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Preface 

Half a century ago, John von Neumann created the digital computer as a 
device for carrying out simulations. Although the computer revolution has 
advanced to the point where 500 MHz boxes are available for under $2000, 
the simulation revolution is still in its infancy. 

The situation where we can produce a probability profile of an investment 
strategy based on, say, 10,000 simulations with inputs the parameters of 
that strategy is still more talked about than achieved. The same can be 
said for a stochastic analysis of a political/military stratem in t,he Balkans. 
Stochastic models for a proposed new transportation system in a large city 
are still not well developed. Cancer profiles for individual patients based 
on their immune systems and the likely presence of metastases at. the time 
of diagnosis are not readily available. Stochastic profiles of an epidemic 
vectored into the United States by a hostile power, based on the modality of 
its introduction and transmission pathways, are undeveloped. Particularly 
in simulation, software vision has lagged hardware by decades. A major 
function of this book is to indicate possibilitia for synergy between data, 
models and the digital computer. 

What is simulation? Presumably a simple question, but the scientific 
community is far from a consensus as to the answer. A government adminis- 
trator might decide to %imulate" the national effect of a voucher system by 
taking a single school district and implementing a voucher system there. To 
a geologist, a simulation might be a three-dimensional differential-integral 
equation dynamic (hence, four-dimensional) model of implementation of 
tertiary recovery for an oil field. To a numerical analyst, a simulation 
might be an approximation-theoretic pointwise function evaluator of the 
geologist's dynamic model. To a combat theorist, a simulation might con- 
sist of use of the Lanchester equations to conjecture as to the result of a 
battIe under varying conditions. To a nonparametric bootstrapper, simu- 
lation might consist in resampling to obtain the 95% confidence interval of 
the correlation coefficient between two variables. 

While all of the above may be legitimate definitions of simulation, we 
shall concentrate on the notion of a simulation being the generation of 
pseudodata on the basis of a model, a database, or the use of a model in 
the light of a database. Some refer to this as stochastic simulation, since 
such pseudodata tends t.0 change from run to run. 

xi 
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A model? What is that? Again, the consensus does not exist. We shall 
take a model to be a mathematical summary of our best guess as to what is 
going on in a part of the real world. We should not regard a model as reality, 
or even as a stochastic perturbation of reality, only as our current best guess 
as to a portion of reality. We should not be surprised if today’s model is 
considered rather poor ten years hence. Some people quite mistakenly try 
to build the biggest model they can. It is not unusual for models of really 
big systems (such as the world) to be completely artificial. (Club of Rome 
models come to mind.) 

In attempting to come up with one big all-encompassing theory of ev- 
erything, one loses a great deal. Compartmentalization is clearly one way 
out of the morass. We can try for a theory that works under very specific 
conditions. A reasonable way to proceed. But like all good ideas, we might 
carry it to an extreme. Billy takes a test while carrying a good luck charm 
in his pocket and makes 100. He takes another test without the charm and 
scores 50. A third test with the charm yields another 100. Inference: the 
good luck charm produced better scores for Billy than he would otherwise 
have made, at least on the days when the tests were taken. An extreme 
case of nominalist logic, but the point is clear enough. Ad hoc’ery leads 
us very quickly to magic rather than to science. Pre-Socratic modalities of 
thought emerge, and we in trouble. 

It is a hallmark of Western thinking that events indexed on time and 
faithfully recorded give us a database on which inferences might be made. 
On the other hand, the postmodernist view holds that the recorder of the 
events creates, more or less arbitrarily, his or her own history, that there is 
no reality behind the recording. The recording is the history. The recorder 
has created his or her own reality. If databases are just a reflection of 
the prejudices of the recorder, the modeler simply concatenates his or her 
prejudices with those of the creator of the database to give US, well, nothing 
very useful. 

Models are generally oversimplifications, at best. Perhaps it would be 
better to get the modeler out of the loop. Among those who would like 
to free us from the bondage of models is University of Southern California 
Professor Bart Kosko, a recognized leader in neural networks and fuzzy 
thinking. In F u z y  Thinking , he writes: 

... linear systems are the toy problems of science and yet most 
scientists treat red systems as if they were linear. That’s be- 
cause we know so little math and our brains are so small and 
we guess so poorly at the cold gray unknown nonlinear world 
out there. .... Fuzzy systems let us guess at the nonlinear world 
and yet do not make us write down a math model of the world. 
.... The technical term for it is model-free estimation or approx- 
imation. ... 

