contain y and those that do not.

To count the subsets that contain y, simply observe that the remaining r � 1 ele-

ments can be chosen from x1; x2; . . . ; xnf g in Cðn; r � 1Þ ways. The r-element

subsets that do not contain y are precisely the r-element subsets of

x1; x2; . . . ; xnf g, of which there are Cðn; rÞ. &

The proof of Theorem 1.2.2 used another self-evident fact that is worth men-

tioning explicitly. (A much deeper extension of this result will be discussed in

Chapter 2.)

1.2.3 The Second Counting Principle. If a set can be expressed as the disjoint

union of two (or more) subsets, then the number of elements in the set is the sum of

the numbers of elements in the subsets.

So far, we have been viewing Cðn; rÞ as a single number. There are some advan-

tages to looking at these choosing numbers collectively, as in Fig. 1.2.1. The trian-

gular shape of this array is a consequence of not bothering to write 0 ¼ Cðn; rÞ,
r > n. Filling in the entries we know, i.e., Cðn; 0Þ ¼ Cðn; nÞ ¼ 1; Cðn; 1Þ ¼ n ¼
Cðn; n� 1Þ, Cð5; 2Þ ¼ Cð5; 3Þ ¼ 10, and Cð6; 3Þ ¼ 20, we obtain Fig. 1.2.2.
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Given the fourth row of the array (corresponding to n ¼ 3), we can use Pascal’s

relation to compute Cð4; 2Þ ¼ Cð3; 1Þ þ Cð3; 2Þ ¼ 3þ 3 ¼ 6. Similarly, Cð6; 4Þ ¼
Cð6; 2Þ ¼ Cð5; 1Þ þ Cð5; 2Þ ¼ 5þ 10 ¼ 15. Continuing in this way, one row at a

time, we can complete as much of the array as we like.

Following Western tradition, we refer to the array in Fig. 1.2.3 as Pascal’s

triangle.* (Take care not to forget, e.g., that Cð6; 3Þ ¼ 20 appears, not in the third

column of the sixth row, but in the fourth column of the seventh!)

Pascal’s triangle is the source of many interesting identities. One of these con-

cerns the sum of the entries in each row:

1þ 1 ¼ 2;

1þ 2þ 1 ¼ 4;

1þ 3þ 3þ 1 ¼ 8;

1þ 4þ 6þ 4þ 1 ¼ 16;

ð1:2Þ

r 0 1 2 3 4 5 6 7
n
0 C(0,0)
1 C(1,0) C(1,1)
2 C(2,0) C(2,1) C(2,2)
3 C(3,0) C(3,1) C(3,2) C(3,3)
4 C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)
5 C(5,0) C(5,1) C(5,2) C(5,3) C(5,4) C(5,5)
6 C(6,0) C(6,1) C(6,2) C(6,3) C(6,4) C(6,5) C(6,6)
7 C(7,0) C(7,1) C(7,2) C(7,3) C(7,4) C(7,5) C(7,6) C(7,7)

. . .

Figure 1.2.1. Cðn; rÞ.

r 1 2 30 4 5 6 7
n
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 C(4,2) 4 1
5 1 5 10 10 5 1
6 1 6 C(6,2) 20 C(6,4) 6 1
7 1 7 C(7,2) C(7,3) C(7,4) C(7,5) 7 1

. . .

Figure 1.2.2

*After Blaise Pascal (1623–1662), who described it in the book Traité du triangle arithmétique. Rumored

to have been included in a lost mathematical work by Omar Khayyam (ca. 1050–1130), author of the

Rubaiyat, the triangle is also found in surviving works by the Arab astronomer al-Tusi (1265), the Chinese

mathematician Chu Shih-Chieh (1303), and the Hindu writer Narayana Pandita (1365). The first European

author to mention it was Petrus Apianus (1495–1552), who put it on the title page of his 1527 book,

Rechnung.
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and so on. Why should each row sum to a power of 2? In

Cðn; 0Þ þ Cðn; 1Þ þ � � � þ Cðn; nÞ ¼
Xn

r¼0

Cðn; rÞ;

Cðn; 0Þ is the number of subsets of S ¼ x1; x2; . . . ; xnf g that have no elements;

Cðn; 1Þ is the number of one-element subsets of S; Cðn; 2Þ is the number of

two-element subsets, and so on. Evidently, the sum of the numbers in row n of

Pascal’s triangle is the total number of subsets of S (even when n ¼ 0 and

S ¼ [Þ. The empirical evidence from Equations (1.2) suggests that an n-element

set has a total of 2n subsets. How might one go about proving this conjecture?

