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PREFACE

This book began as a critique against the current misuses of statistics in the natural
resource sciences. I had worked for many years as a forestry and wildlife management
statistician, in academia, government, and industry. I was frustrated with the frequent
misuse of statistical analysis and inference with natural resource data. Hypothesis
testing was commonly misused with observational data to compare so-called
habitat treatments such as old-growth and young-growth forest habitat for their
effects on wildlife species. Such hypotheses were statistical rather than scientific,
referring to specific stands of interest. Many null hypotheses were “silly” and
clearly not true. Sample datasets were not completely randomized, and “experimen-
tal” conditions were not effectively controlled. I was reviewing manuscripts and
attending seminars where null hypotheses were being rejected that were clearly
false a priori, and effect sizes between treatments, the differences of biological
importance that were of interest to wildlife managers, were not even being estimated.
More seriously, null hypotheses that were clearly false were being “supported” by
hypothesis testing results that failed to reject, in studies where sample sizes were
small, effect sizes of importance, and power to detect these effect sizes were not
specified, and this power was very likely small.

Natural resource scientists did not clearly understand how to interpret their
inferences from frequentist statistical analysis. The indirect logic of frequentist
statistical inference, in interpreting the meaning of confidence intervals or the test
statistics and p values from hypothesis testing, was proving to be very confusing to
natural resource scientists. The challenge of natural resource scientists in explaining
such frequentist inferences to managers, attorneys, politicians, and the public was
proving to be even more daunting.

I was concerned with the extent of data dredging that was common in the field. I
was commonly seeing datasets collected for habitat selection modeling using multiple
linear regression or logistic regression analysis with measurements for over 100 cov-
ariates and sample sizes under 100. Scientists were not giving enough thought to
sampling design and the type of analysis appropriate for their studies, prior to data
collection. Stepwise and best-subsets selection methods were being utilized
without concern for their potential for overfitting sample datasets with large and
unspecified amounts of compounded error.

Then, around 1998/99, several pioneering applied statisticians with many years of
experience in the field of wildlife management began to show the way out of this
wilderness. Ken Burnham and David Anderson (1998, 2002) published their
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landmark book advocating the use of a priori model selection and inference using the
Akaike information criterion (AIC) as a way of reducing model overfitting and com-
pounding of error with model selection and inference. Doug Johnson’s (1999) article
critiquing the misuses of hypothesis testing in wildlife management research was
published in the Journal of Wildlife Management. These ideas took the wildlife man-
agement research community by storm. Ray Hilborn and Mark Mangel (1997) pub-
lished a seminal book advocating the use of Bayesian statistical analysis and inference
in the fields of ecology and fisheries management. Pinhiero and Bates (2000) pub-
lished an important book describing the applications of mixed-effects modeling in
S-Plus. Ramsey and Schafer (2002) warned natural resource scientists about the dis-
tinctions between observational and experimental data. Because of some of these
influences, a priori model selection and inference has become the accepted dominant
paradigm for model selection and inference in the field of wildlife management. The
misapplication of hypothesis testing has been reduced. Perhaps even too hastily, the
old ways of doing statistics have been discarded in the rush to remain “current.”
Meanwhile, many other important contemporary methods of applied statistics
remain relatively unknown among natural resource scientists, methods such as gener-
alized linear modeling, mixed-effects modeling, and Bayesian statistical analysis and
inference.

This book was written to introduce these newer contemporary methods of statisti-
cal analysis to natural resource scientists and strike a balance between the old and new
ways of doing statistics. Chapter 1 introduces three case studies that illustrate the need
for newer contemporary methods of statistical analysis and inference for natural
resource science applications. It also reviews some of the most important fundamen-
tal methods of traditional frequentist statistical analysis and inference and ends with a
brief introduction to the frequentist software S-Plus and R that are used throughout
the book. Chapters 2–4 introduce an alternative approach to traditional frequentist
statistical analysis and inference, namely, Bayesian statistical analysis and inference.
These three chapters provide an introduction to the fundamental concepts of Bayesian
statistical analysis, its historical background, conjugate solutions, Bayesian hypoth-
esis testing and decisionmaking, Markov Chain Monte Carlo (MCMC) solutions,
and applications in WinBUGS (Windows version of Bayesian statistical inference
Using Gibbs Sampling) software. Chapter 5 presents two alternative strategies to
model selection and inference, a posteriori model selection and inference, and a
priori parsimonious model selection and inference using AIC and the deviance infor-
mation criterion (DIC). Chapter 6 introduces the ideas of generalized linear modeling
(GLM), focusing on the most popular GLM of logistic regression. Chapter 7 presents
an introduction to mixed-effects modeling in S-Plusw and R. Chapters 5–7 provide
applications with both frequentist and Bayesian statistical analysis and inference
approaches, illustrating the strengths and limitations of each approach. Chapter 8
concludes with a summary of the contemporary methods introduced in this book.

This book can be used as a textbook for an intermediate undergraduate or introduc-
tory graduate semester course in contemporary research statistics for natural resources
sciences. It assumes a minimum prerequisite undergraduate course in introductory
statistics that includes the estimation of parameters such as mean and proportion;
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hypothesis testing with t tests, F tests for analysis of variance (ANOVA), and
chi-square (x2) tests; and linear regression analysis. Parts of the book can be read
independently along with the introductory Chapter 1, Chapters 2–4 on Bayesian
statistical analysis and inference, Chapter 5 on strategies for model selection and
inference, Chapter 6 as an introduction to generalized linear modeling, and
Chapter 7 on mixed-effects modeling. The book can also be read and used as a
refresher manual or a reference book by natural resource scientists. Parts of the
book have served as resource materials that I have used for 2-day workshops on
topics of statistics such as Bayesian statistical analysis and inference using
WinBUGS and capture–recapture analysis using MARK.