The key is no math model. Model-free estimation. Model 
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freedom. If you have a math modeI, fine. But where do you 
find one? You find good math models only in textbooks and 
classrooms. They are toy answers to toy problems. The real 
world pays no attention to most of them. So how do you know 
how well your math guess fits Nature’s process? You don’t and 
you never can. You have to ask God or No God or Nature 
and no one knows how to do that. Short of that, we guess and 
test and guess again. Scientists often respect math more than 
truth and they do not mention that a math guess is no less a 
guess than a guess in everyday language. At least a word guess 
does not claim to be more than a guess and gains nothing from 
the fact that we have stated it in words. A math guess has 
more dignity the less math you know. Most math guesses are 
contrived and brittle and change in big ways if you change only 
a small value in them. Man has walked Earth for at least a 
million years and has just started to think in math and is not 
good at it. h z z y  systems let us model systems in words. 

We may well agree with the basic modeling problem mentioned by Kosko, 
although not at all with his “solution” of it. It is true that in modeling sys- 
tems mathematically, people tend to be oriented toward models with whose 
mathematical complexities they can cope. For example, we can postulate 
that a tumor will grow, moment by moment, in proportion to its mass. And 
a further postulate can be made that the probability of a metastasis being 
generated by a tumor in a short period of time is proportional to the mass 
of the tumor. Another postulate can be made that the probability that a 
tumor will be discovered in an instant of time is proportional to the mass 
of the tumor. These postulates represent quite a simplesounding model 
for the progression of cancer in a patient. But when one starts looking 
at the times of discovery of primary and secondary tumors and using this 
information to estimate the parameters of the simple-sounding model, it is 
discovered that getting anything like a likelihood function (a general first 
step in classical parameter estimation) is a hopelessly complicated busi- 
ness. The reason for the problem is that the axioms are made in a forward 
temporal direction, whereas the likelihood function is computed looking 
backward in time to the possible causes of generation of particular tumors. 
Such complexities have caused most biostatisticians to work with linear 
aggregate models, such as the survival times of patients taking drug A as 
opposed to drug B. Such analyses have not worked very well, and it is the 
failure of such simpleminded linearizations, in part, which have made the 
War on Cancer a series of losing engagements. 

But to use a fuzzy system or a neural net as a way out of the linear 
oversimplification is to replace fiction with magic. We really need to know 
how cancer grows and spreads. Some glorified smoothing interpolator is 
unlikely to get us out of the soup. Later, we shall show how simulation 
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allows us to perform parameter estimation without false linear simplifica- 
tions and without an uninformative hodgepodge of neural networks. The 
SIMEST paradigm will enable us to use postulated models in such a way 
that backwards-in-time mathematical operations can be eliminated in favor 
of a large number of forward simulations. 

Nearly seven hundred years ago, that most famous of nominalists, William 
of Occam, gave a pronunciamento which can be viewed as a prototype of 
that of Kosko: 

Nonetheless, one should know that there are two kinds of 
universal. One kind is naturally universal, in that it is evi- 
dently a sign naturally predictable of many things, in a fashion 
analogous to the way smoke naturally signifies fire, .... Such a 
universal is nothing except a notion of the mind, and so no sub- 
stance outside the mind nor any accident outside the mind is 
such a universal .... The other kind of universal is so by estab- 
lished convention. In this way a word that is produced, which 
is really one quality, is a universal, because clearly it is a sign es- 
tablished by convention for the signifying of many things. Hence 
just as a word is said to be common, even so it can be said to 
be universal; but this does not obtain from the nature of the 
thing, but only from agreed upon convention.' 

Nominalism is at odds with the reaIist (Aristotelian) view of science as 
an evolutionary search for better and better descriptions of objective real- 
ity. One current fashion in the history of science is to look for fundamental 
change points in the dominant scientific paradigm. These change points are 
essentially a political phenomenon. This was the view of the late Thomas 
Kuhn. For example, the Newtonian relationship between force and momen- 
tum is given by 

which is normally written as 

where F is force, m is mass, v is velocity and a is acceleration. But fol- 
lowing the discovery of Einstein that mass changes as the speed of the 
object increases, we are to view Newton's representation as hopelessly out 
of date. We reject Newtonianism in favor of Einsteinism and go on about 
our business anxiously awaiting the advent of the new evangel which will 
trash EinsTein. 

In this book, we take the more classical notion that Einstein improved 
Newton's model rather than making it fit for the dustbin. Consider that 

T h e  Sum of All Logic translation by Philtheus Boehner, O.F.M. 
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Einstein has 
(3) 

m0 

d- 
where c is the speed of light. We can then take this expression for rn and 
substitute it back in (1) to give 

Beyond that, the Newtonian model gives essentially the same results as 
that of Einstein for bodies not moving at light speed. Anybody who be- 
lieves that Newtonian physics has outlived i ts  usefulness has not examined 
the way mechanics is taught by contemporary departments of physics and 
mechanical engineering. So we shall take the view of evolution rather than 
revolution in model progression. It is the view of the author that simula- 
tion is simply a computer-facilitated implementation of the model-building 
process (a.k.a the scientific method). 

