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PREFACE 

A mathematician is a person who can find analogies between theorems; a better 
mathematician is one who can see analogies between proofs and the best mathe-
matician can notice analogies between theories; and one can imagine that the ulti-
mate mathematician is one who can see analogies between analogies. 

—S. Banach 

The theory of Banach spaces really began with the 1922 publication of Stefan 
Banach's doctoral dissertation "Sur les operations dans les ensembles abstraits 
et leur application aux equations intégrales" in Fundamenta Mathematicae, 
followed in 1932 by his famous monograph Theorie des Operations Linéaires 
in Warsaw, Poland. In the minds of a majority of mathematicians, the appear-
ance of these two publications also signaled the onset of "modern" functional 
analysis as an independent discipline. Through the influential work of Banach, 
M. Fréchet, J. Hadamard, H. Hahn, F. Hausdorff, D. Hubert, S. Mazur, J. von 
Neumann, F. Riesz, and M.H. Stone, to name but a few, mathematics was 
changed; there was no looking back. 

It is hoped that by studying the ideas and techniques presented in this text, 
by following through on the directions indicated by many of the fundamental 
results presented here, and by gaining a deeper understanding of the beauty 
and subtlety underlying most of Banach's work and legacy, you will develop 
an appreciation for and understanding of this rich area of mathematics. Much 
is to be gained from mastering the basic ideas you will be exposed to in the 
material that follows, and in then continuing to pursue both the theoretical 
avenues they open and the many applications they represent in mathematics 
and science. Consider this book a beginning point only. 

What I have attempted to do here is to gather and organize the work of 
those mathematicians that has formed the basis for the discipline of functional 
analysis as it is known today. There is, of course, some arguably fundamental 
material omitted from this book; you are naturally seeing my personal bias as 
to what is most important and most memorable. However, you will be exposed 
to the basic ideas, techniques, and methods that form the underpinnings of this 
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discipline. Primarily through the study of Banach spaces (with the occasional 
side trip into general topological vector spaces), you should gain the neces-
sary tools and insight to successfully investigate whatever area of mathemat-
ics you have chosen (or which has chosen you). Ideally, you will be sufficiently 
excited and motivated to make Banach spaces themselves an integral part of 
your mathematics. 

A FEW NOTES TO THE STUDENT 

This book is meant to be more than just a reference source, a repository of 
definitions and theorems; it is meant to be read. In the commentary between 
theorems I have attempted to help motivate you and explain why certain 
results are important, when particular attention should be paid to their method 
of proof, and when further exploration beyond the text itself is recommended 
or even needed. I have often included more detail than one might expect to 
see in a book at this level; on the other hand, you will note a fair number of 
familiar phrases such as "the details are left to the reader." These have been 
chosen with some purpose in mind; more detail where the author feels initial 
proding and aid in reaching the heart of the argument is necessary, less when 
you should be adequately prepared to proceed on your own. My goal is for 
you to gain understanding and insight from the presentation; I hope the 
sometimes less formal nature of the arguments will help, and not hinder, this 
process. 

You will soon realize that there are no exercises at the end of sections, as 
you will find in most books; don't be misled, however, there are exercises 
and problems embedded in the text itself. I have chosen to present these "in 
context," as the results they give often have immediate benefit. Other times, 
as when having to recreate the context in which they are found could be dis-
tracting, they are where they belong most naturally. These problems, while they 
are not delineated or numbered in any special way, should be recognizable 
when you meet them, and are introduced by such phrases as " . . . as the student 
should verify . . . , " or " . . . it is straightforward to see . . . , " or " . . . as a 
moment's thought reveals . . . , " each such phrase a clue to the student. There 
are also more explicit exercises and problems whose solution has been left to 
you, and it is expected you will "fill in the missing details." It is the author's 
intention that all these exercises be completed and the ideas internalized. 
Understanding does not come passively. 

A FEW NOTES TO THE INSTRUCTOR 

The book is designed for a two-semester first course in functional analysis and 
should allow time for topics presented here to be explored in further detail, 
or new material to be introduced if desired. The introductory material is for 
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the convenience of the student; Chapter 1 is where it all begins. While not all 
the examples of the first chapter need be presented, there are many ideas sur-
rounding them to which the student should be exposed. While it is not strictly 
necessary that all topics in every chapter be presented and thoroughly under-
stood by the students before proceeding to the next, the author feels the 
majority of the material plays an integral role in what every young analyst 
should know and master. 
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literally forced) this book to come into existence. Undoubtedly, the two most 
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nowledged; particularly all my colleagues in the Mathematics Department at 
Gustavus Adolphus College; I must especially mention R. Rietz, J. Rosoff, 
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INTRODUCTION 

Before entering into the formal material of the text, there are always ground 
rules that need to be understood so that the reader and the author know they 
will progress down the same path and understand they share the same goal. 
While the direction of the road and recognition of the purpose in this case 
are not difficult to comprehend (after all, the student assumes the author is 
devoted to presenting and explaining the fundamental concepts of the disci-
pline to the uninitiated, and the author assumes the reader is approaching the 
material eager to learn, motivated to pursue the ideas beyond the meager 
boundaries of the text itself, and is more than adequately prepared for this 
journey), all involved realize this works well theoretically. More often than not 
misunderstandings arise early: How in the world can they expect we've seen 
this stuff before!, "as the reader should recall..." and "from the student's real 
analysis course, one has . . ." become roadblocks (or at least at times substan-
tial barriers) to achieving the desired ends. 