I’d like to thank many colleagues who have provided advice, encouragement, and
support throughout my career as an applied statistician and influenced a perspective
that has led to the writing of this book: David Anderson, Doug Johnson, Barry
Noone, Bill Zielinski, C. J. Ralph, Cindy Zabel, Hart Welsh, Cynthia Perrine,
Larry Fox, Jan Derksen, Rich Padula, Bryan Gaynor, Ken Mitchell, Sam Otukol,
A. Y. Omule, David Gilbert, Les Safranyik, Mark Rizzardi, Yoon Kim, Butch
Weckerly, David Hankin, John Sawyer, Mike Messler, Andrea Pickart, Matt
Johnson, and Mark Colwell. I’d also like to thank the Wiley staff who were so
helpful during the publication process: editor Susanne Steitz-Filler, senior production
editor Kris Parrish, and copy editor Cathy Hertz. My career has been a most interest-
ing one, working with natural resource scientists in academia, government, and indus-
try, applying traditional and contemporary ideas in the application of statistical design
and analysis to the natural resource sciences. It is up to natural resource scientists to
make the most appropriate and effective choices on the applications of statistical
analysis to their research problems. It is my hope that this book will help in providing
the tools to make that possible.

HOWARD B. STAUFFER

Mathematics Department
Humboldt State University
Arcata, California
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1 Introduction

Wewill begin this initial chapter by introducing three case studies that illustrate some
of the fundamental general statistical problems challenging the contemporary natural
resource scientist. We will then present a review and preview of some solution strat-
egies to these general problems. The first solution strategies that we will review are
traditional frequentist approaches: parameter estimation from sample surveys, hypoth-
esis testing from experiments, and linear regression modeling. Each of these methods
is summarized using a frequentist approach to statistical analysis. We will then
preview some more contemporary solution strategies: an alternative Bayesian
approach to statistical analysis and other more advanced solutions to the case
studies, generalized linear modeling, and mixed-effects modeling using both frequen-
tist and Bayesian approaches to statistical analysis. We will also preview a more con-
temporary approach to model selection and inference using information-theoretic
criteria such as Akaike’s information criterion for frequentist statistical analysis
and the deviance information criterion for Bayesian statistical analysis. All of these
contemporary methods will be discussed in greater detail throughout the remainder
of this book and illustrated with examples.

In this initial chapter we include a reminder of the importance of project manage-
ment in natural resource studies with statistical components. Project management
consists of organizing projects into three phases: a planning phase, a data collection
phase, and a concluding phase. The planning phase includes an identification of the
problem and the objectives of the project, along with a statistical design for the col-
lection of the dataset. The concluding phase includes a statistical analysis of the
dataset, along with interpretation and conclusions drawn from the analysis. All of
these statistical components—the statistical design, the collection of the dataset,
and the statistical analysis—provide essential tools for the solutions to the objectives
of the project.

We conclude this initial chapter with an introduction to the frequentist statistical
analysis software used throughout the book: the proprietary software S-Plus and its
freeware “equivalent” R. The Bayesian statistical analysis software WinBUGS will
be introduced in Chapters 2–4 when Bayesian ideas are discussed.

Contemporary Bayesian and Frequentist Statistical Research Methods for Natural
Resource Scientists. By Howard B. Stauffer
Copyright # 2008 John Wiley & Sons, Inc.
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1.1 INTRODUCTION

In recent years there have been major advances in the methods of statistics used for
research in the natural resource sciences. Yet, little of this is known outside selected
research circles. Students and scientists in the natural resource sciences have contin-
ued to use traditional frequentist methods, such as the estimation of parameters from
sample surveys, t tests and ANOVA hypothesis testing from experiments, and linear
regression modeling. However, extraordinary newer methods are now available that
enhance, complement, and extend these basic techniques, methods such as
Bayesian statistical inference, information-theoretic approaches to model selection,
generalized linear modeling, and mixed-effects modeling. It is the primary objective
of this book to introduce these newer contemporary methods to natural resource
students and scientists.

This book must begin by emphasizing critical statistical issues that have too often
been neglected in natural resource studies in the past. We stress the importance of the
planning and concluding phases in a data collection project. We particularly highlight
the essential role of statistical design and analysis that help ensure the efficient, power-
ful, and effective use of data. Our approach throughout the book will be “hands-on,”
illustrating concepts with examples using the software languages of S-Plus or R for
frequentist statistical analysis and WinBUGS for Bayesian statistical analysis.

Let’s begin with a description of several case studies that illustrate problems of
fundamental interest to contemporary natural resource scientists.

1.2 THREE CASE STUDIES

1.2.1 Case Study 1: Maintenance of a Population Parameter Above a
Critical Threshold Level

A fundamental problem of interest to contemporary natural resource scientists is to
assess whether a critical population parameter, such as a proportion parameter p,
has been maintained above (or below) a specified critical threshold level: p � pc
(or p � pc)?

Many examples in natural resource science illustrate this problem:

1. A timber company is required to maintain the proportion p of its timberlands
occupied by nesting Northern Spotted Owl pairs above a specified threshold
level pc. The threshold pc is a level determined by biologists to ensure the via-
bility of the local population of owls.

2. Federal managers of a national forest are interested in maintaining the pro-
portion p of forest covered by dense undergrowth below a specified threshold
level pc, to limit the risk of fire.

3. The managers of a national park are interested in maintaining the proportion
p of a disease or insect infestation below a specified threshold level pc to
control its spread.
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4. Fishery biologists managing a watershed are interested in maintaining the
proportional abundance p of a fishery above a specified threshold level pc of
its carrying capacity to ensure its long-term sustainability.

5. A government agency implementing a natural resource conservation policy is
interested in ensuring that the proportion p of the public in favor of one of its
controversial policies is maintained above a certain threshold level pc.

Besides the proportion parameter p in the examples presented above, there are
many other biological parameters of interest to natural resource managers with
similar threshold issues, such as the mean abundance m, survival rate fi from year
i to year i þ 1, fitness li ¼ Niþ1/Ni (where Ni and Niþ1 are the population abun-
dances in years i and i þ 1), ecological diversity index such as the Shannon–
Wiener diversity index H, and population total t.

The failure to maintain the population parameter p above (or below) the threshold
level pc might suggest the need for a “corrective action” decision in the examples
listed above, such as

1. Reducing the timber harvesting

2. Applying fire suppression treatment

3. Applying disease or insect treatment

4. Increasing the watershed river flow by releasing more water from a dam

5. Altering the natural resource conservation policy

Alternatively, success at maintaining the population parameter p above (or below) the
threshold pc might suggest a decision of “no action.”