One might well ask why the necessity for this philosophical digression. 
Let us just start simulating already. Fair enough. But simulate what? And 
to what purpose? A great deai of the literature in simulation is oriented to 
a kind of idealized mathematical formalism. For example, there are many 
hundreds of papers written on the subject of the generation of random 
numbers. And very important many of them are. But this can lead us to 
a kind of formalist copout. If we dwell excessively on an algorithm that 
yields a string of random numbers which satisfy some kind of arbitrary set 
of desiderata, we can get lost in the comfortable realm of mathematical the- 
orem statement and proof. All very tempting, but we shall not travel very 
far down that road. This is a statistics book, and statisticians should be 
concerned with a reality beyond data-free formatism. That is why statistics 
is not simply a subset of mathematics. 

Our major interest in this book will be using simulation as a computa- 
tional aid in dealing with and creating models of reality. We will spend a 
bit of time in going through the philosophy of quasirandom number gen- 
erators and we will go through some of the old Monte Carlo utilization of 
simulation in, for example, the approximation of definite integrals. But our 
main goal will be to use simulation as an integral part of the interaction 
between data and models which are approximations to the real systems 
that generated them. 

A goodly amount of time will be employed in resampling procedures 
where we use resampling from a data set (or, in t.he case of SIMDAT, from 
the nonparametric density estimator of the density based on the data set) 
to test some hypothesis and/or obtain some notion of the variability of the 
data. But much more important will be the use of simulation as an integral 
part of the modeling process itself. As an example of the latter, let us 
consider a couple of “toy problems.” 
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We recall the quiz show with master of ceremonies Monty Hall. Three 
doors were given, say A ,  B, and C. Behind one of these was a big prize. 
Behind the others, nothing splendid at all. The contestant would choose 
one of the doors, say A,  and then the MC would tell him one of the other 
doors, say C, behind which the splendid prize did not exist. Then the 
contestant was given the option of sticking with his original choice A or 
switching to B. The quiz show continued for some years in this manner 
with contestants going both ways, so it is clear that the general consensus 
was that there was no systematic preference for either strategy. Let us go 
through a standard Bayesian argument to support this view. 

Let us compute the probability of winning of the contestant who “stands 
pat,” i.e., he chose A originally; he learned that the prize was not behind 
door C, yet he decided to stick with his original choice of door A. Let us 
compute the probability that he will win given that Cis not the prize door. 

P( A n C“) 
P(C.1 

P(A}CC)  = 

The reasoning seerns to be correct. The prior probability here is P ( A )  = 
1/3. If A is the prize door, the chance that Cis not the prize door is 1 [i.e., 
P(CCIA) = 11. Finally, the prior probability that C will not be the prize 
door is 2/3 [i.e., P(Cc) = 2/31. Furthermore, once we have been told that 
C is not the prize door, then P(AICc) + P(B1C“) = 1, so P(BICC) must 
equal .50 as well. A formal argument would seem to support the popular 
wisdom that it makes no difference, over the long haul, whether contestants 
stand pat or switch to B. 

But, so the story goes, somebody went back over the records of the 
contestants and found that those who switched, on the average, did better 
than those who stood pat. In fact, the switchers seemed to win about two 
thirds of the time. Could this be due to the laws of probability, or was 
something else afoot? Here is a case where the simulations consisted not of 
computer simulations, but actual implementations of the game. 

To help us out, let us write a simple simulation program. 

Set counter WA equal to zero 
Set counter WSwitch equal to zero 
Repeat 10,000 times 
Generate U, a uniform random number between 0 and 1 
If U is greater than .33333, go to * 
Let WA = WA+l 
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Go to ** 
* WSwitch = WSwitch + 1 
** Continue 
WA = WA/lOOOO 
WSwitch = WSwitch/lOOOO 
Print WA and WSwitch 
End 

The argument here is straightforward. We can associate a random num- 
ber less than ,33333 wit.h a win for A .  If the prize is behind door A ,  the 
standpat strategy always produces a win. On the other hand, a number 
greater than .33333 will be associated with a win for B or C. The MC will 
tell us which of these two doors is not the prize door, so if we switch to the 
other, we always win. A simulation of 10,000 trials gave a .3328 probability 
of winning by the standpat strategy, as opposed to a .6672 probability of 
winning by the switch strategy. 

Indeed, once one writes down this simulation, the problem is essentially 
solved without any simulations. It simply becomes transparent when we 
flowchart the program. But then, since we do not accept postmodernist and 
fuzziest notions of the possibility of logical inconsistency, we must needs 
see where we went wrong (and where the man in the street must have 
empirically gone wrong). Our writing down of Bayes’ theorem is correct. 
The problem comes in the evaluation of P(C“1.4). We should not interpret 
this to mean that C is not the prize door when A is the prize door. Rather, 
it is the probability that the MC will tell us that of the two non-A doors, 
C is not the prize door. He must pick one of the two B and C with equal 
probability. Hence P(CC(A) equals 1/2, rather than unity. Making this 
correction, we get the probability of winning using the standpat algorithm 
to be 113, as it should be. 