One way to do it is by mathematical induction. There is, however, another

approach that is both easier and more revealing. Imagine youself in the process

of listing the subsets of S ¼ x1; x2; . . . ; xnf g. Specifying a subset involves a

sequence of decisions. Decision 1 is whether to include x1. There are two choices,

Yes or No. Decision 2, whether to put x2 into the subset, also has two choices.

Indeed, there are two choices for each of the n decisions. So, by the fundamental

counting principle, S has a total of 2� 2� � � � � 2 ¼ 2n subsets.

There is more. Suppose, for example, that n ¼ 9. Consider the sequence of deci-

sions that produces the subset x2; x3; x6; x8f g, a sequence that might be recorded as

NYYNNYNYN. The first letter of this word corresponds to No, as in ‘‘no to x1’’; the

second letter corresponds to Yes, as in ‘‘yes to x2’’; because x3 is in the subset, the

third letter is Y; and so on for each of the nine letters. Similarly, x1; x2; x3f g cor-

responds to the nine-leter word YYYNNNNNN. In general, there is a one-to-one

correspondence between subsets of fx1; x2; . . . ; xng, and n-letter words assembled

from the alphabet N;Yf g. Moreover, in this correspondence, r-element subsets

correspond to words with r Y’s and n� r N’s.

We seem to have discovered a new way to think about Cðn; rÞ. It is the number

of n-letter words that can be produced by (re)arranging r Y’s and n� r N’s. This

interpretation can be verified directly. An n-letter word consists of n spaces, or loca-

tions, occupied by letters. Each of the words we are discussing is completely deter-

mined once the r locations of the Y’s have been chosen (the remaining n� r spaces

being occupied by N’s).

n
r 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

1

3

6

10

15

21

1

4

10

20

35

1

5

15

35

1

6

21

1

7 1
. . .

Figure 1.2.3. Pascal’s triangle.

1.2. Pascal’s Triangle 13



The significance of this new perspective is that we know how to count the num-

ber of n-letter words with r Y’s and n� r N’s. That’s the MISSISSIPPI problem!

The answer is multinomial coefficient
�

n
r;n�r

�
. Evidently,

Cðn; rÞ ¼ n

r; n� r

� �
¼ n!

r!ðn� rÞ! :

For things to work out properly when r ¼ 0 and r ¼ n, we need to adopt another

convention. Define 0! ¼ 1. (So, 0! is not equal to the nonsensical 0 � ð0� 1Þ�
ð0� 2Þ � � � � � 1:Þ

It is common in the mathematical literature to write
�

n
r

�
instead of

�
n

r;n�r

�
, one

justification being that the information conveyed by ‘‘n� r’’ is redundant. It can be

computed from n and r. The same thing could, of course, be said about any multi-

nomial coefficient. The last number in the second row is always redundant. So, that

particular argument is not especially compelling. The honest reason for writing
�

n
r

�
is tradition.

We now have two ways to look at Cðn; rÞ ¼
�

n
r

�
. One is what we might call the

combinatorial definition: n-choose-r is the number of ways to choose r things from

a collection of n things. The alternative, what we might call the algebraic definition,

is

Cðn; rÞ ¼ n!

r!ðn� rÞ! :

Don’t make the mistake of asuming, just because it is more familiar, that the

algebraic definition will always be easiest. (Try giving an algebraic proof of the

identity
Pn

r¼0 Cðn; rÞ ¼ 2n.) Some applications are easier to approach using alge-

braic methods, while the combinatorial definition is easier for others. Only by

becoming familiar with both will you be in a position to choose the easiest

approach in every situation!

1.2.4 Example. In the basic version of poker, each player is dealt five cards (as

in Fig. 1.2.4) from a standard 52-card deck (no joker). How many different five-card

poker hands are there? Because someone (in a fair game it might be Lady Luck)

chooses five cards from the deck, the answer is Cð52; 5Þ. The ways to find the num-

ber behind this name are: (1) Make an exhaustive list of all possible hands, (2) work

out 52 rows of Pascal’s triangle, or (3) use the algebraic definition

Cð52; 5Þ ¼ 52!

5! 47!

¼ 52� 51� 50� 49� 48� 47!

5� 4� 3� 2� 1� 47!

¼ 52� 51� 50� 49� 48

5� 4� 3� 2� 1

¼ 52� 51� 10� 49� 2

¼ 2; 598; 960: &
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1.2.5 Example. The game of bridge uses the same 52 cards as poker.* The

number of different 13-card bridge hands is

Cð52; 13Þ ¼ 52!