In such circumstances, a common approach employed by natural resource scien-
tists is to begin monitoring the population and collecting sample data, say, on an
annual basis, in order to assess the status of the population parameter. The intent is
to conduct statistical analysis on the sample data and make inferences about the popu-
lation parameter to determine whether it is above (or below) the threshold, and thus
whether corrective action or no action is needed at the management level.

1.2.2 Case Study 2: Estimation of the Abundance of a
Discrete Population

Our second case study focuses on the analysis of population count data. Often
biological populations, such as birds, amphibians, or mammals, are sampled with
discrete measurements such as plot counts, in fixed-area plots called quadrants.
The intent is to estimate population size or density in an area using total count esti-
mates of abundance or mean estimates of density.

The analysis consists of estimates of total or mean. Traditional estimates of total or
mean are based on the assumption of the normal distribution of the population
measurements. For plot counts, however, measurements are discrete and noncontin-
uous, consisting of nonnegative integers in a skewed distribution. If the biological

1.2 THREE CASE STUDIES 3



population is randomly dispersed spatially, a proper model for the analysis should be
based on the Poisson distribution rather than the normal distribution for the plot
counts. If, however, the population is spatially aggregated or clumped, the analysis
should be based on a more general model for the population measurements, such
as a negative binomial distribution. Furthermore, the plot counts will likely be
sampled without complete certainty of detection. Animals may be within the plot
and yet be undetected by the sample surveyor. A rigorous analysis of the population
therefore must factor in the Poisson or negative binomial distribution of the plot
measurements, sampled with an uncertainty of detection. We will examine such
analyses in Chapters 2–4 with Bayesian statistical analysis and Chapters 6–7 with
generalized linear models and mixed-effects models.

1.2.3 Case Study 3: Habitat Selection Modeling of a Wildlife Population

In general, it can be quite difficult to estimate the presence or abundance of a wildlife
population. Many important biological populations whose presence or abundance
needs to be estimated are endangered or locally threatened wildlife species, such as
the Northern Spotted Owl and Marbled Murrelet bird populations, Del Norte
salamander amphibian population, and grizzly bear mammal population. These
endangered species are often of particular importance because they are associated with
old-growth ecosystems that are also in danger of extinction. Therefore it is important
to monitor these populations, estimating their presence or abundance over time, to
assess the status of the old-growth ecosystems. A particularly effective approach to
estimating these mobile populations is to model their relationship with habitat.

With habitat selection modeling, the presence or abundance of a mobile popu-
lation species is treated as a dependent response variable. Its relationship with
“independent” predictor explanatory habitat variables such as vegetation, geologic,
and meteorologic attributes can be assessed with statistical modeling. The intent of
the habitat selection modeling is to analyze the relationship between the mobile wild-
life population variable and the habitat variables and use it to describe or predict the
presence or abundance of the endangered species as a function of the habitat vari-
ables. The idea behind the modeling is that many habitat variables can be more
easily and less expensively sampled than can the mobile wildlife population.

The relationship in such circumstances is assumed to be associative rather than
causal; thus, the modeling is descriptive, based on population monitoring with
sample survey data, and not on experimental manipulation to establish evidence
for cause and effect. The mobile wildlife population may have access to only a
limited amount of habitat attributes and be able to express a restricted preference
among what remains. Other habitat attributes that the mobile wildlife population
most prefers may no longer be available for selection. Hence the habitat “selection”
relationship must be interpreted within this context.

Habitat selection modeling is often based on regression analysis. For continuous-
abundance response variables such as biomass, multiple linear regression analysis
may indeed be applicable. For discrete-abundance response variables such as popu-
lation counts, however, Poisson regression or negative binomial regression may be
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more appropriate. For binary response variables, such as the presence or absence, or
occupancy versus nonoccupancy, of a population, logistic regression analysis or some
other form of generalized linear modeling may be more appropriate. We will examine
these methods of analysis, along with strategies for model selection, in Chapters 5
and 6. Traditional multiple linear regression analysis is discussed in Chapter 5.
Logistic regression analysis, Poisson regression analysis, negative binomial
regression analysis, and other forms of generalized linear modeling are discussed
in Chapter 6.

1.2.4 Case Studies Summary

This book presents various contemporary statistical options available to the natural
resource scientist to analyze and interpret sample data for these case studies and
other general statistical problems of current interest to natural resource scientists.
We will first review more familiar traditional statistical methods of sample survey par-
ameter estimation, experimental hypothesis testing, and multiple linear regression
modeling, and then describe the less familiar contemporary methods of Bayesian
statistical inference, model selection strategies, generalized linear modeling, and
mixed-effects modeling. These methods provide contemporary natural resource
scientists with an up-to-date statistical toolbox of methods to tackle many important
challenging problems of current interest.

1.3 OVERVIEW OF SOME SOLUTION STRATEGIES

In this section we present both a review of traditional statistical methods and a
preview of contemporary statistical methods that provide solutions to the case
studies that were presented in the previous section: assessing whether a population
parameter has been maintained above (or below) a critical threshold level, the
estimation of abundance of a discrete population, and habitat selection modeling.
Further details on the contemporary methods will follow in later chapters.

1.3.1 Sample Surveys and Parameter Estimation

A first traditional statistical approach to addressing the fundamental case study pro-
blems of Section 1.2 is to conduct a sample survey of the population and collect
sample data using a rigorous sampling design. The aim of the survey in case study
1 is to estimate a proportion parameter p or mean parameter m from the sample
data and compare it with a critical threshold level pc or mc. The aim of the survey
in case study 2 is to estimate the mean abundance parameter m of a discrete popu-
lation. The aim of the survey in case study 3 is to model a mobile wildlife population
as a function of habitat attributes and estimate the proportion parameter p or abundance
parameter mean m of the species in the habitat or at a specific site. Ideally, a natural
resource scientist would like to use an approximately unbiased estimator û ¼ p̂ or m̂
for the estimate of the parameter u ¼ p or m, respectively, of minimum sampling
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error E, with a specified level of confidence P (or level of significance
a ¼ 12P).

If simple randomly sampled measurements fyig are continuous and normally
distributed with sample size n, the mean estimator is given by

m̂ ¼
Xn
i¼1

yi
n
,

with standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

(yi � m̂)2

n� 1
,

s

standard error

se ¼ sffiffiffi
n

p ,

and sampling error

E ¼ t(1�a=2), n�1 � se ¼ t(1�a=2), n�1 �
sffiffiffi
n

p ,

where t(12a/2), n21 is the t value with (n21) degrees of freedom at the (12a/2) per-
centile with a level of significance.