While there is no practical way to completely avoid these problems, since 
any two different readers have not only different backgrounds but different 
purposes for reading this text, they can to some extent, be alleviated. At least 
this is the author's purported rationale behind including these opening com-
ments, remarks, and observations before formally engaging in the adventure 
that follows; and it is hoped it will be an adventure, a remarkable experience. 
After all, contained herein are some of the basic ideas and techniques that 
lead to the theory of Banach spaces, one of the most beautiful and profound 
disciplines in all of mathematics, certainly within the realm of functional analy-
sis. What more need be said? 

Beyond the reasonable expectation that students wishing to partake of 
this material have been exposed to the standard material one normally 
encounters in any appropriate sequences in real analysis and topology, 
the author tries to assume only a fledging mathematical maturity and the 
openmindedness to give beauty and subtleness a chance to work its magic 
when encountered. You don't have to be a true believer to begin with; this 
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2 INTRODUCTION 

will be a natural outgrowth of the exposure to the work of Stefan Banach and 
his followers. 

Of course, practically speaking, assumptions must be made and reliance 
on background must be assumed. While what immediately follows is not 
by any means all-inclusive, the author has chosen a few short topics that 
may aid readers as they begin their perusal of these topics. They need 
not be considered in the order given, or for that matter closely considered 
at all. They are included because the author assumes there are always 
a few facts and ideas whose understanding will help to ease the transition 
into the new material, and that the reader may or may not have within easy 
reach. 

The first short section on notational conventions and standard symbology 
used throughout the text should, of course, be quickly scanned. The first 
topic presented is a brief look at product spaces at a very basic level. This can 
more than likely be ignored until one is ready to begin Chapter 3 and perhaps 
even then; its inclusion here is to ensure that the reasons behind changing 
topologies on a given space are understood and realized to be reasonable in 
the given context. The second short section concerning finite-dimensional 
spaces is ideally totally unneeded; the notion of a Hamel basis and the role it 
plays in understanding these spaces are indistinguishable algebraically and 
topologically, underlies much of what we will encounter in the near future. The 
only possible exception is the inclusion here of a pretty result by F. Riesz 
on approximations in a normed linear space, which often proves useful to 
have at hand. 

The last material in the Introduction will prove to be superfluous to any 
student with a firm grounding in abstract measure and integration theory. 
Because the Daniell approach to integration theory is not necessarily a stan-
dard topic in real analysis, it is included here for those readers not fortunate 
enough to have been exposed to it. While undoubtedly insufficient to com-
pletely prepare the student for its use in Chapter 1, it is hoped the brief 
exposure to the basic concepts will allow the reader to achieve an adequate 
facility with the central ideas to either be able to fill in the missing details, or 
at least locate and prepare for its use. 

So, we begin. 

NOTATION AND CONVENTIONS 

As always whenever one encounters a new book or set of notes, there are nota-
tions and conventions that the author uses, but with which the student is not 
familiar, and, of course, these can lead to confusion. We include a number of 
the more common of these here; other more specialized notation will be 
encountered in the text as they are needed. A comprehensive list of symbols 
and notation can also be found in the appropriate index at the end of the text. 

We start with a list of some basics. 



NOTATION AND CONVENTIONS 3 

1. We will use the following designations for some standard collections of 
numbers: 

R for the real numbers; 
C for the complex numbers; 
S for an arbitrary scalar field (when the specific use of either IR or C is 

immaterial); 
N for the natural numbers {1, 2, 3,...); 
Ö for the collection of all integers. 

Furthermore, we will always use the symbol Θ to denote the zero vector in an 
arbitrary space rather than the number 0 so that no confusion arises. 

2. Anytime we are considering a singly indexed object such as a sequence, 
a sum, or a limit (as long as the underlying index set is countable; that is, essen-
tially the natural numbers), if the beginning index value does not matter or is 
unimportant to the meaning of the expression, this value will be omitted in 
our representation. Similarly, as typically the upper limit of our indexing is °°, 
we will omit this as well and write these expressions as follows: 

(χη)„ or Σηαη or limny,, 

instead of (*X, or Σ^,α,, or limn^„vn 

In case we wish to allow our index set to be uncountable (or at least not restrict 
ourselves to only countable sets), we will change the symbol used for our 
underlying index set and assume it is some arbitrary directed set Γ. Thus, the 
expressions just listed will usually be written as 

(ax)r or limryy [or perhaps {αγ)γ£Γ or lim,,Er yr] 

to distinguish this. In other words, we consider (ar)r to be a net. 
In a similar manner, to indicate that a function (or operator)/is the point-

wise limit of the sequence (/„)„, we write / = lim„/„, rather than/(jc) = lim„f„(x) 
for all x, when no confusion should arise. 

3. Anytime we wish to make it overtly clear the choice of a particular con-
stant depends upon a previously determined value, we subscript that constant 
with the dependent value; that is, 

" . . . there exists an Nc e N such that.. ." 

means that the choice of the integer JV depends on the value of ε given, while 

" . . . choose δ„ ,ε > 0 with . . ." 
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means that the value of δ depends on the values of both n and ε, and so 
forth. 

4. The usual symbols for set operations will be used, so if we let {Α^76Γ be 
a (nonempty) family of sets indexed by the directed set Γ, then: 

Ur6l- Ar ={a:aeAY for some γ e Γ}, 

( l ^ r AY = {a: a e AY for some γ e Γ}, 

rirer A7 = {(aY)r : ay e Ar for each γ € Γ}. 

We will further use A\B to denote the set-theoretic difference of A and B, that 
is, A\B = {x:xe A but x e B), and Ac to denote the complement of the set A 
(relative to some universal set, of course). 