13! 39!

¼ 52� 51� � � � � 40� 39!

13!� 39!

¼ 52� 51� � � � � 40

13!
;

about 635,000,000,000. &

It may surprise you to learn that Cð52; 13Þ is so much larger than Cð52; 5Þ. On

the other hand, it does seem clear from Fig. 1.2.3 that the numbers in each row of

Pascal’s triangle increase, from left to right, up to the middle of the row and then

decrease from the middle to the right-hand end. Rows for which this property holds

are said to be unimodal.

1.2.6 Theorem. The rows of Pascal’s triangle are unimodal.

*The actual, physical cards are typically slimmer to accommodate the larger, 13-card hands.

Figure 1.2.4. A five-card poker hand.
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Proof. If n > 2r þ 1, the ratio

Cðn; r þ 1Þ
Cðn; rÞ ¼ r!ðn� rÞ!

ðr þ 1Þ!ðn� r � 1Þ! ¼
n� r

r þ 1
> 1;

implying that Cðn; r þ 1Þ > Cðn; rÞ. &

1.2. EXERCISES

1 Compute

(a) Cð7; 4Þ. (b) Cð10; 5Þ. (c) Cð12; 4Þ.
(d) Cð101; 2Þ. (e) Cð101; 99Þ. (f) Cð12; 6Þ.

2 If n and r are integers satisfying n > r � 0, prove that

(a) ðr þ 1ÞCðn; r þ 1Þ ¼ ðn� rÞCðn; rÞ.
(b) ðr þ 1ÞCðn; r þ 1Þ ¼ nCðn� 1; rÞ.

3 Write out rows 7 through 10 of Pascal’s triangle and confirm that the sum of

the numbers in the 10th row is 210 ¼ 1024.

4 Consider the sequence of numbers 0, 0, 1, 3, 6, 10, 15, . . . from the third

ðr ¼ 2Þ column of Pascal’s triangle. Starting with n ¼ 0, the nth term of the

sequence is an ¼ Cðn; 2Þ. Prove that, for all n � 0,

(a) anþ1 � an ¼ n. (b) anþ1 þ an ¼ n2.

5 Consider the sequence b0; b1; b2; b3; . . . ; where bn ¼ Cðn; 3Þ. Prove that, for

all n � 0,

(a) bnþ1 � bn ¼ Cðn; 2Þ.
(b) bnþ2 � bn is a perfect square.

6 Poker is sometimes played with a joker. How many different five-card poker

hands can be ‘‘chosen’’ from a deck of 53 cards?

7 Phrobana is a game played with a deck of 48 cards (no aces). How many

different 12-card phrobana hands are there?

8 Give the inductive proof that an n-element set has 2n subsets.

9 Let ri be a positive integer, 1 � i � k. If n ¼ r1 þ r2 þ � � � þ rk, prove that

n

r1; r2; . . . ; rk

� �
¼

n� 1

r1 � 1; r2; . . . ; rk

� �
þ

n� 1

r1; r2 � 1; . . . ; rk

� �
þ � � �

þ
n� 1

r1; r2; . . . ; rk � 1

� �
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(a) using algebraic arguments.

(b) using combinatorial arguments.

10 Suppose n, k, and r are integers that satisfy n � k � r � 0 and k > 0. Prove

that

(a) Cðn; kÞCðk; rÞ ¼ Cðn; rÞCðn� r; k � rÞ.
(b) Cðn; kÞCðk; rÞ ¼ Cðn; k � rÞCðn� k þ r; rÞ.
(c)

Pn
j¼ 0 Cðn; jÞCð j; rÞ ¼ Cðn; rÞ2n�r.

(d)
Pn

j¼ k ð�1Þjþk
Cðn; jÞ ¼ Cðn� 1; k � 1Þ.

11 Prove that
Pn

r¼ 0 Cðn; rÞ
	 
2¼P2n

s¼ 0 Cð2n; sÞ.

12 Prove that Cð2n; nÞ, n > 0, is always even.

13 Probably first studied by Leonhard Euler (1707–1783), the Catalan sequence*

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862; . . . is defined by cn ¼ Cð2n; nÞ=
ðnþ 1Þ, n � 0. Confirm that the Catalan numbers satisfy

(a) c2 ¼ 2c1. (b) c3 ¼ 3c2 � c1.

(c) c4 ¼ 4c3 � 3c2. (d) c5 ¼ 5c4 � 6c3 þ c2.