Next, let us relate the Monty Hall problem to one of antiquity. Below, 
we consider one of the many “prisoner’s dilemma” problems. A prisoner is 
one of three condemned to be beheaded on the morrow. But the Sultan, 
in his mercy, has decided to pardon one of the prisoners. Prisoner A is a 
mathematician. He wishes to improve his chance of not getting the chop. 
He knows that the chief jaiier knows who is to be spared but has been 
warned by the Sultan that if he tells any of the prisoners who is to be 
spared, then he, the jailer, will be disemboweled. The mathematician calls 
the jailer aside and offers him 100 drachmas to tell him, not the name of 
the fortunate, but the name of one of those, other than, possibly, himself, 
who is to be executed. The jailer agrees and tells A that C is one of 
the condemned. A heaves a sigh of relief, since he now believes that his 
probability of being spared has increased from one-third to two-thirds. Let 
us note, however: that A actually is in the position of the standpat player 
in the Monte Hall example. His probability of survival is actually one- 
third. On the other hand, if B happens to overhear the exchange between 
A and his jailer, he does have some reason for relative optimism, since he 



xviii PREFACE 

stands in the position of the switch player in the Monty Hall example. It 
is, naturally, an easy matter to write down a simulation program for the 
prisoner’s dilemma situation, but the analogue between the two situations 
is actually an isomorphism (i.e., the problems are the same precisely. 

Let us note, here, the fact that the construction of a simulation is, clearly, 
a kind of modeling process. It will generally cause us to analogize a tem- 
poral process, since computer programs consist of instructions which take 
place in a sequence. A number of the differential and integral equations of 
physics were natural summarizing models for the precomputer age. m i -  
cally, the closed-form solution for fixed parameter values is not available. 
We must be satisfied with pointwise approximations to the value of the 
dependent variable vector y in terms of the independent variable vector z. 
It turns out that in a large number of cases we can approximately carry 
out this approximation by a simulation, which frequently is based on the 
microaxioms that gave rise to the differential-integral equation summary in 
the first place. 

Of greater interest still is the situation where we have the postulates 
for our model (and hence, in principle, the model itself) and a database 
and wish to estimate the underlying parameters. According to classical 
paradigms, in order to estimate these parameters, we must obtain some- 
thing like a likelihood function. But this is generally a hopelessly compii- 
cated task. The SIMEST paradigm, which we examine, alIows us to go 
directly from the postulates and the data to the estimation process itself. 
This is achieved stepwise by creating a large class of pseudodata predicated 
on the assumption of a particular (vector) parameter value. By comparing 
the pseudodata with the actual data, we have a natural means of moving to 
a good estimate of the characterizing parameter. This is a temporally for- 
ward estimation procedure, as opposed to the classical estimation strategies 
which look backwards in time from the data points. 

Another use of simulation will be in the realm of scenario analysis. We 
shall, for example, examine some of the current models for movement of 
stock and derivative prices and analyze some pricing strategies in the light of 
changes made in these models. This is a speculative use of simulation. We 
are not using data intimately. Rather, we wish to ask ‘’what if?” questions 
and use simulation to give some clue as to feasible answers. 

As we have noted, there axe many who, discouraged by the results of 
the use of bad models, would like to dispense with models altogether. And 
simulation can frequently be put to good use in dealing with model-free 
analyses. The basic problem of model-free analysis is that it can work well 
when one is interpolating within a database, but it generally decays rapidly 
when we start extrapolating. To make matters even more difficult, for data 
of high dimensionality, even interpolation within the convex hull of the 
database is, in fact, a problem of extrapolation, since the data will generally 
be distributed in clusterlike clumps separated by substantial empty space. 

Simulation is also used by those who are happy to assume the correct- 
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ness of a model and get on with the business: say, of obtaining pointwise 
approximations of a dependent variable. To these, the formalism is the 
matter of interest, and they are happy to produce theorems and tables to 
their purpose. 