If simple randomly sampled measurements fyig are binary and binomially distrib-
uted with sample size n � 30, the proportion estimator is given by

p̂ ¼ y

n
, where y ¼

Xn
i¼1

yi,

with standard error

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ � (1� p̂)
n� 1

r
,

and sampling error

E ¼ t(1�a=2), n�1 � se,

where t(12a/2),n21 is the t value with (n2 1) degrees of freedom at the (12 a/2)
percentile with a level of significance.

Recall that an unbiased estimator has the property that the average of all esti-
mates, with repeated sampling, is equal to the parameter value (Fig. 1.1).
Confidence levels of P ¼ 95%, 90%, or 80% are commonly used for natural resource
survey sampling with levels of significance a ¼ 12P ¼ 5%, 10%, and 20%, respect-
ively. A confidence interval

CI ¼ ½û� E, ûþ E�

6 INTRODUCTION



can be calculated and the frequentist inference drawn that there is a probability P that
confidence intervals will contain the parameter u, with repeated sampling (Fig. 1.2).

Note that the logic of frequentist inference is of the form “if (parameter), then
probability(data).” It assumes that the parameter is fixed and provides conditional
probability properties for statistics from the sample datasets.

Figure 1.1. Sample mean density estimates (tickmarks X), based on 100 repeated sample
surveys of a normally distributed population with mean density parameter value 50.0. Note
that the average of these sample mean density estimates is approximately equal to the mean
density parameter value for this unbiased mean estimator.

Figure 1.2. Twenty 95% confidence intervals estimated from samples obtained from repeated
sample surveys of a population with mean parameter value 50.0 (“j”). Note that 19 of these
confidence intervals contain the mean parameter, as is expected.
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For case study 1, a decision protocol should be specified in advance, before the
sample data are collected. For example, one such decision protocol would be to
compare the estimate û obtained from the sample data with the critical threshold
level uc. If the estimate is above (or below) the critical threshold level uc, then the
recommended management decision would be “corrective action.” Otherwise, if
the estimate is below (or above) uc, the recommended management decision would
be “no action.”

An alternative decision protocol for case study 1 would be to compare the confi-
dence interval CI with the critical threshold level. If the confidence interval is above
(or below) the critical threshold level, then the recommended management decision
would be “corrective action.” If the confidence interval is below (or above) the critical
threshold level, the recommended management decision would be “no action.” If the
confidence interval overlaps the critical threshold level, the situation would be ambig-
uous and need to be reassessed, perhaps with an additional survey with larger sample
size. The precision of the estimate, the size of the sampling error, would obviously
affect the results. A larger sample size would reduce the sampling error and hence the
size of the confidence interval. Therefore, the population should be sampled with a
sample size large enough to reduce the sampling error so that the confidence interval
will (hopefully!) fall on one side or the other of the critical threshold level.

Other decision protocols could be chosen for case study 1 using this general
approach of sample surveys with parameter estimation and estimation of error. The
important point, however, is that a decision protocol for a sample survey should be
specified in advance of data collection so that a decision can be made, clearly and
unambiguously, at the end of the survey. In Chapters 2–4 we shall see how a
Bayesian statistical analysis approach can facilitate the use of a decision protocol.

For case studies 2 and 3, estimates and confidence intervals can be used to make
inferences on the abundance of a discrete population, and the population habitat
selection probability of presence or mean abundance, respectively. For further
review of the basic concepts of sampling design and analysis, see Cochran (1977),
Scheaffer et al. (1996), Thompson (1992), Sarndal et al. (1992), Thompson and
Seber (1996), Thompson et al. (1998), Stauffer (1982a, 1982b), Hansen and
Hurwitz (1943), Horvitz and Thompson (1952), and Gregoire (1998).

1.3.2 Experiments and Hypothesis Testing

A second statistical approach to addressing the problems posed by some of the case
studies of Section 1.2 is to conduct an experiment and use frequentist hypothesis
testing, developed by Neyman and Pearson (1928a, 1928b, 1933, 1936) and Fisher
(1922, 1925a, 1925b, 1934, 1958). With case study 1, for example, the scientist
could formulate the null hypothesis

H0 : p ¼ pc

and the one-tailed alternative hypothesis

HA : p , pc,
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collect experimental data using a rigorous experimental design, and test the null
hypothesis. If the null hypothesis is rejected, the recommended management decision
would be “corrective action.” If the null hypothesis is not rejected, the recommended
management decision would be “no action.” Note, that with this approach, the burden
of proof would be on “corrective action.” If the direction of the alternative hypothesis
is reversed, the burden of proof would be on “no action.” Regardless, the burden of
proof would not be equal for the two hypotheses.

A one-sample z test could be used for the hypothesis testing, with a one-sided
alternative hypothesis. If the null hypothesis is true, the test statistic

zs ¼
p̂� pcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ � (1� p̂)
n� 1

r

is standard normally distributed. The Neyman–Pearson hypothesis testing protocol
requires that a type I error a be specified, with confidence P ¼ 12a (say, a ¼ 5%
and P ¼ 95%), prior to the data collection and analysis, assuming the null hypothesis
to be true. If the test statistic zs, calculated from the experimental dataset, is in the
rejection region, the a percentile left tail of the standard normal distribution (equiv-
alent to p , a), then the null hypothesis would be rejected. Otherwise, the null
hypothesis would not be rejected.

Note again, that the logic of frequentist inference is of the form “if (parameter),
then probability (data).” It assumes the null hypothesis that the parameter is fixed
and provides conditional probability properties for statistics from the experimental
datasets.

To review the basic concepts of experimental design and hypothesis testing,
see Hicks (1993), Kuehl (1994), Dowdy and Wearden (1991), Sokal and Rohlf
(1995), Zar (1996), Winer et al. (1991), Cohen (1988), Siegel and Castellan (1988),
Conover (1980), Daniel (1990), PASS (2002), and nQuery (2002). However,
beware of the overuse and misuse of hypothesis testing in natural resource science,
particularly with observational, rather than experimental, datasets; see Johnson
(1999), Anderson et al. (2001, 2002), Ramsey and Schafer (2002), and Robinson
and Wainer (2002).