(e) c6 ¼ 6c5 � 10c4 þ 4c3. (f) c7 ¼ 7c6 � 15c5 þ 10c4 � c3.

(g) Speculate about the general form of these equations.

(h) Prove or disprove your speculations from part (g).

14 Show that the Catalan numbers (Exercise 13) satisfy

(a) cn ¼ Cð2n� 1; n� 1Þ � Cð2n� 1; nþ 1Þ.
(b) cn ¼ Cð2n; nÞ � Cð2n; n� 1Þ.
(c) cnþ1 ¼ 4nþ 2

nþ 2 cn.

15 One way to illustrate an r-element subset S of 1; 2; . . . ; nf g is this: Let P0 be

the origin of the xy-plane. Setting x0 ¼ y0 ¼ 0, define

Pk ¼ ðxk; ykÞ ¼
ðxk�1 þ 1; yk�1Þ if k 2 S;
ðxk�1; yk�1 þ 1Þ if k 62 S:

�

Finally, connect successive points by unit segments (either horizontal or

vertical) to form a ‘‘path’’. Figure 1.2.5 illustrates the path corresponding to

S ¼ 3; 4; 6; 8f g and n ¼ 8.

*Euler was so prolific that more than one topic has come to be named for the first person to work on it after

Euler, in this case, Eugene Catalan (1814–1894).
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P0

P1

P2

P3 P4

P6

P8

P7

P5

Figure 1.2.5

(a) Illustrate E ¼ 2; 4; 6; 8f g when n ¼ 8.

(b) Illustrate E ¼ 2; 4; 6; 8f g when n ¼ 9.

(c) Illustrate D ¼ 1; 3; 5; 7f g when n ¼ 8.

(d) Show that Pn ¼ ðr; n� rÞ when S is an r-element set.

(e) A lattice path of length n in the xy-plane begins at the origin and consists

of n unit ‘‘steps’’ each of which is either up or to the right. If r of the steps

are to the right and s ¼ n� r of them are up, the lattice path terminates at

the point ðr; sÞ. How many different lattice paths terminate at ðr; sÞ?

16 Define c0 ¼ 1 and let cn be the number of lattice paths of length 2n

(Exercise 15) that terminate at ðn; nÞ and never rise above the line y ¼ x,

i.e., such that xk � yk for each point Pk ¼ xk; ykð Þ. Show that

(a) c1 ¼ 1; c2 ¼ 2, and c3 ¼ 5.

(b) cnþ1 ¼
Pn

r¼0 crcn�r. (Hint: Lattice paths ‘‘touch’’ the line y ¼ x for the

last time at the point ðn; nÞ. Count those whose next-to-last touch is at the

point ðr; rÞ).
(c) cn is the nth Catalan number of Exercises 13–14, n � 1.

17 Let X and Y be disjoint sets containing n and m elements, respectively. In how

many different ways can an ðr þ sÞ-element subset Z be chosen from X [ Y if

r of its elements must come from X and s of them from Y?

18 Packing for a vacation, a young man decides to take 3 long-sleeve shirts,

4 short-sleeve shirts, and 2 pairs of pants. If he owns 16 long-sleeve shirts,

20 short-sleeve shirts, and 13 pairs of pants, in how many different ways can

he pack for the trip?
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n
r 0 1 2 3 4 5 6 7

0 C(0,0)

1 C(1,0) C(1,1)

2 C(2,0) C(2,1) C(2,2)

3 C(3,0) C(3,1) C(3,2)
+

C(3,3)

4 C(4,0) C(4,1)
+

C(4,2) C(4,3) C(4,4)

5 C(5,0)
+

C(5,1) C(5,2) C(5,3) C(5,4) C(5,5)

6 C(6,0) C(6,1) C(6,2) C(6,3) C(6,4) C(6,5) C(6,6)

7 C(7,0) C(7,1) C(7,2) C(7,3) C(7,4) C(7,5) C(7,6) C(7,7)

. . .

Figure 1.2.6

19 Suppose n is a positive integer and let k ¼ bn=2c, the greatest integer not larger

than n=2. Define

Fn ¼ Cðn; 0Þ þ Cðn� 1; 1Þ þ Cðn� 2; 2Þ þ � � � þ Cðn� k; kÞ:

Starting with n ¼ 0, the sequence Fnf g is

1; 1; 2; 3; 5; 8; 13; . . . ;

where, e.g., the 7th number in the sequence, F6 ¼ 13, is computed by

summing the boldface numbers in Fig. 1.2.6.*

(a) Compute F7 directly from the definition.