5. Another convention that will be followed is the occasional use of the 
symbol = in place of the usual =. This will be employed primarily to stress 
that we are defining a particular object by this description. That is, if we 
wish to define the function f:U—>U by f(x) = sin(3;t), we might write "let 
/ : (R-»R be given by f(x) = sin(3x)" to further emphasize that / i s being 
defined here. This will often be used when we define an object in the middle 
of a proof or in an explanatory paragraph where it is inconvenient to inter-
rupt the flow of the text. It should also aid readers in realizing they are encoun-
tering a particular object for the first time, and have not inadvertently 
overlooked its meaning. 

6. In conjunction with remark 5, the reader should note that definitions or 
descriptive titles that will be used and referred to through the text are often 
embedded in an explanation, remark, or proof of a statement. In order to make 
these easier to recognize and locate for later reference, they will be written in 
boldface lettering to improve visibility. As with any special symbols used, all 
can be found in the symbol or subject index. 

7. As the final comment, the student should note that in order to more 
clearly specify the actual end of a proof, we will always use the symbol ■. No 
special meaning should be attached to this symbol, as it merely serves as the 
obvious visual indicator of the end of an argument. 

PRODUCTS AND THE PRODUCT TOPOLOGY 

While products and the product topology are not difficult concepts, but are 
standard fare in any course in general topology, somehow it often appears to 
be one of those topics quickly lost at the conclusion of the course itself. While 
it is certainly assumed the readers are capable of reexamining some of this 
material on their own when it is necessary, we include here a short overview 
of this material as both a ready reference and particularly to remind the 
student of the concept of weak topologies. A good grasp of these general ideas 
will serve the reader well when we encounter them in Chapter 3. 
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Of course, at this point there is no reason, a priori, to simply read through 
the material that follows. Scan it now, remember it is here, and then return for 
a closer look should this become necessary at some point in the future. In any 
case, we now give a quick walk through the basic ideas. 

Let Γ be an arbitrary directed set and for each ye Γ, let (Χγ,τγ) be a topo-
logical space.The Cartesian product (or just product) of the family {(Χγ,τγ)}γ£Γ 

is the set of all functions / : Γ-> [}γΐτΧΥ, where for each ye Γ we have 
/(y) e Xy. For notational purposes, we will denote this collection of functions 
by ΠΤεΓΧγ or by nrXr when this will cause no confusion. It is easy to see that 
there is another way to view the elements of a product; namely, each element 
x e nrXr can be realized as a net in the following way: 

xeYlf-Χγ if and only if x = {xY) er where xr eXr for every y eT. 

Hence statements about the elements of an (arbitrary) product space are auto-
matically statements about nets. 

In addition to the preceding remarks, we employ the following conventions 
both to simplify the notation used and because the reader is likely to 
encounter (or has encountered) these same concepts in other books and con-
texts where they are frequently found: 

1. If the family Γ is countable, say we have X\,Xi,... ,X„,..., then we will 
write the product as UnX„ to conform with our other notations. 

2. If for each ye Γ we have XY=X (that is, all the spaces XY are the 
same space X), then we will write the product nrXxas Xr; often as Χω 

should Γ = Ν. 
3. Finally, in the case that we have a finite product of spaces that are all the 

same, say X,; = X for i = 1,2,... ,n, we will write Π"=λ X¡ = X". 

We now indicate how to topologize the product ΠΓΧγ of a number of topo-
logical spaces. 

For each y0e Γ, define the map πΥο: nrXr-> Χϊο by TCY(f)=fr. That is, 
πΎο is the map that selects the y0th-coordinate of /, for each / in the product. 
Each such map πΥ is called the y-coordinate map or the y-projection 
map. 

By definition (that is, we are defining it here) the product topology on UrXr 

will be the weakest topology on the product for which each of the maps πγ, 
for ye Γ, is continuous, that is, it is the smallest topology for which all of the 
projection maps are continuous. 

It can be seen that a local base of open sets for the product topology is the 
family of all sets of the form n*=i7r^(Urt), where each set \JYk is a τ^-open set 
in XYk, for k = 1,2,...,« and n s N. That is, each such set is a finite intersec-
tion of inverse images of open sets under the (appropriate) projection map. 
Thus, if / e ΠΓΧγ, then a fundamental system of neighborhoods of / is the 
family of all sets of the form: 
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{g e Ilr^r : g(Tk) ε Ur„ for k = 1,2,... ,n, where U/t is Tn-open} 

At this point it is well worth pausing to consider that there is another way 
both to "think" about the product topology and to describe it. This is as follows: 
Take as a base for the open sets of the product all sets of the form nrUr, where 

1. for each ye Γ, Uris open in Xr; 
2. for all but finitely many ye Γ, we have Ur= Xr; 

that is, sets like nrUr , where Ur=Xr for all y except some finite number 
7= Yuft, ■ ■ ■ ,7n- Note that this set can now be written as 

n r u r - π;ΐ (ur,) n < (ur2) n · · · n < (ur.) 
= Π2=.<(υ7(). 

In other words, we have 

/ e n r U y if and only if /(y) e Ur for all y e Γ; 

if and only if / e π^ (Ur) for all y e Γ; 

if and only if / e ΠΓ π"1 (Ur); 

if and only i f / ε η ΐ . ! ir"1 (Ur.) 

(since any time Ur= Xr, then πγ\Όγ) = πγ1(Χγ) = ΠΓΧ7). 
The following characterization should, by itself, justify our interest in this 

topology on the product. 

Proposition 1. Let X be a topological space and f.X—>ΠΓΧγ, where the 
product has the product topology. Then / i s continuous if and only if ;ry

o/is 
continuous for each ye Γ. 