While conceding that from time to time, both the nominalist and idealist 
approaches listed above have their uses, we shall in this book, be concerned 
largely with what would appear to be a middle ground: Namely, we shall 
usudly be working with models, but with a view that the models themselves 
must be improved whenever it is feasible to do so. To us, simulation will 
provide a device for working with models, testing models, and building 
new models. So then, to us, simulation will be a kind of paradigm for 
realistic evolutionary modeling. At present, simulation is used by many as 
an adjuvant for dealing with old modeling techniques, say, the numerical 
approximation to pointwise evaluation of a differential equation. In the 
future, the a.uthor believes that simulation-based modeling will be at least 
as important as some of the older summarization models, such as differential 
equations. One will go directly from postulates and data to estimation and 
approximation without intervening classical summarization models. This 
would amount to something resembling a paradigm shift in the sense of 
Kuhn. It is a very big deal indeed to be able to say: “If our assumptions are 
correct, then here is a program for simulating a host of possible realizations 
with a variety of frequencies.” At present, most simulations still consist of 
assists in dealing with older modeling summarizations. That is changing. 
To a laxge extent, the future of science will belong to those willing to make 
the shift to simulation-based modeling. This book has been written with 
such readers in mind. 
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Chapter 1 

The Generation of 
Itandom Numbers 

1.1 Introduction 

There are many views as to what constitutes simulation. To the statistician, 
simulation generally involves randomness as a key component. Engineers, 
on the other hand, tend to consider simulation as a deterministic process. 
If, for example, an engineer wishes to simulate tertiary recovery from an oil 
field, he or she will probably program a finite element approximation to a 
system of partial differential equations. If a statistician attacked the same 
problem, he or she might use a random walk algorithm for approximating 
the pointwise solution to the system of differential equations. 

In the broadest sense, we may regard the simulation of a process as the 
examination of any emulating process simpler than that under consider- 
ation. The examination will frequently involve a mathematrcat model, an 
oversimplified mathematical analogue of the real-world situation of interest. 
The related simpler process might be very close to the more complex pro- 
cess of interest. For example, we might simulate the success of a proposed 
chain of 50 grocery stores by actually building a single store and seeing how 
it progressed. At a far different level of abstraction, we might attempt to 
describe the functioning of the chain by writing down a series of equations 
to approximate the functioning of each store, together with other equations 
to approximate the local economies, and so on. It is this second level of 
abstraction that will be of more interest to us. 

It is to be noted that the major component of simulation is neither 
stochasticity nor determinism, but rather, analogy. Needless to say, our 
visions of reality are always other than reality itself. When we see a forest, 
it is really a biochemical reaction in our minds that produces something to 

1 
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which we relate the notion of forest. When we talk of the real world, we 
really talk of perceptions of that world which are clearly other than that 
world but are (hopefully) in strong correlation with it. So, in a very real 
sense, analogy is "hardwired" into the human cognitive system. But to 
carry analogy beyond that which it is instinctive to do involves a learning 
process more associated with some cultures than with others. And it is the 
ability of the human intellect to construct analogies that makes modern 
science and technology a possibility. Interestingly, like so many other im- 
portant advances in human thought, the flowering of reasoning by analogy 
started with Socrates, Plato, and Aristotle. Analogy is so much a part of 
Western thinking that we tend to take it for granted. In simulation we 
attempt to enhance our abilities to analogize to a level consistent with the 
tools at our disposal. 

The modem digital computer, at least at the present time, is not partic- 
ularly apt at analogue formulations. However, the rapid digital computing 
power of the computer has enormous power as a device complementary to 
the human ability to reason by analogy. Naturally, during most of the sci- 
entific epoch, the digital computer simply did not exist. Accordingly, it is 
not surprising that most of science is still oriented to methodologies in the 
formulation of which the computer did not play an intimate part. 

The inventor of the digital computer, John von Neumann, created the 
device to perform something like random quadrature rather than to change 
fundamentally the precomputer methodology of modeling and analogy. And 
indeed, the utilization of the computer by von Neumann was oriented to- 
ward being a fast calculator with a large memory. This kind of mindset, 
which is a carryover of modeling techniques in the precomputer age, led to 
something rather different from what I call simulation, namely the Monte 
Carlo method. 

According to this methodology, we essentially start to work on the ab- 
straction of a process (through differential equations and the like) as though 
we had no computer. Then, when we find difficulties in obtaining a c l d  
form solution, we use the computer as a means of facilitating pointwise 
function evaluation. 

One conceptual difference between simulation and Monte Carlo in this 
book will be that simulation will be closer to the model of the system 
underlying the data. However, there is no clear demarcation between the 
Monte Carlo method on the one hand and simulation on the other. As we 
shall see later, a fuller utilization of the computer frequently enables us to 
dispense with abstraction strategies suitable to a precomputer age. 
As an example of the fundamental change that the modern digital com- 

puter makes in the modeling process, let us consider a situation where we 
wish to examine particles emanating from a source in the interior of an ir- 
regular and heterogeneous medium. The particles interact with the medium 
by collisions with it and travel in an essentially random fashion. 