(b) Prove the recurrence Fnþ2 ¼ Fnþ1 þ Fn, n � 0.

(c) Compute F7 using part (b) and the initial fragment of the sequence given

above.

(d) Prove that
Pn

i¼0 Fi ¼ Fnþ2 � 1.

20 C. A. Tovey used the Fibonacci sequence (Exercise 19) to prove that infinitely

many pairs ðn; kÞ solve the equation Cðn; kÞ ¼ Cðn� 1; k þ 1Þ. The first pair is

Cð2; 0Þ ¼ Cð1; 1Þ. Find the second. (Hint: n < 20. Your solution need not

make use of the Fibonacci sequence.)

21 The Buda side of the Danube is hilly and suburban while the Pest side is flat

and urban. In short, Budapest is a divided city. Following the creation of a new

commission on culture, suppose 6 candidates from Pest and 4 from Buda

volunteer to serve. In how many ways can the mayor choose a 5-member

commission.

*It was the French number theorist François Édouard Anatole Lucas (1842–1891) who named these

numbers after Leonardo of Pisa (ca. 1180–1250), a man also known as Fibonacci.
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(a) from the 10 candidates?

(b) if proportional representation dictates that 3 members come from Pest and

2 from Buda?

22 H. B. Mann and D. Shanks discovered a criterion for primality in terms of

Pascal’s triangle: Shift each of the nþ 1 entries in row n to the right so that

they begin in column 2n. Circle the entries in row n that are multiples of n.

Then r is prime if and only if all the entries in column r have been circled.

Columns 0–11 are shown in Fig. 1.2.7. Continue the figure down to row 9 and

out to column 20.

2

1

n
0 1 2 3 4 5 6 7 8 9 1110r

1 1

21 1

31

41

51

46

3 13

4

5

Figure 1.2.7

23 The superintendent of the Hardluck Elementary School District suggests that

the Board of Education meet a $5 million budget deficit by raising average

class sizes, from 30 to 36 students, a 20% increase. A district teacher objects,

pointing out that if the proposal is adopted, the potential for a pair of

classmates to get into trouble will increase by 45%. What is the teacher

talking about?

24 Strictly speaking, Theorem 1.2.6 establishes only half of the unimodality

property. Prove the other half.

25 If n and r are nonnegative integers and x is an indeterminate, define

Kðn; rÞ ¼ ð1þ xÞnxr.

(a) Show that Kðnþ 1; rÞ ¼ Kðn; rÞ þ Kðn; r þ 1Þ.
(b) Compare and contrast the identity in part (a) with Pascal’s relation.

(c) Since part (a) is a polynomial identity, it holds when numbers are

substituted for x. Let kðn; rÞ be the value of Kðn; rÞ when x ¼ 2 and

exhibit the numbers kðn; rÞ, 0 � n, r � 4, in a 5� 5 array, the rows of

which are indexed by n and the columns by r. (Hint: Visually confirm that

kðnþ 1; rÞ ¼ kðn; rÞ þ kðn; r þ 1Þ, 0 � n, r � 3.)
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26 Let S be an n-element set, where n � 1. If A is a subset of S, denote by oðAÞ
the cardinality of (number of elements in) A. Say that A is odd (even) if oðAÞ is

odd (even). Prove that the number of odd subsets of S is equal to the number of

its even subsets.

27 Show that there are exactly seven different ways to factor n ¼ 63;000 as a

product of two relatively prime integers, each greater than one.

28 Suppose n ¼ pa1

1 pa2

2 � � � par
r , where p1; p2; . . . ; pr are distinct primes. Prove that

there are exactly 2r�1 � 1 different ways to factor n as a product of two

relatively prime integers, each greater than one.

*1.3. ELEMENTARY PROBABILITY

The theory of probabilities is basically only common sense reduced to calculation; it

makes us appreciate with precision what reasonable minds feel by a kind of instinct,

often being unable to account for it. . . . It is remarkable that [this] science, which

began with the consideration of games of chance, should have become the most impor-

tant object of human knowledge.

— Pierre Simon, Marquis de Laplace (1749–1827)

Elementary probability theory begins with the consideration of D equally likely

‘‘events’’ (or ‘‘outcomes’’). If N of these are ‘‘noteworthy’’, then the probability

of a noteworthy event is the fraction N=D. Maybe a brown paper bag contains a

dozen jelly beans, say, 1 red, 2 orange, 2 blue, 3 green, and 4 purple. If a jelly

bean is chosen at random from the bag, the probability that it will be blue is
2

12
¼ 1

6
; the probability that it will be green is 3

12
¼ 1

4
; the probability that it will

be blue or green is ð2þ 3Þ=12 ¼ 5
12

; and the probability that it will be blue and

green is 0
12
¼ 0.