Proof. Clearly if/is continuous, so is Ky°f for every ye Γ, since the com-
position of continuous functions is continuous. On the other hand, suppose 
that nr°f is continuous for all ye Γ. Since sets of the form πγ\υγ) for ye Γ 
and Uropen in Xrform a subbase for the topology on UrXr, to show that/is 
continuous, it suffices to show thatf~l(Kyl(Ur)) is open for every subbasic open 
set π^(υ7). But note that this is clear since f'l(Ky\Ur)) - (Kr°f)~l(\Jy) and 
^ r ° / i s continuous by assumption.· 

Finally, we now make the connection between the product topology and 
"weak topologies" a little more explicit and, hopefully, a little clearer. First 
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recall that it is the topology of a space X that determines which functions are 
continuous on that space (remember, a continuous function is characterized 
by having inverse images of open sets being open; that is, being in the topol-
ogy o/X).Thus the topology one might impose on a particular set determines 
the continuous functions on that space, or put another way, if you know which 
functions you want to be continuous in advance, then you can (theoretically 
at least) give Xa proper topology so as to ensure your collection has that prop-
erty. A reasonable question to ask at this point is: Given a space X, what func-
tions might we want to be continuous? 

Well, as you might guess, while this depends on the circumstances involved, 
we can at least give some idea some of the time. For example, suppose X is 
Euclidean «-space R". The most natural set of functions we might want to be 
continuous is the collection of coordinate functions /„; that is, the set of func-
tional that assign to any n-dimensional vector its «th-coordinate. Now, as we 
all know, the natural topology on R" does make each of these continuous; in 
fact, any function whose range is R" is continuous exactly when its composi-
tion with each of these coordinate functionals is continuous. Of course, con-
sidering what we have said so far about product topologies (and about what 
you already know about R"), it should be clear this natural topology on R" is 
exactly the product topology. In fact, it can be shown, without too much work, 
that this topology is the weakest (or smallest) topology that can be put on R", 
which makes each coordinate functional continuous. 

This idea can very naturally be carried a bit further, not only to products 
of sets besides R, but to arbitrary products of any sets. That is, given a collec-
tion of spaces Xy, for yin some arbitrary index set Γ, we want to put a topol-
ogy on the product of the Xr that will make each of the coordinate (or 
projection) maps πγ continuous, this being as natural in this context as it is in 
U". Accordingly, the product topology on these sets is called the weakest topol-
ogy for which each projection map is continuous, a natural enough idea. 

So, what we basically have is that in the setting of taking a product of spaces, 
where the maps we want to be continuous are fairly evident, the product topol-
ogy is the weakest topology we can put on the product making each of the 
given maps continuous. But suppose now we are in a setting where we have 
a space X (not necessarily a product), and a collection of functions on X 
(perhaps each mapping into a different space); we should still be able to talk 
about the weakest topology on X that makes each of these maps continuous, 
and in fact we can; the definition embedded in the next paragraph makes this 
explicit. 

Suppose we are given a set X and a topological space Xr with a map 
fy: X —> Xy for each ye Γ. We will call the weak topology induced on X by 
the collection {/,,: ye Γ} the smallest topology one can place on Xfor which 
each /,, is continuous. It should be evident that this topology is that for which 
the sets 

fr' (Ux) for y e Γ and Ur open in Xy 
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form a subbase. Clearly, the product topology on ΠΓΧγ is the weak topology 
induced by the collection \ny: ye Γ) of projections. It should also be clear that 
Proposition 1 carries over to any weak topology in this sense, without any 
essential change in the proof. That is, we have the following proposition. 

Proposition 2. If X has the weak topology induced by a collection [fy: ye Γ) 
of functions / r : X - > X r , then / : \) —>X is continuous if and only if fr°f: 
y —> XY is continuous for each ye Γ. 

One final comment here before turning to some of the basics of finite-
dimensional spaces. These relatively simple ideas concerning weak topologies 
will be just as relevant for us in considering normed linear spaces. Here, one 
of our concerns will be to take a given space X endowed with the topology it 
naturally inherits from its norm and seek to find the weakest topology that 
can be given to Xthat still yields its topological dual space remains unchanged. 
In other words, we want the weakest topology for which all the (norm) con-
tinuous linear real-valued functions on X are still continuous. The full resolu-
tion to this search is the primary content of Chapter 3. 

FINITE-DIMENSIONAL SPACES AND RIESZ'S LEMMA 

Our purpose here is simply to remind the reader of a few of the basic ideas 
concerning spaces of finite dimension with which they should be familiar; no 
attempt is made at completeness in any sense. In fact, our primary concern 
will be to make clear to the reader that linear spaces of the same (finite) 
dimension are always algebraically isomorphic and that if endowed with a 
norm, are isomorphic topologically as well. The easiest way to realize this, and 
one we will look closely at in Chapter 5, comes from considering the concept 
of a basis in this setting. 

Definition 1. Let X be a (nontrivial) linear space. A collection H of vectors 
from X is called a Hamel basis (or often just a basis) for X if H is a linearly 
independent set in X and the subspace of X generated by H is all of X (that 
is, span (H) - X). 

A particular consequence of the definition itself is that every element of the 
space has a unique representation as a (finite) linear combination of basis ele-
ments. That every linear space (regardless of its "dimensionality") has such a 
basis is a direct result of Zorn's Lemma, whose proof will not be given here. 
The reader who has somehow missed (or simply misplaced) these results is 
urged to spend a short time looking at the ideas inherent here; there are some 
very nice, and eminently useful, techniques that are well worth adding to one's 
repertoire. While any reasonable linear algebra text will yield such a presen-
tation, one good source is Friedberg et al. (1989). 
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As indicated earlier, the following well-known result is of some importance 
to us because of its use and implications for more general normed linear spaces 
and hence for Banach spaces. 

Proposition 3. If X and y are both «-dimensional linear spaces with the same 
scalar field, then they are (algebraically) isomorphic. 