The classical approach for a regular and symmetrically homogeneous 
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medium would be to model the aggregate process by looking at differential 
equations that track the average behavior of the microaxioms governing the 
progress of the particles. For an irregular and nonsymmetrically homoge- 
neous medium, the Monte Carlo investigator would attempt to use random 
walk simulations of these differential equations with pointwise change ef- 
fects for the medium. In other words, the Monte Carlo approach would be 
to start with a precomputer age methodology and use the computer as a 
means for random walk implementations of that methodology. 

If we wish to use the power of the digital computer more fully, we can go 
immediately from the microaxioms to random tracking of a large number 
of the particles. It is true that even with current computer technology, 
we will still not be in a position to deal with 1OI6 particles. However, 
a simulation dealing with lo5 particles is both manageable and probably 
sufficient to make very reasonable conjectures about the aggregate of the 
10l6 particle system. In distinguishing between simulation and the Monte 
Carlo method, we will, in the former, be attempting the modeling in the 
light of the existence of a computer that may take us very close indeed 
to a precise emulation of the process under consideration. Clearly, then, 
simulation is a moving target. The faster the computer and the larger the 
storage, the closer we can come to a true simulation. 

1.2 The Generation of Random Uniform 
Variates 

Many sixnulatiom will involve some aspect of randomness. Theorem 1.1 
shows that at least at the one-dimensional level, randomness can be dealt 
with if only we can find a random number generator from the uniform 
distribution on the unit interval U(Oll). 

Theorem 1.1. Let X be a continuous random variable with distribution 
function F (-) [i.e ., let F ( z )  = P(X 5 x)]. Consider the random variable 
Y = F ( z ) .  Let the distribution function of Y be given by 
G(y) = P(Y 5 y). Then Y is distributed as U(0,l). 

Proof 

G(y) = P(Y 5 y) = P ( F ( z )  5 y) = P(z 5 F - ’ ( y ) )  = y (1.1) 
since P ( s  5 F-’(y)) is simply the probability that X is less than or equal 
to that value of X than which X is less y of the time. This is precisely the 
distribution function of the uniform distribution on the unit interval. This 
proves the theorem. 0 

For the simulator, Theorem 1.1 has importance rivaling that of the central 
limit theorem, for it says that all that is required to obtain a satisfactory 
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random number generator for any continuous one-dimensional random vari- 
able, for which we have a means of inverting the distribution function, is 
a good U(0,l) generator. This is conceptually quite easy. For example, we 
might have an electrical oscillator in which a wavefront travels at essentially 
the speed of light in a linear medium calibrated from 0 to 1 in increments 
of, say, lo-''. Then, we simply sense the generator at random times that 
an observer will pick. Aside from the obvious fact that such a procedure 
would be prohibitively costly, there seems to be a real problem with paying 
the observer and then reading the numbers into the computer, Of course, 
once it were done, we could use table look-up forever, being sure never to 
repeat a sequence of numbers once used. 

Realizing the necessity for a generator that might be employed by the 
computer itself, without the necessity of human intervention except, per- 
haps, at the start of the generation process, von Neumann developed such a 
scheme. He dubbed the generator he developed the midsquan: method To 
carry out such a procedure, we take a number of, say, four digits, square it, 
and then take the middle four digits, which are used for the generator for 
the next step. If using base 10 numbering, we simply put a decimal before 
the fist of the four digits. Let us show how this works with the simple 
exampIe beIow. 

We start with Xo = 3333. Squaring this, we obtain 11108889. Taking 
the middle four digits, we have XI = 1088. Squaring 1088 we have 1183744. 
This gives X2 = 8374, and so on. If we are using base 10, this gives us the 
string of supposed U(0 , l )  random variates. 

The midsquare method is highly dependent on the starting value. De- 
pending on the seed Xo, the generator may be terrible or satisfactory. Once 
we obtain a small value such as 0002, we will be stuck in a rut of small values 
until we climb out of the well. Moreover, as soon as we obtain 0, we have 
to obtain a new starter, since 0 is not changed by the midsquare operation. 

Examinations of the midsquare method may be rather complicated math- 
ematidly if we are to determine, for example, the cycle length, the length 
of the string at which it starts to repeat itself. Some have opined that since 
this generator was used in rather crucial computations concerning nuclear 
reactions, civilization is fortunate that no catastrophe came about aa a re- 
sult of its use. As a matter of fact, for reasonable selections of seeds (i.e., 
starting values), the procedure can be quite satisfactory for most applic& 
tions. It is, however, the specificity of behavior based on starting values 
that makes the method rather unpopular. 

The midsquare method embodies more generally many of the attributes 
of random number generators on the digital computer. First, it is to be 
noted that such generators are not really random, since when we see part 
of the string, given the particular algorithm for a generator, we can produce 
the rest of the string. We might decide to introduce a kind of randomness 
by using the time on a computer clock as a seed value. However, it is fairly 
clear that we need to obtain generators realizing that the very nature of 
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realistic generation of random numbers on the digital computer will produce 
problems. Attempting to wish these problems away by introducing factors 
that are random simply because we do not know what they are is probably a 
bad idea. Knuth [7] gives an example of an extremely complex generator of 
this sort that would appear to give very random-looking strings of random 
numbers, but in fact easily gets into the rut of reproducing the seed value 
forever. 