1.3.3 Multiple Linear Regression, Generalized Linear Modeling,
and Model Selection

Habitat selection modeling can often be used effectively to address case study 3 of
Section 1.2. Mobile wildlife populations may be difficult to sample directly, but
their responses often vary with habitat attributes that are more easily sampled. For
instance, the response of endangered wildlife species associated with old-growth
habitat may tend to be larger in value in late-seral-stage rather than early-seral-
stage habitat. In such circumstances, it may be useful, more cost-effective, and less
time-consuming to fit and compare habitat selection models that describe the
mobile biological population response as a function of various habitat variables.
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The objective is to express the wildlife population response as a function of variables
describing the vegetation, geologic, and climatic characteristics of its habitat. If the
population response is continuous with normally distributed error, the population
may be described by a multiple linear regression model.

If, however, the population response measurements are categorical, such as binary
with values of 0 or 1 (e.g., “present” or “absent,” “occupied” or “unoccupied,”
“alive” or “dead,” “yes” or “no”), or discrete with integer values such as plot
counts with error that may not be normally distributed, then it may be possible to
“link” the response measurements to a linear function described by a generalized
linear model (GLM) such as logistic regression.

Multiple linear regression models and generalized linear models can be used to
describe the response values at specific sites as a function of habitat characteristics.
With such a modeling approach to statistical analysis, model selection strategies
are required to effectively compare models for goodness of fit to sample datasets
and to avoid overfitting and compounding of error. The utility of such an approach
depends on the goodness of fit of the best-fitting models to the population and
their predictive accuracy. Chapter 5 includes a basic review of multiple linear
regression and a description of contemporary strategies that can be used for model
selection and inference. To further review the details of multiple linear regression,
see Appendix A at the end of this book, or see Seber (1977), Draper and Smith
(1981), Hocking (1996), Ryan (1997), Cook (1998), and Cook and Weisberg
(1999). Generalized linear modeling is introduced in Chapter 6.

1.3.4 A Preview of Bayesian Statistical Inference

Bayesian statistical analysis and inference provides an important alternative approach
to frequentist statistical analysis and inference for natural resource scientists, yet it has
become practical and accessible for general use only relatively recently. Traditional
frequentist statistical analysis and inference provides probabilities for sample datasets,
based on assumptions for parameters, with an interpretation of results in the context
of repeated surveys or experiments. Although frequentist statistical analysis methods
are well known by natural resource scientists, these methods are often incorrectly
applied with inferences that are frequently misunderstood (Johnson 1999, 2002). If
properly applied and correctly interpreted, frequentist statistical analysis provides rig-
orous standards for inferences: the unbiased and minimum error properties of estima-
tors, the accuracy probabilities of confidence intervals, and the type I and type II
errors of hypothesis testing.

Alternatively, Bayesian statistical analysis and inference provides probabilities for
parameters, based on sample datasets (Iversen 1984, Berger 1985). Inferences from
Bayesian statistical analysis are directly applicable to parameters that are of central
interest to natural resource scientists. Unfortunately, Bayesian statistical inference
has not been of leading interest to a majority of statisticians and practicing natural
resource scientists in the past because its use has been impractical and inaccessible
until very recently (as of 2007). Bayesian statistical analysis and inference requires
an assumption of a prior distribution for the parameters. Using the sample dataset

10 INTRODUCTION



and a likelihood model for the dataset, Bayesian statistical analysis provides a pos-
terior distribution for the parameters, based on the prior distribution, the dataset,
and the model. The posterior distribution thus updates a scientist’s understanding
of the parameters. The Bayesian approach combines previous information about
the parameter with an analysis of the sample dataset to obtain an updated assessment
of the parameters. The posterior distribution provides probabilities for the parameters
that can be useful for natural resource scientists and managers. They can utilize
summary statistics of the posterior distribution, such as the mean, median, mode,
standard deviation, and percentiles, or use the entire posterior distribution itself to
evaluate the parameters. A probability region, the smallest middle interval encom-
passing 95% of the posterior distribution, provides a Bayesian 95% credible inter-
val. This interval can be directly interpreted as the region within which the
parameter is likely to be found, with 95% probability. Thus, with Bayesian statistical
inference, there is no need to interpret the results indirectly as a frequentist does, in
terms of probabilities of datasets with repeated surveys or experiments. The logic
of Bayesian statistical analysis provides probabilities for parameters, given the
data, in contrast to the logic of frequentist statistical analysis, which provides
probabilities for datasets, given the parameter.

Bayesians must, however, bear responsibility for the appropriate selection of
priors and the standards of results. As with frequentist results, Bayesian results
must be assessed for goodness of fit to assess the reliability of model predictions.
Priors influence posteriors, particularly with small-sample datasets, and must be
chosen judiciously. Until relatively recently, Bayesian solutions to complex problems
were seldom computable. However, owing to a collection of computer simulation
algorithms, the Markov Chain Monte Carlo (MCMC) algorithms developed in the
mid-twentieth century (Bremaud 1999, Carlin and Louis 2000, Congdon 2001,
Gill 2002, Link et al. 2002) and to public-domain software such as WinBUGS
that is now downloadable from the Web (Spiegelhalter et al. 2001), natural
resource scientists now have the resources needed for the practical use of Bayesian
statistical inference.

This book describes and illustrates both frequentist and Bayesian paradigms for
statistical analysis and inference, emphasizing the advantages and disadvantages of
each in particular contexts. It is the practical perspective of this book that the contem-
porary natural resource scientist should be familiar with both. Bayesian statistical
inference is introduced in Chapters 2–4 and applied comparatively, along with fre-
quentist statistical inference, in Chapters 5–7, with other important contemporary
research methods of statistical analysis.