Proof. Letting S denote the underlying scalar field, we will prove that X 
(and hence A/ as well) is isomorphic to S" (and so isomorphic to each other 
by the symmetric and transitive nature of the "isomorphic" relation). 

To see this, let x]yx2,... Λ be a basis for X so we have that every x s X 
has a unique representation as x - s,*, + s2Xi + · · · + s„x„, where each s, is 
in S. We now define the operator T : X-> S" by T(x) = (s]rs2, · · · s„). It is 
straightforward to verify that T is linear, bijective, and hence that T-1 exists 
(and is by necessity also a linear bijection). The details we leave to the 
student.■ 

Before we give our next result, the student should recall that we often con-
sider linear spaces with a topological structure as well as just an algebraic 
one. In particular, as previously indicated, this topological structure results 
from endowing the space with a norm; that is, if X is a linear space, a norm 
on X is a mapping ||-||: X -> [0, °°), satisying the properties (i) ||x|| = 0 if and 
only if x= Θ (the zero vector in X)\ (ii) for any scalar λ and any x € X, 
||λϊ|| = |λ| ||.x||; and (iii) for any x,y e X, we have ¡JC + y\\ < \\x\\ + \\y\. In this 
case, Proposition 3 can be extended to give finite-dimensional spaces that are 
topologically as well as algebraically isomorphic. 

Proposition 4. If X and \f are «-dimensional normed linear spaces with the 
same scalar field, then they are topologically isomorphic. 

Proof. Again we show that if S is the underlying scalar field, then both X 
and y are isomorphic to §", allowing us to conclude our result as before. 

So, let X be an «-dimensional normed linear space over § with 
\x\,xi, ■ ■. ,xn\ a basis for X. Define the operator T : S" —> X b y 

Then, by Proposition 3, we know that T is a linear (algebraic) isomor-
phism. That T is continuous follows immediately from the fact that the 
addition and scalar multiplication operations on such spaces are themselves 
continuous maps; as the student should verify (for pedagogical reasons, 
we prove this shortly as Proposition 1.1 in Chapter 1, the needful student 
may merely "look ahead"), T is continuous. Thus, we need only show that 
T"1 is continuous. 
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To do this,first note that S s ( j e S": ||s|| = 1},being closed and bounded,is 
compact in S" by the Heine-Borel Theorem. Hence T(S) is also compact, and 
hence closed, in X. Since T is an isomorphism, Θ i T(S), and so there must be 
some open set U, containing Θ, such that U Γ) T(S) = 0 . Now choose δ> 0 
so that if V B [x e X: ||*| < δ], then V c U. We claim that V c T(B), where 
B = {s e S": ||s| < 1). In fact, if x e T(B), then x = T(z) for some z e §", with 
||z|| > 1. Note if x e V, then JC/||Z|| e V, which is impossible since 

¡Hil>T<S) 

and we know V D T(S) = 0 . Thus it must be that V e T(B). But then we have 
T ' ( V ) c B and T _ 1 ( (1/Ä)V) c(l/5)B. From this, in turn, we get (1/S)V = 
\x& X: |[x|| < 1}, and so T_1 maps the open unit ball in X into a bounded set in 
S" (thus every bounded set of X into a bounded subset of S") and hence 
T "' is continuous, as was needed.· 

For the sake of completeness here, you should note (and naturally be able 
to verify) the following useful facts all come directly from this theorem: 

1. In finite-dimensional normed linear spaces, closed bounded sets are 
always compact. 

2. Any finite-dimensional normed linear space is complete. 
3. In a general normed linear space, all finite-dimensional linear subspaces 

are closed. 

As a final result in this section we present the very general and useful classic 
result of F. Riesz, now known as Riesz's Lemma; sufficiently interested readers 
should see Riesz (1918) for his original presentation. You will note that it is 
not restricted to finite-dimensional spaces at all, but holds in any normed linear 
space setting. We will initially encounter its use when we first consider the idea 
of approximation in Chapter 4. 

Theorem 1 (Riesz's Lemma). Let X be a normed linear space and X be a 
proper closed subspace of X. Then for each real number a with 0 < a < 1, there 
is an xa e X such that ||χ0|| = 1 and ||ΛΓ - *„|| > a for all x e X,. 

Proof. Let Xi be any element of XOQ and let rf = inf{|[jc — JCI|| : Λ: e X,}. 
Since X, is closed, we know that d > 0. Now, since (1/a) d>d,we know there 
is some x0 e X, such that ||JC0 - *i|| < (1/a) d. For notational purposes, we 
will let h s||*0-Xif1, and choose xa = h (x0-xx). Then HJĈJI = 1, and if we let 
x e Xo, so is h~lx + x0, and so 

||* - ocJI = \\x- hxx + hxa\ = h KA"1* + *0) -xt\\>hd. 
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But, h d = \\x0 - jCi|| ld > a by the way in which x0 was chosen, and so 
||JC - JC„|J > a for all x e Xo, and we are done.B 

We can restate Riesz's Lemma as: Given any closed, proper subspace X, of 
a normed linear space X, there exist on the surface of the unit ball of X points 
whose distance from X0 is as near to 1 as we wish. This will prove useful to 
recall later in these notes. 

One should note that while we can always find points as close to a distance 
of 1 from Xo as we want, it is not true that we can necessarily find points on 
the surface of the ball whose distance from X0 is exactly 1. A relatively simple 
example of this can be found in the space C ([0,1]) of continuous real-valued 
functions on [0,1] [see, for example, Taylor (1958)]. 