Dice are commonly associated with games of chance. In a dice game, one is

typically interested only in the numbers that rise to the top. If a single die is rolled,

there are just six outcomes; if the die is ‘‘fair’’, each of them is equally likely. In

computing the probability, say, of rolling a number greater than 4 with a single fair

die, the denominator is D ¼ 6. Since there are N ¼ 2 noteworthy outcomes, namely

5 and 6, the probability we want is P ¼ 2
6
¼ 1

3
.

The situation is more complicated when two dice are rolled. If all we care about

is their sum, then there are 11 possible outcomes, anything from 2 to 12. But, the

probability of rolling a sum, say, of 7 is not 1
11

because these 11 outcomes are not

equally likely. To help facilitate the discussion, assume that one of the dice is green

and the other is red. Each time the dice are rolled, Lady Luck makes two decisions,

choosing a number for the green die, and one for the red. Since there are 6 choices

for each of them, the two decisions can be made in any one of 62 ¼ 36 ways. If both

dice are fair, then each of these 36 outcomes is equally likely. Glancing at Fig. 1.3.1,
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one sees that there are six ways the dice can sum to 7, namely, a green 1 and a red 6,

a green 2 and a red 5, a green 3 and a red 4, and so on. So, the probability of rolling

a (sum of ) 7 is not 1
11

but 6
36
¼ 1

6
:

1.3.1 Example. Denote by PðnÞ the probability of rolling (a sum of ) n with

two fair dice. Using Fig. 1.3.1, it is easy to see that Pð2Þ ¼ 1
36
¼ Pð12Þ,

Pð3Þ ¼ 2
36
¼ 1

18
¼ Pð11Þ, Pð4Þ ¼ 3

36
¼ 1

12
¼ Pð10Þ, and so on. What about Pð1Þ?

Since 1 is not among the outcomes, Pð1Þ ¼ 0
36
¼ 0. In fact, if P is some probability

(any probability at all), then 0 � P � 1. &

1.3.2 Example. A popular game at charity fundraisers is Chuck-a-Luck. The

apparatus for the game consists of three dice housed in an hourglass-shaped

cage. Once the patrons have placed their bets, the operator turns the cage and the

dice roll to the bottom. If none of the dice comes up 1, the bets are lost. Otherwise,

the operator matches, doubles, or triples each wager depending on the number of

‘‘aces’’ (1’s) showing on the three dice.

Let’s compute probabilities for various numbers of 1’s. By the fundamental

counting principle, there are 63 ¼ 216 possible outcomes (all of which are equally

Figure 1.3.1. The 36 outcomes of rolling two dice.
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likely if the dice are fair). Of these 216 outcomes, only one consists of three 1’s.

Thus, the probability that the bets will have to be tripled is 1
216

.

In how many ways can two 1’s come up? Think of it as a sequence of two deci-

sions. The first is which die should produce a number different from 1. The second

is what number should appear on that die. There are three choices for the first deci-

sion and five for the second. So, there are 3� 5 ¼ 15 ways for the three dice to

produce exactly two 1’s. The probability that the bets will have to be doubled is 15
216

.

What about a single ace? This case can be approached as a sequence of three

decisions. Decision 1 is which die should produce the 1 (three choices). The second

decision is what number should appear on the second die (five choices, anything but

1). The third decision is the number on the third die (also five choices). Evidently,

there are 3� 5� 5 ¼ 75 ways to get exactly one ace. So far, we have accounted for

1þ 15þ 75 ¼ 91 of the 216 possible outcomes. (In other words, the probability of

getting at least one ace is 91
216

.) In the remaining 216� 91 ¼ 125 outcomes, three

are no 1’s at all. These results are tabulated in Fig. 1.3.2. &

Some things, like determining which team kicks off to start a football game, are

decided by tossing a coin. A fair coin is one in which each of the two possible out-

comes, heads or tails, is equally likely. When a fair coin is tossed, the probability

that it will come up heads is 1
2
.

Suppose four (fair) coins are tossed. What is the probability that half of them

will be heads and half tails? Is it obvious that the answer is 3
8
? Once again, Lady

Luck has a sequence of decisions to make, this time four of them. Since there are

two choices for each decision, D ¼ 24. With the noteworthies in boldface, these 16

outcomes are arrayed in Fig. 1.3.3. By inspection, N ¼ 6, so the probability we seek

is 6
16
¼ 3

8
.