The maxim of dealing with the devil we know dominates the practical 
creation of random number generators. 'elk need to obtain algorithms which 
are conceptually simple so that we can readily discern their shortcomings. 
The most widely used of the current, random number generation algorithms 
is the wngruential random number generator. The apparent inventor of 
the congruential random number generation scheme is D.H. Lehmer, who 
introduced the algorithm in 1951 [lo]. 

First, we note how incredibly simple the scheme is. Starting with a seed 
X O ,  we build up the succession of “pseudorandom” numbers via the rule 

Xn+l = a x n  + b(mod m). (1 -2) 

One of the considerations given with such a scheme is the length of the 
string length of pseudorandom numbers before we have the first repeat. 
Clearly, by the very nature of the algorithm, with its one-step memory, 
once we have a repeat, the new sequence will repeat itself exactly. If our 
only concern is the length of the cycle before a repeat, a very easy fix is 
available. Choosing a = b = 1 and Xu = 0,  we have for any n: 

XI = 1 
x, = 2 

x, = 3 (1.3) 
... . . .  

x,-1 = ?a-1. 

Seemingly, then, we have achieved something really spectacular, for we 
have a string that does not repeat itself until we get to an arbitrary length 
of m. Of course, the string bears little resemblance to a random string, 
since it marches straight up to rn and then collapses back to 1. We have to 
come up with a generator such that any substring of any length appears to 
be random. Let u13 consider what happens when we choose m = 90, a = 5, 
and b = 0. Then, if we start with X ,  = 7, we have 

XI = 35 

Xz  = 85 

X3 = 65 
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x, = 55 

x5 = 5 

X ,  = 25 
x7 = 35. 

It could be argued that this string appears random, but clearly its cycle 
length of six is fax too short for most purposes. Our task will be to find a 
long cycle length that also appears random. The rather simple proof of the 
following theorem is due to Morgan [lo]. 
Theorem 1.2. Let Xn+l = ax, + b(m0d m). 
Let rn = Z k ,  a = 4c + 1, 6 be odd. 
Then the string of pseudorandom numbers 50 generated has cycle length 
m = Z k .  
Proof 

Without loss of generality, we can take XO = YO = 0. 
Then 

Let Y,+l = uY, + b. 

Y* = aYo+b=b  

Y2 = a b + b = b ( l + a )  

y3 = aY2+b=ab(a+a)+6=b( l+a+a2)  (1-5) 
... ... 
Y, = b(1 + a + a2 + a3 + . . . + an-'). 

We observe that Xi = Y, - hlZk. 
Now suppose that X, = X j  for i > j. 
We wish to show that i - j 2 2 k .  
Now, - y j  = 4.3 + a>+' + ... + a*-'). 
If X, = Xj, then 
bajWi-j = baj(l+ a + a2 + ... + ~ ' - 3 - 1 )  = h22&, 
where W, = 1 + a + u2 + ... + an-' for n 2 1. 
To prove the theorem, we must show that Wi-j cannot equal an integer 
multiple of 2k if i - j  < 2k, that is, 
W,-l # h3Zk for i - j < 2 k .  
We shall suppose first of all that a - j is odd 
Then i - j = 2t + 1 for t 2 0. 
(This is the place we use the fact that a = 4c + 1.) 
W 2 t  = (1 -a2t) / ( 1 -a) = [( 1 + 4 ~ ) ~ ~  - I]/ (44 = [( 1 + 4 ~ ) ~  - 11 [( l t - 4 ~ ) ~  f 11 / ( 4 ~ )  

= [(I + 4C)t + 11 ~ ~ = 1 ( 4 C ) ' - '  ( : 11. 
(:)* 

[ 
But 1 + (1 + 4 ~ ) ~  = 2 + 4~ C4,1(4~)'-1 
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SO, W2t+l = W 2 ,  + a2t is odd, since a. is odd. 
Hence, if i - j  is odd, then W& # h32&, since V{-,- is odd. 
Next we wish to consider the case where i - j is  even. 
If i - j is even, then there exists an s such that i - j = aY, for some odd 
integer a. 