THE DANIELL INTEGRAL 

Typically, when we think of developing a general theory of integration, we fall 
back on our experience in dealing with the Lebesgue integral, or perhaps even 
the Riemann integral. We begin with some notion of the measure of nice sets, 
and then extend this idea to include a more complex collection of sets on which 
we have a structure that allows us some control over their interrelationships. 
We then balance this with wanting to have a sufficiently rich collection of 
sets so that our notion of measure is not only "natural" in some sense, but 
allows the flexibility we will need to accomplish our goals; that is, be able to 
work with the broad range of functions we will need or want to be able to 
"integrate". Of course, this naturally leads us to considering what collection 
of functions our notion of measure will need or be able to "handle", and of 
what natural idea of integration will be compatible with these restrictions. 

Thus, often enough to make the point at least a valid one, we begin with 
measuring sets in such a way it directly generalizes our elementary notion of 
length, use this notion to generate a broad class of functions that will be "nice" 
(i.e., measurable) in this context, and then develop an integration theory con-
sistent with our old Riemann and Lebesgue integrals and hope for the best. 

Instead, what we will do here—and the rationale for including this mate-
rial in this text at all—is a little different and may not have been encountered 
by the typical student. We will begin with some kind of simple or "elemen-
tary" integral defined on a small collection of "elementary functions" and then 
work toward enlarging this set of functions (and consequently extending our 
integral) to larger collections in such a way that the result has all the proper-
ties we want to be able to retain from the Lebesgue integral. Of course, coming 
with this will be a resultant concept of measure, so that eventually we arrive 
at the same end as before. 

The first person who really successfully carried out this process was the 
English mathematician RJ. Daniell, who did most of his work in the early 
1900s, and thus the basic integral obtained in this fashion is usually called the 
Daniell integral (or Daniell functional). The development we sketch next, 
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while far from all-encompassing, will roughly follow his lead. The reader 
should note that there is an assumption here that full details need not be given 
and that general ideas together with indications of techniques will be sufficient 
either to allow the reader to supply the missing justifications on their own, or 
find the motivation to seek more comprehensive and complete developments. 
Such can be found, for example, in the well-written Real Analysis by Royden 
(1963), whose general presentation we follow here. 

We begin by introducing the appropriate setting and putting forth some 
fundamental definitions. You should note that our immediate focus is on a 
fairly general collection of functions over which we have a moderate degree 
of control and on how we might define their integral in a reasonable fashion; 
ideally, the rest will follow. 

Let Ω be a set and L be a family of real-valued functions defined on Ω 
closed under finite linear combinations and with fv g (s max(/,g}) and / Λ g 
(= min{ f,g}) in L whenever / and g are in L (you should recall that such a 
family is called a vector lattice). While this may initially seem to be a very 
abstract collection of functions to be concerned with, it is easy to see that any 
linear space L of functions is a vector lattice, provided we require / v 0 to be 
in L whenever/is (just note /vg = ( / - g) vO + g, w h i l e / A g = / + g - ( /vg)) . 
So, those linear spaces of functions that include the "positive" part of each of 
their members, or / + = / v 0 for each /, are always vector lattices. Of course, as 
l/l = / + + (-/)+> these spaces are closed under the taking of absolute values. On 
the other hand, if we have a vector space L with | / | e L when/e L, it is always 
a vector lattice, as /+ can be realized as y(/+1/|), so these restrictions are the 
same. 

Now let / be a (real-valued) linear functional on L. Here / is called posi-
tive if /(/) > 0 for each nonnegative function fe L. Note that such function-
a l always preserve the order of L; that is, if f<g, then /( /) < 1(g). A positive 
linear functional / on L is called a Daniel! integral (or sometimes a Daniell 
functional) if it satisfies the following condition: 

If (/„)„ c L is increasing with /(ω) < lim,, fn((o) for all ω e Ω, 
then/(/)< lim „/(/„). 

Since we will use them interchangably, it is worthwhile to note, and the student 
should certainly verify, that this condition is equivalent to the following 
property: 

If (/„ )„ c L is a sequence of nonnegative functions with /(ω) < ^ n /„ (to) 
for all ωεΩ, then / ( / ) < £ „ /(/„)· 

There are, of course, many examples of Daniell integrals we are already 
familiar with. For example, we can let L be the family of all continuous func-
tions on IR that vanish outside of some finite interval, and take / to be the 
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Riemann integral. Or, we can let L be the family of all simple functions defined 
with respect to a given measure μ, with / being the natural integral (i.e., 
I(s) = Σ£,α,μ(Α), where s = ILUOÍXA)-

More generally, in the preceding example we could take L to be all integrable 
functions with respect to the measure μ provided we take care that the sum of 
two functions is not defined at points where we would get °° - °°. (To guarantee 
this, just require/+ g to be in L whenever it is well-defined, and / : L -»0? to be 
a mapping satisfying I(af) = cdl(f) and 1(h) - 1(f) + 1(g) whenever h=f+ g).A 
positive linear functional / on L, in this sense, is called a Daniell integral if it 
satisfies any one of the (equivalent) conditions given earlier. 

What we would like to do is extend our basic Daniell integral to a wider 
class of functions than just L itself; namely, to the collection of all extended 
real-valued functions on Ω that can be realized as the limit of a monotone 
increasing sequence of functions from L. If we denote this class of functions 
by Le, it should be clear that Le is a vector lattice. As for any increasing 
sequence (φ„)„ from L, (Ι(φ„))„ is an increasing sequence in U and so has limit 
(or is +00), we define the integral any/in Le to be /( /) = ϊΐτη„Ι(φ„). It is straight-
forward to verify that /(/) depends only on/itself, not on the sequence (φ„)„. 