HHHH HTHH THHH TTHH

HHHT HTHT THHT TTHT

HHTH HTTH THTH TTTH

HHTT HTTT THTT T T T T

Figure 1.3.3

1.3.3 Example. If 10 (fair) coins are tossed, what is the probability that half of

them will be heads and half tails? Ten decisions, each with two choices, yields

D ¼ 210 ¼ 1024. To compute the numerator, imagine a systematic list analogous

to Fig. 1.3.3. In the case of 10 coins, the noteworthy outcomes correspond to

Number of 1’s 0 1 2 3

Probability
125 75 15 1

216 216 216 216

Figure 1.3.2. Chuck-a-Luck probabilities.
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10-letter ‘‘words’’ with five H’s and five T ’s, so N ¼
�

10
5;5Þ ¼ Cð10; 5Þ ¼ 252, and

the desired probability is 252
1024

_¼ 0:246. More generally, if n coins are tossed, the

probability that exactly r of them will come up heads is Cðn; rÞ=2n.

What about the probability that at most r of them will come up heads? That’s

easy enough: P ¼ N=2n, where N ¼ Nðn; rÞ ¼ Cðn; 0Þ þ Cðn; 1Þ þ � � � þ Cðn; rÞ
is the number of n-letter words that can be assembled from the alphabet H; Tf g
and that contain at most r H’s. &

Here is a different kind of problem: Suppose two fair coins are tossed, say a

dime and a quarter. If you are told (only) that one of them is heads, what is the

probability that the other one is also heads? (Don’t just guess, think about it.)

May we assume, without loss of generality, that the dime is heads? If so, because

the quarter has a head of its own, so to speak, the answer should be 1
2
. To see why

this is wrong, consider the equally likely outcomes when two fair coins are tossed,

namely, HH, HT , TH, and TT . If all we know is that one (at least) of the coins is

heads, then TT is eliminated. Since the remaining three possibilities are still equally

likely, D ¼ 3, and the answer is 1
3
.

There are two ‘‘morals’’ here. One is that the most reliable guide to navigating

probability theory is equal likelihood. The other is that finding a correct answer

often depends on having a precise understanding of the question, and that requires

precise language.

1.3.4 Definition. A nonempty finite set E of equally likely outcomes is called a

sample space. The number of elements in E is denoted oðEÞ. For any subset A of E,

the probability of A is PðAÞ ¼ oðAÞ=oðEÞ. If B is a subset of E, then PðA or BÞ ¼
PðA [ BÞ, and PðA and BÞ ¼ PðA \ BÞ.

In mathematical writing, an unqualified ‘‘or’’ is inclusive, as in ‘‘A or B or both’’.*

1.3.5 Theorem. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, then

PðA or BÞ ¼ PðAÞ þ PðBÞ � PðA and BÞ:

Proof. The sum oðAÞ þ oðBÞ counts all the elements of A and all the elements of

B. It even counts some elements twice, namely those in A \ B. Subtracting oðA \ BÞ
compensates for this double counting and yields

oðA [ BÞ ¼ oðAÞ þ oðBÞ � oðA \ BÞ:

(Notice that this formula generalizes the second counting principle; it is a

special case of the even more general principle of inclusion and exclusion, to be

discussed in Chapter 2.) It remains to divide both sides by oðEÞ and use

Definition 1.3.4.

&

*The exclusive ‘‘or’’ can be expressed using phrases like ‘‘either A or B’’ or ‘‘A or B but not both’’.
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1.3.6 Corollary. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, then PðA or BÞ � PðAÞ þ PðBÞ with equality if and only if A and B

are disjoint.

Proof. PðA and BÞ¼ 0 if and only if oðA \ BÞ¼ 0 if and only if A \ B ¼ [.

&

A special case of this corollary involves the complement, Ac ¼ x 2 E : x 62 Af g.
Since A [ Ac ¼ E and A \ Ac ¼ [, oðAÞ þ oðAcÞ ¼ oðEÞ. Dividing both sides of

this equation by oðEÞ yields the useful identity

PðAÞ þ PðAcÞ ¼ 1:

1.3.7 Example. Suppose two fair dice are rolled, say a red one and a green one.

What is the probability of rolling a 3 on the red die, call it a red 3, or a green 2?

Let’s abbreviate by setting R3 ¼ red 3 and G2 ¼ green 2 so that, e.g.,

PðR3Þ ¼ 1
6
¼ PðG2Þ.