I$'*+ = wa29 

= 1 + a + . . . + aa2'-'-1 + aa2'-' + . . . + aa2*-1 

(1 + a + a2 + ... + aazS-'-1) = ~ ~ p - i +  

Similarly, we have 

Continuing the decomposition, 

w. . 
2-3 W&-a (1 + *a2L-2 ) (1 -I- F-') 

Recalling that 
J 

1 + (4c+ l>j = 2 + 4 c c  ( 5 ) (4c)', 
a=1 

we see that Wt-J = Wa72s. Note that we have shown in the first part of 
the proof that for tu odd, is also odd. Furthermore, we note that the 
product of terms such as 1 + even is also odd, so y is odd. Thus if 
Wa-3 = h ~ 2 ~ ,  we must have s = k. 

The following more general theorem is stated without proof. 

Theorem 1.3. Let X,+l = a x ,  + b mod(m). Then the cycle of the 
generator is m if and only if 
(i) b and m have no common factor other than 1. 
(ii) ( a  - 1) is a multiple of every prime number that divides m. 
(iii) (a  - 1) is a multiple of 4 if m is a multiple of 4. 

So far, we have seen how to construct a sequence of arbitrarily long cycle 
length. Obviously, if we wish our numbers to lie on the unit interval, we will 
simply divide the sequence members by m. Thus, the j t h  random number 
would be X,/m. It would appear that there remains the design problem 
of selecting a and 6 to give the generator seemingly random results. To do 
this, we need to examine congruential generators in the light of appropriate 
perceptions of randonmess. We address this issue in the next section. 
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1.3 Latticing and Other Problems 

In a sense, it is bizarre that we ask whether a clearly deterministic se- 
quence, such as one generated by a congruentid random number generator, 
is random. Many investigators have expressed amazement at early “primi- 
tive” schemes, such zs those of von Neumann, devised for random number 
generation. As a matter of fact, I am personally unaware of any tragedy 
or near tragedy caused by any of these primitive schemes (although I have 
experienced catastrophes myself when I inadvertently did something puta- 
tively wrong, such as using, repetitively, the same seed to start runs of, 
supposedly different, sequences of congruential random numbers). The fact 
is, of course, that the issue is always decided on the basis of what are the 
minimal requirements for a sequence of random numbers. 

Let us note that having generators with long intervals before numbers 
are repeated is not sufficient. For example, suppose that we decided to use 
the generator 

Xn+l = X, + .000000001, where Xo = 0. (1.10) 

Such a generator will give us lo9 numbers between 0 and 1 with never a 
repeat. Clearly, however, it is totally unsatisfactory, since it creeps slowly 
from 0 to 1 in steady increments. It is true that after one billion numbers 
are generated, we will have the number of points generated in an interval 
between 0 and 1 equal to one billion times the interval length, as we should. 
But, if only, say, 100,000 points are generated, there will be no points at all 
in the interval [.0001,1]. Probably, no one would use such a generator. A 
modest criterion would be that even for a small number of points generated, 
say N ,  we should observe that the total number of points in an interval 
of length e should be roughly equal to E N .  Practically speaking, all the 
congruential random number generators in use seem to have this property. 

Suppose, however, that we are employing a congruentid random number 
generator to give points in the unit hypercube of dimension greater than 
1. That could mean, for example, that if we are generating points in two 
dimensions, we could use a congruential random number generator in such 
a fashion that the first number in a string would give us the first dimension 
of a double, the second would gi+e the second dimension of the double. 
Then the third number in a &ring would give us the first dimension of a 
second double, the fourth, the second dimension, and so on. 

For many applications, it will be sufficient if we can show that for m y  
small volume, say E ,  of a hypercube of unit volume, for a large number of 
generated random numbers, say NI the number of these falling in the vol- 
ume wiH be approximately E N .  But suppose it turned out that there were 
regions of the hypercube in which we never obtained any points, regard- 
less of the number of points generated. Such behavior is observed for the 
once popular RANDU generator of IBM. A little work reveals the following 
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relation [?I: 

z,+~ = (6r, - 9x,-1) m0d(Z3l). (1.11) 

Such a relationship between successive triples is probably not disastrous 
for most applications, but it looks very bad when graphed from the proper 
view. Using D2 Software's MacSpin, we observe two views of this generator, 
one, in Figure 1.1, seemingly random, the other in Figure 1.2, very much 
not. 

z ~ + ~  = (216 + 3)2, 111042~~).  (1.12) 

As a matter of fact, congruential random number generators generally have 
the problem of latticing. This holds even if we try to be clever by using 
a different generator for each dimension, or perhaps having one generator 
which randomly samples from each of hl generators to pick a number for 
each dimension. One reasonable way to Iessen this difficulty might be to 
use a generator that minimizes the maximum distance betwcen two lattices. 
If this is achieved, then even though we will have vast empty regions (in 
fact, it is obvious that all the random numbers generated by a congruential 
random number generator must lie in a set of Lebesgue measure zero in the 
unit hypercube), it would be very difficult to conceive of a realistic situation 
where this might cause practical difficulty. 
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Figure 1.1. RANDU in Two Dimensions. 