Thus, we have extended the Daniell integral to the family Le on which it pre-
serves the order of Le and satisfies I(af+ ßg) = oJ(f) + ßl(g) for α,β > 0 and 
/,ge Le. Moreover, if/ is any nonnegative function, with (φ„)„ an increasing 
sequence from L with / as their limit, by replacing each <p„ by φ„ ν 0, we can 
assume each φ„ is nonnegative. Also by letting ψ\ - ψ\ and ψ„ = φ„- φ„-\ for 
n > 1, we have/= Σ„ψη and that /(/) = lim„ Ι(φη) = lim„ I(lUWk) = lim„ ΣΖ=1/(ψ*) 
= ΣηΙ(ψη), so that/E Le exactly when there are nonnegative functions (φ„)„ c 
L with/= Σ„φ„. Of course, with this we get not only that the sum of any sequence 
of nonnegative functions from Le is still in Le, but that Ι(Σ„/„) = Σ„Ι(/„). 

The extension of the Daniell integral to an arbitrary function on Ω 
is now pretty standard: one defines the upper and lower Daniell integrals by 
/ ( / ) a inf{/(g): g > / and g e Le} and /(/) = - / ( - / ) ) , and declares a function 
on Ω to be Daniell integrable whenever /(/) = / ( / ) = /( /) < °°; the class of all 
Daniell integrable functions on Ω is denoted by Li. Of course, we need to know 
we have a legitimate extension of / to the collection L], and the basic proper-
ties listed below guarantee this. As their verification is straightforward, we 
leave these to be supplied by the student: 

1. Haf+ßg) < al(f) + ßl(g) for α,β > 0; 
2. Both / and / preserve order; 
3. /(/) < / ( / ) , and they agree on / e Le; 
4. Ί(Σ„/„) < Σ„/(/„) for any nonnegative functions (/„)„ on Ω; (given ε> 0, 

for each n just choose g„ e Le, with g„ >f„ and I(gn) < I (f„) + ε/2"). 

It should be noted that L] is a vector lattice; while this is not difficult to 
see (one just shows that Li is a linear space with / + e L] for each fe L,), it 
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involves enough manipulation to be a bit messy. We will avoid the techni-
calities here. 

Not surprisingly, the Daniell integral does satisfy appropriate versions of 
the major convergence theorems enjoyed by integrals arising from more stan-
dard measures. Again, we will not give full details here, but try to indicate the 
primary direction and idea needed. We begin with the Daniell counterpart to 
the monotone convergence theorem. 

Proposition 5. If (/„)„ is an increasing sequence in Li with /=lim„/n, then 
/ e L] exactly when lim„ /(/„) < °o; in this case / ( / ) = lim„ /(/„). 

Proof. The necessity of the condition is easily seen, sufficiency follows from 
letting g s / - / i , and noting g = Σ„(/„+1 -/„) so that we have / (g) < lim„ /(/„) -
/(/i). This immediately yields /( /) < limn /(/„), with the other half of the 
inequality following from noting /( /) > lim„ /(/„)■■ 

Fatou's lemma in the Daniell context is given by the following proposition. 

Proposition 6. If (/„)„ ς; Li are nonnegative, then inf„/„ e L! with Hm „/„ e Lt 

whenever lirn„ /(/„) < «>. In this case /dim, /„) < lim„ /(/„). 

Proof. If, for each n e M, we let g„ =f Λ/ 2 Λ · · · Λ/„, then (g„)„ c Li, which 
decreases to infn /„. Noting (~gn)„ increases to -inf„ /„, a moment's reflection 
on Proposition 5 yields inf„ /„ e Li. Now, for each n, setting h„ = inf{fk: k > n) 
gives us a (nonnegative) sequence in L[ increasing to lim„/n, which must 
be in Li, as limn/(/i„) < Urn „/(/„) < °°. The final inequality is immediate from 
Proposition 5M 

The final result in this context is just the Lebesgue dominated convergence 
theorem, which also tells us / really is a Daniell integral on Lj. 

Proposition 7. Let (/„)„ c L, with, for all ne N, \f„\ < g for some g e Li. Then 
/(lim„ /„) = lim„ /(/„). 

Proof. As in the standard case, this proposition follows almost directly 
from Proposition 6. Just note that (/„ + g)n is a nonnegative sequence in Lt 

with /(/„ + g) < 21(g), so that lim„ /„ + g e Lu with /(lim„/„ + g) < \jm„ /(/„) + 
1(g). Of course, we now have 7(lim„/„)< lim „/(/„). Since (g-fn)n is also 
a nonnegative sequence with 7(g-lim„/n) < 1(g) - lim„ /(/„), /(lim„/„)> 
lim„/(/„) gives us all we need.B 

The last result that we need here is due to Marshall Stone. In some ways it 
pulls all of this together and ties our new Daniell integral back to the inte-
gration theory developed in the more standard manner. In order to see this, 
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we must first introduce the concept of measurable functions, and of measures, 
as they arise in this context. 

Thus, we say a nonnegative function / on Ω is measurable (with respect to 
/) if / Λ g € Li for all ge L,. Because Lj is a vector lattice, it follows that / v g 
and/Ag are measurable whenever/and g are nonnegative measurable func-
tions; from this it is not hard to see that lim„/n is measurable as long as the/„ 
are. Measurable (and integrable) functions naturally give rise to sets with these 
properties; in fact, E c Ω is called a measurable set if its characteristic 
function χΕ is measurable, and an integrable set if χΕ is integrable. It is not 
difficult to see (and a straightforward exercise to prove) that provided Ω is 
measurable (that is, 1 is a measurable function), the collection of all such 
measurable sets is a σ-algebra. 