1.3.5 A Preview of Model Selection Strategies and Information-Theoretic
Criteria for Model Selection

With either frequentist or Bayesian statistical analysis approaches, a rigorous and
theoretically justifiable approach to model fitting, selection, and inference is required.
Traditionally, with multiple linear regression modeling, analysts have used statistics
such as parameter coefficient estimates and their significance, the coefficient of
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determination R2, the residual standard error syjx, the ANOVA F test, the adjusted R2,
and Mallows’Cp to evaluate the relative fit of models (Seber 1977, Draper and Smith
1981, Hocking 1996, Ryan 1997, Cook and Weisberg 1999). These statistics test
various assumptions of the model fit, such as whether the model is statistically equiv-
alent to the null model. They do not directly assess the issue of whether the model is
the best fitting to the sample dataset. Unfortunately, they also sometimes tend to
overfit the model to the sample dataset, with compounding of error. We shall say
more about this later on. We recommend a more modern information-theoretic
approach to model fitting, using Akaike’s information criterion (AIC), the corrected
Akaike information criterion (AICc), or the Bayesian information criterion (BIC) with
frequentist statistical analysis (Burnham and Anderson 1998, 2002), and the deviance
information criterion (DIC) with Bayesian statistical analysis (Spiegelhalter et al.
2001, Carlin and Louis 2000). These criteria provide a more rigorous and theoreti-
cally justified approach to model fitting that avoids the overfitting of models to the
sample dataset and the compounding of error.

Akaike’s information criterion was developed relatively recently by the Japanese
mathematician Hirotugu Akaike (1973, 1974). It is an information-theoretic measure-
ment of the relativeKullback–Leibler distance (KL distance) between a model and
the reality. The Akaike’s information criterion (AIC) is the linear Taylor series
approximation of the relative KL distance, whereas the corrected Akaike infor-
mation criterion (AICc) is a second-order Taylor series approximation. Since
AICc is more precise, we recommend that it be used in preference to AIC, particularly
for datasets with small numbers of samples. The best-fitting model in a collection of
models has the lowest AIC or AICc value.

For any probabilistic statistical model with a likelihood function L (more on
this in Chapters 2, 5, and 6), AIC and AICc are defined using the deviance ¼
D ¼ 22 . log(L) ¼ 22 . l

AIC ¼ Dþ 2 � k
¼ �2 � log (L)þ 2 � k

and

AICc ¼ Dþ 2 � k þ 2 � k � (k þ 1)
n� k � 1

¼ �2 � log (L)þ 2 � k þ 2 � k � (k þ 1)
n� k � 1

,

where k ¼ the number of parameters in the model and n ¼ the sample size.
The AIC and AICc criteria for multiple linear regression are given by the formulas

AIC ¼ n � log ŝ2 � n� p� 1
n

� �
þ 2 � k

¼ n � log ŝ2 � n� k þ 1
n

� �
þ 2 � k
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and

AICc ¼ n � log ŝ2 � n� p� 1
n

� �
þ 2 � k þ 2 � k � (k þ 1)

n� k � 1

¼ n � log ŝ2 � n� k þ 1
n

� �
þ 2 � k þ 2 � k � (k þ 1)

n� k � 1
,

where ŝ ¼ syjx is the residual standard error, p is the number of covariates or expla-
natory variables, and k ¼ p þ 2 is the number of parameters (including the covariates
coefficients, the intercept, and s). For the linear regression model with the parameters
b0, b1, and s, p ¼ 1 and k ¼ 3.

The AICc criterion penalizes a model with too many covariates from overfitting
the sample data. It determines the most parsimonious model, the one with an
optimum mix of minimal bias and maximal precision. As the number of parameters
increases, models more closely fit sample datasets, reducing the bias. However, as the
number of parameters per sample increases, the precision of the parameter estimates
tends to decrease. The AICc criterion moderates this process, striking the most
optimal compromise between reduced bias and maximal precision.

The corrected Akaike information criterion measures the amount of noise, or
entropy, in the sample data, separating it from the signal or information. It is a rela-
tive measure of the KL distance between the model and the reality. The absolute
measure of the entropy is the calculated AICc plus a constant. The constant
remains unknown since the reality is unknown. However, since each model has the
same constant, AICcs may be compared to determine the relatively best-fitting
model. The reader should be warned, however, that this fit is relative. Goodness-
of-fit tests must additionally be used in the concluding analysis to assess the absolute
fit of the best-fitting models with the lowest AICcs.

The AICc is most applicable to models of realities that are complex and infinite- or
high-dimensional, as are most natural resource populations. For such complex realities,
finite-dimensional models will necessarily be at best only an approximation. For reali-
ties that are finite-dimensional, of fairly low dimension, such as k ¼ 1–5, with k fixed
as the sample size n increases, “dimension-consistent” criteria such as the Bayesian
information criterion are more applicable (Burnham and Anderson 1998, 2002).

The Bayesian information criterion (BIC), developed by Schwarz (1978), also
uses a formula based on the deviance or log likelihood and “penalizes” models for the
overuse of covariates

BIC ¼ Dþ k � log (n)
¼ �2 � log (L)þ k � log (n):

For multiple linear regression models, BIC is given by

BIC ¼ n � log ŝ2 � n� p� 1
n

� �
þ k � log (n)

¼ n � log ŝ2 � n� k þ 1
n

� �
þ k � log (n):
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The BIC is derived using Bayesian assumptions of equal priors for each model and
vague priors on the parameters (Burnham and Anderson 1998), with the objective of
predicting rather than understanding the process of a system. The BIC penalizes more
heavily for increases in the number of parameters and hence sometimes tends to select
models that are underfit with excessive bias and precision. For natural resource mod-
eling, most realities are complex and infinite-dimensional; hence, AICc is the more
appropriate criterion for comparing statistical models in the natural resource sciences.

1.3.6 A Preview of Mixed-Effects Modeling

Data collected from monitoring do not always fulfill the assumptions of independence
required for the use of many traditional statistical methods: with parameter estimation
in sample surveys, with hypothesis testing in experiments, and with model fitting and
selection in multiple linear regression or generalized linear modeling. Rather, data are
often dependent, clustered or grouped by location or time, or collected from perma-
nent plots or at sites repeatedly over time or from subpopulations of larger popu-
lations (e.g., as with meta-population data). Traditionally, scientists have often
been discouraged from collecting dependent or pseudoreplicated datasets to avoid
these problems with the analysis. But dependencies in biological populations are
quite common, and it may be difficult or impossible to avoid collecting data with
such dependencies. It would make more sense to collect data with such dependencies
and account for them in the analysis. This is now possible with mixed-effects mod-
eling, which incorporates both traditional fixed effects describing the influences of
treatments on the population and random effects describing dependencies in the
data created by groupings. This is achieved in an efficient manner with mixed-
effects modeling, incorporating variance components into the models to describe
the random effects due to the clusters. We will provide an introduction to mixed-
effects modeling using the powerful utilities now available in S-Plus and R for
frequentist analysis and WinBUGS for Bayesian analysis in Chapter 7.