Solution 1: When both dice are rolled, only one of the 62 ¼ 36 equally likely

outcomes corresponds to R3 and G2, so PðR3 and G2Þ ¼ 1
36

. Thus, by Theorem

1.3.5,

PðR3 or G2Þ ¼ PðR3Þ þ PðG2Þ � PðR3 and G2Þ
¼ 1

6
þ 1

6
� 1

36

¼ 11
36
:

Solution 2: Let Pc be the complementary probability that neither R3 nor G2

occurs. Then Pc ¼ N=D, where D ¼ 36. The evaluation of N can be viewed in

terms of a sequence of two decisions. There are five choices for the ‘‘red’’ decision,

anything but number 3, and five for the ‘‘green’’ one, anything but number 2.

Hence, N ¼ 5� 5 ¼ 25, and Pc ¼ 25
36

, so the probability we want is

PðR3 or G2Þ ¼ 1� Pc ¼ 11
36
:

&

1.3.8 Example. Suppose a single (fair) die is rolled twice. What is the probabil-

ity that the first roll is a 3 or the second roll is a 2? Solution: 11
36

. This problem is

equivalent to the one in Example 1.3.7. &

1.3.9 Example. Suppose a single (fair) die is rolled twice. What is the probabil-

ity of getting a 3 or a 2?

Solution 1: Of the 6� 6 ¼ 36 equally likely outcomes, 4� 4 ¼ 16 involve

neither a 3 nor a 2. The complementary probability is Pð2 or 3Þ ¼ 1� 16
36
¼ 5

9
.
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Solution 2: There are two ways to roll a 3 and a 2; either the 3 comes first fol-

lowed by the 2 or the other way around. So, Pð3 and 2Þ ¼ 2
36
¼ 1

18
. Using Theorem

1.3.5, Pð3 or 2Þ ¼ 1
6
þ 1

6
� 1

18
¼ 5

18
.

Whoops! Since 5
9
6¼ 5

18
, one (at least) of these ‘‘solutions’’ is incorrect. The prob-

ability computed in solution 1 is greater than 1
2
, which seems too large. On the other

hand, it is not hard to spot an error in solution 2, namely, the incorrect application of

Theorem 1.3.5. The calculation Pð3Þ ¼ 1
6

would be valid had the die been rolled

only once. For this problem, the correct interpretation of Pð3Þ is the probability

that the first roll is 3 or the second roll is 3. That should be identical to the prob-

ability determined in Example 1.3.8. (Why?) Using the (correct) values

Pð3Þ ¼ Pð2Þ ¼ 11
36

in solution 2, we obtain Pð2 or 3Þ ¼ 11
36
þ 11

36
� 1

18
¼ 5

9
.

The next time you get a chance, roll a couple of dice and see if you can avoid

both 2’s and 3’s more than 44 times out of 99. &

Another approach to PðA and BÞ emerges from the notion of ‘‘conditional

probability’’.

1.3.10 Definition. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, the conditional probability

PðBjAÞ ¼ PðBÞ if A ¼ [;
oðA \ BÞ=oðAÞ otherwise:

�

When A is not empty, PðBjAÞ may be viewed as the probability of B given that A

is certain (e.g., known already to have occurred). The problem of tossing two fair

coins, a dime and a quarter, involved conditional probabilities. If h and t represent

heads and tails, respectively, for the dime and H and T for the quarter, then the

sample space E ¼ hH; hT ; tH; tTf g. If A ¼ hH; hT ; tHf g and B ¼ hHf g, then

PðBjAÞ ¼ 1
3

is the probability that both coins are heads given that one of them is.

If C ¼ hH; hTf g, then PðBjCÞ ¼ 1
2

is the probability that both coins are heads given

that the dime is.

1.3.11 Theorem. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, then

PðA and BÞ ¼ PðAÞPðBjAÞ:

Proof. Let D ¼ oðEÞ, a ¼ oðAÞ, and N ¼ oðA \ BÞ. If a ¼ 0, there is nothing to

prove. Otherwise, PðAÞ ¼ a=D, PðBjAÞ ¼ N=a, and PðAÞPðBjAÞ ¼ ða=DÞðN=aÞ ¼
N=D ¼ PðA and BÞ. &

1.3.12 Corollary (Bayes’s* First Rule). Let E be a fixed but arbitrary sample

space. If A and B are subsets of E, then PðAÞPðBjAÞ ¼ PðBÞPðAjBÞ.

Proof. Because PðA and BÞ ¼ PðB and AÞ, the result is immediate from Theorem

1.3.11. &
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