1.4 REVIEW: PRINCIPLES OF PROJECT MANAGEMENT

In this section of this introductory chapter, we remind the reader of the critical import-
ance in a natural resource data collection project of practicing the principles of sound
project management. A data collection project consists of three phases: a planning
phase at the beginning, a data collection phase in the middle, and a concluding
phase at the end.

It is very important at the beginning of a project to devote sufficient attention to the
planning phase in order to develop a rigorous and effective statistical design for the
data collection. To properly determine the appropriate statistical design, the problem,
objectives, and methods of analysis for the project must be clearly specified prior to
data collection. Far too often in natural resource data collection projects, the problem
and objectives are not specified clearly enough in quantitative terms. If a project, for
example, has the objective of examining the downward trend of a declining species,
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the amount of downward trend that is biologically important should be specified in
advance of data collection. Then the sample size for the data collection should be cal-
culated to ensure with a high probability that the biologically significant trend will be
detected with statistical significance if it exists.

It is unfortunately also far too common in data collection projects to wait until after
the data have been collected to decide on the method of analysis. As the method of
analysis required by the objectives may impose restrictions on the statistical design
of the data collection, it should be determined prior to data collection. The method
of analysis may require a certain amount of precision or power to realize the objec-
tives of the project, and this will require a sufficiently large sample or experimental
dataset. Hence, the sample size or numbers of replicates must be determined prior to
data collection.

It is also vitally important to devote sufficient attention to the concluding phase at
the end of a project, to allow time for a comprehensive analysis and thoughtful
interpretation and conclusions. Comprehensive analysis will seldom be “turnkey,”
which can be finished in a few hours or days, but rather a far more lengthy
process. The analysis process may consist of examining a range of candidate
models to determine the best fitting. This collection of models may be small and
finite or wide-ranging in number. We shall describe alternative strategies for the
model selection and inference in Chapter 6.

It is tempting in a natural resource data collection project to devote a majority of
the time to data collection. This unfortunately may leave an insufficient amount of
time at the beginning of the project for planning and at the end of the project for a
thorough analysis and thoughtful period of reflection on the conclusions and
interpretation of the results. A good principle in general is to spend equal amounts
of effort on all phases of the project. This will help ensure that the results are efficient,
powerful, and effective. The aim is to extract the biological “information” from the
data, separating the “signal” from the “noise” in as optimal a manner as possible.
Time and effort devoted to rigorous design and analysis in a data collection project
are indeed well spent.

1.5 APPLICATIONS

The practical application of theory is where the learning process really crystallizes.
This is particularly true with statistical analysis. We will use a hands-on approach
to emphasize the practical use of statistics with the application of theory. We will
use both simulated and real-world sample datasets as examples and encourage the
reader to do likewise with other datasets.

We encourage readers to analyze their own datasets while progressing through the
book. Readers are especially encouraged to conduct a project while reading this book,
designing, collecting, and analyzing their own sample or experimental datasets.
Address a biologically interesting question, but one sufficiently limited in scope that
it can be investigated with a data collection project completed within the timeframe
of the reading of this book. For example, examine the abundance level or trend of a
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local biological population of interest such as a bird or plant population. Write a
2–5-page proposal for the project. Keep the project small and realistically simple;
be especially careful to keep the scope of the project within a realistic timeframe.

We will use simulated datasets to illustrate many of the ideas. The reader will thus
be able to compare the statistical results with the known “realities” used to generate
the simulated datasets. We will also provide real-world datasets for the analyses of
important species such as the Northern Spotted Owl, Siskiyou Mountains salaman-
der, and beach layia, some of which are endangered. These datasets will provide prac-
tical, realistic experience. The interested reader can also obtain additional sample and
experimental datasets on the Web and in many other standard references, such as
Sokal and Rohlf (1995), Zar (1996), and Ramsey and Schafer (2002). These refer-
ences contain excellent examples, problems, and datasets.

1.6 S-Plusw AND R ORIENTATION I: INTRODUCTION

1.6.1 Orientation I

In this section, we provide an introductory orientation to the statistical software used
for the frequentist analysis throughout the book, the research-oriented proprietary
statistical modeling software S-Plusw (2000) and the de facto equivalent freeware
R (R Development Core Team 2005). S-Plus was first developed in the 1970s at
Bell Labs by Rick Becker, John Chambers, and Allan Wilks with the goal of defining
a language to perform repetitive tasks in data analysis. These authors did not consider
the original language to be primarily statistical and most of the statistical functionality
was added later. S-Plus provides a flexible, interactive, integrated modern environ-
ment for statistical analysis, with particular emphasis on the modeling of linear
systems. Much of the syntax of S-Plus is reminiscent of the Unix and C environments.

The current version of R is the result of a collaborative effort with contributions
from all over the world. The R language was initially written by Robert Gentleman
and Ross Ihaka of the Statistics Department of the University of Auckland. It is
freeware, the de facto equivalent of S-Plus.

Details on S-Plus can be found in the S-Plus Help menu, the S-Plus Manual
(S-Plus 2000), or Krause and Olson (2000). Details on R can be found in the R
Help menu. S-Plus and R are object-oriented languages with datasets and functions
consisting of objects. Objects can be created and manipulated by the user and added
to the standard library of defaulted objects that are available in S-Plus and R. To begin
this introductory S-Plus–R session, the user should sign onto either S-Plus or R. In
S-Plus, the user should enter the Commands Window mode from the Windowmenu
to begin at the > prompt. In R, the user should begin at the > prompt in the R Console.
Although S-Plus and R do have some menu features, the S-Plus command mode and
R Console options will be emphasized throughout this book, leaving it to readers to
explore the menu options. We will present frequentist software code that is suffi-
ciently general for use in either S-Plus or R and will be sufficiently careful to
point out where there are differences.
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1.6.2 Simple Manipulations

Let’s begin by illustrating simple data manipulation capabilities in S-Plus and R,
starting with arithmetic using +, -, *, /, and ^ for addition, subtraction, multipli-
cation, division, and exponentiation, respectively. Proceed with the following code
(Fig. 1.3a), typing the first line, pressing the <ENTER> key, receiving the second
line response from S-Plus or R, typing the third line and pressing the <ENTER> key
to receive the fourth-line response, and so on. The index [1] at the beginning of
each response line refers to the first indexed entry of the arithmetic operation
response, a vector of size 1.

For the next illustration, the c concatenation, rep repetition, 1 : k integer
sequence, and seq general sequence commands aid in constructing data objects in

Figure 1.3. Command code for S-Plus and R Orientation I. (a) Simple manipulation: arith-
metic; (b) Simple manipulations: creation of vectors; (c) Simple manipulations: object
removal; (d) Data structures: vectors, data frames, lists; (e) Data structures: testing; (f) Data
structures: coercion; (g) Random numbers: normal distribution; (h) Random numbers:
sampling; (i) Directory structure; ( j) Functions and control structures: functions code. (k)
Functions and control structures: functions execution; (l) Linear regression analysis.
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Figure 1.3. Continued.
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Figure 1.3. Continued.
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S-Plus and R (hereafter we omit reference to the <ENTER> key at the end of each input
command where this is clear from the context) (Fig. 1.3b). All of these data object
reponses are vectors of values, starting with the first entry indexed by [1] at the
beginning of the output line. S-Plus and R are case-sensitive. Use the Help
menu Search S-Plus Help in S-Plus or the Help menu R functions
(text) . . . option in R to learn more about the commands and their syntax.

The <- operation assigns values to objects, and the rm command removes or
deletes objects in both S-Plus and R (Fig. 1.3c). In S-Plus, the underscore _ can
be substituted for <- to indicate assignment. The list of objects currently available
at the top-level directory of S-Plus and R can be viewed by using the
objects() command.

Figure 1.3. Continued.
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1.6.3 Data Structures

In S-Plus and R, datasets are organized into simple data structures of type numeric
for quantitative or numerical values, factor for qualitative or categorical values,
character for character strings, and logical for objects with logical values true T
or false F. These simple atomic types can be combined into complex data structures
such as one-dimensional vectors of simple values of the same type, two-dimensional
matrices of columns of vectors of the same type and length, two-dimensional data
frameswith columns of vectors of possibly different types but the same size, and lists
of simple and complex types of varying size. Vectors are matrices, matrices are data
frames, and data frames are lists, but the converse is rarely true. Let’s combine simple
values into a vector with the concatenate c command, vectors into matrices with the
matrix command, column bind cbind command, or row bind rbind command,
vectors into data frames with the data.frame command, and data structures into
lists with the list command (Fig. 1.3d). Notice how the row entries in the
matrix m1 are indicated by [1,], [2,], and [3,]; the column vector entries in the
data frame d1 are indicated by v1 and v3; and the entries in the list list1 are indi-
cated by [[1]] and [[2]]. The type of values in data structures can be tested with
the is.numeric, is.character, is.logical, is.vector, is.matrix,
is.data.frame, or is.list commands (Fig. 1.3e). Data structures can
sometimes be coerced into other types of more complex objects and values
with as.matrix to convert a vector into a matrix, as.data.frame to convert
a matrix into a data frame, as.list to convert a data frame into a list, and
as.character to convert a numeric vector into a character vector (Fig. 1.3f).

1.6.4 Random Numbers

Probability density, cumulative probability, quantile, and random values can be gen-
erated in S-Plus and R by using the d, p, q, and r prefixes with common probability
distributions such as the normal, uniform, gamma, exponential, t, F, chi-square (x2),
lognormal, Poisson, negative binomial, and binomial distributions using norm,
unif, gamma, exp, t, f, chisq, lnorm, pois, nbinom, and binom suffixes
and their specified parameters (Fig. 1.3g). For example, in the figure, y is a vector
with 10 numeric values randomly sampled from the normal distribution N(5, 1)
with mean m ¼ 5 and standard deviation s ¼ 1. The cumulative probability at 4,
quantile of 0.1586553, and density value at 5 for N(5, 1) are also calculated.

The sample command can be used to generate random data from a vector,
without or with replacement (Fig. 1.3h). The default of this command is to sample
without replacement.

1.6.5 Graphs

Graphs can be obtained for numeric values using the dotplot (stripchart
in R) and hist commands on vectors, plot command on pairs of vectors,
and pairs command on matrices or data frames of columns. You can also create
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an n � m trellis of graphs with n rows and m columns using the
par(mfrow=c(n,m)) command.

1.6.6 Importing and Exporting Files

Data files can be imported or exported as objects using the Import Data and
Export Data options in the File menu in S-Plus. Data files are imported
as data frames unless specified otherwise. In R, data can be imported and exported
using copy and paste commands in the data file and the Data editor
option in the Edit menu. Alternatively, in R, text files of data with the txt exten-
sion data.txt from the defaulted R-2.2.1 folder can be imported using the
read.table(“data.txt”) command.

1.6.7 Saving and Restoring Objects

You can save and restore your directory of objects or individual objects in S-Plus
by using data.dump(objects(), “directory and filename”) or data.
dump(c(“object1”,“object2”, . . .), “directory and filename”)
commands and data.restore(“directory and filename”) commands.
Alternatively, in S-Plus, you can use the Workspace Save and Workspace
Open options in the File menu. In R, you can save and restore your directory of
objects by using the Save Workspace and Load Workspace options in the
File menu.

1.6.8 Directory Structure

The S-Plus and R directory structures are hierarchical in structure and can be viewed
using the search() command (Fig. 1.3i). The directory of an object can be deter-
mined using the find (object) command. An object such as a data frame or list
can be opened and closed, with internal objects such as vectors made available at
a specified directory level (defaulted to level 2), by using the attach(object,
level) and detach(level) commands. The # symbol in a line of code
indicates to S-Plus or R that the remainder of the command is a comment.

1.6.9 Functions and Control Structures

Function subprograms can be created as objects using the fix(name of object)
command. If a mistake is made in creating and editing the subprogram object, an
error message will be issued. Use the fix() command to return to editing to
correct the mistake in the object before signing off from S-Plus or R. Otherwise
the function object will not be saved. The standard programming control structures
are available in S-Plus and R: (1) sequential; (2) conditional, with if (test)
then fg else fg syntax; (3) repetition, with for (comparison or name in
values) expr or for (comparison or name in values) expr else
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