We make one final comment before taking the last step we really need here. 
Suppose our measurable sets are a σ-algebra and/is a nonnegative integrable 
function. Note if a<0, then Ε = (ω:/(ω)>α} = Ω and so is a measurable set. 
If cr>0, consider the function g = (\la)f-{{lla)f/\\), and note we have 
ge Li with g(ß))>0 for all ωε Ε. Since it should be clear that (lA/ig)n 

is a sequence from Li increasing to χΕ, we have that χΒ is measurable so that 
E = {ω:/(ω) > a) is measurable (for any as R) as well. 

So, measurable functions? Measurable sets? There should be a measure 
somewhere in sight. Well, let's define the set function μ on the σ-algebra of 
measurable sets by 

(E\ _ Í 7 ^ E ) if E is integrable 
[sup{/i(A): A is integrable with A c E } otherwise. 

It should be clear that μ(0) = 0 and that μ(Α) < μ(Β) for A and B integrable 
sets, so it must hold for measurable sets as well. If E = UnE„, where the E„ are 
pairwise disjoint measurable sets, then given any integrable A ς: Ε, if we let 
A„ = A (Ί E„, then each A„ is integrable and, by Proposition 5, μ(Α) = Σ„μ(Α„) 
< Σ„μ(Εη) so that μ(Ε) < ΣΛμ(Ε„). On the other hand, if μ(Ε) < °o, then given 
ε > 0, for each n we can find an integrable A„ c E„ with μ(Α„) > μ(Ε„) - ε/2". 
But this means that μ(Ε) > Σπμ(Α„) > Σπμ(Ε„) - ε, so that μ(Ε) > Σ„μ(Ε„). As 
this inequality holds even if μ(Ε) = °°, we actually have that μ is countably 
additive and hence is a measure as we wanted. 

We are now ready for the main result toward which we have been labor-
ing; namely, the beautiful theorem of M.H. Stone that tells us that the natural 
integral with respect to this measure μ is exactly the Daniell integral / on L^ 

Theorem 2 (Stone's Theorem). Let L be a vector lattice of functions on a set 
Ω with the property that / e L implies that 1 Λ/e L, and let / be a Daniell 
integral on L. Then there is a σ-algebra Σ of subsets of Ω, and a measure μ 
on Σ, such that each / on Ω is integrable with respect to / if and only if it is 
integrable with respect to μ; moreover, we have /(/) = ί/άμ. 
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Proof. Note that by the preceding discussion, we have that the family Σ of 
measurable sets with respect to / do form a σ-algebra, and that each nonneg-
ative /-integrable function is measurable on Σ. Since each such /-integrable 
function is the difference of two nonnegative /-integrable functions, every /-
integrable function must be measurable on Σ. Moreover, if we deñne μ as in 
the last paragraph, and let/be any nonnegative /-integrable function, then for 
any n and k in N we have Ekjl = [ω& Ω: f(aj) > kin) is measurable. Also, since 

# E M e Li with μ(Ε*„) < °°. If we now let gn = (1//ι)ΣΖ.1^Ε^ for each n e N , then 
(gnh C Li is an increasing sequence that converges pointwise to /, so that 
/ ( / ) = lim„/(#„). But 

Since ί/άμ = lim„ j g„ άμ, Proposition 5 yields /(/) = ί/άμ and / is integrable 
with respect to μ. Finally, as any /that is /-integrable is the difference of two 
nonnegative /-integrable functions, / is also μ-integrable with I(f) = ¡fdμ as 
desired. The difficult half of our result now holds. 

On the other hand, let / be any nonnegative function on Ω integrable 
with respect to μ. As before, we construct the sets Ek„ and the functions 
g„, and note that since each Ε*„ has finite measure, each g„ e L,. But then 
Proposition 5 yields that we have / e L, [after all, (g„)n increases to / and 
lim„/(^„) = ¡f άμ < «>!], that is, / i s integrable with respect to /.■ 

As a final comment, it is worth noting that it is not all that difficult 
to show that if we take Σ to be the smallest σ-algebra for which each 
/ e Lj is measurable, then the measure μ corresponding to each Daniell 
integral is unique. 
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BASIC DEFINITIONS 
AND EXAMPLES 

In this chapter we present many of the fundamental examples of 
Banach spaces that should serve as an indication of the type and broad range 
of spaces we will be concerned with throughout most of the remainder of 
this book. While we will, in fact, encounter some other examples and 
some arguably rather basic results in later chapters, most of what are 
now considered to be the elementary "classic" Banach spaces are contained 
herein. 

The chapter is divided into two sections: the first presents the basic 
examples of the spaces themselves, as well as some of the standard 
fundamental ideas and results we will need in our subsequent work; the 
second section is devoted primarily to calculation of the "dual space" (or 
space of continuous linear scalar-valued functions defined on the original 
space) of many of our examples from the first section. The importance 
of understanding the relationship between a space and its dual will ini-
tially become most apparent beginning in Chapter 3, where we first begin 
to really develop some of the deeper consequences of this relationship. 
For now, however, we begin building our collection of concrete spaces and 
elementary facts. 

1.1 EXAMPLES OF BANACH SPACES 

While it should be clear that the reader of this text should already have a 
passing familiarity with normed linear spaces, without belaboring the point we 
begin with the relevant definitions and ideas. 

Definition 1.1. Let Xbe a linear space (that is, a vector space). By a norm on 
Xwe will mean a mapping | | | : X —> [0,«>) such that 

17 



18 BASIC DEFINITIONS AND EXAMPLES 

(i) \\x\\ = 0 if and only if x = Θ (the zero vector in X); 
(ii) ||·|| is positive homogeneous; that is, for any scalar λ and any x e X, we 

have|A*| = W|x|; 
(iii) ||·|| is subadditive; that is, for any x,y e X, we have ||* + y\\ < \\x\\ + ||y||. 

In this case, the pair (·Χ»||Ί|) is called a normed linear space. Sometimes, if it 
is clear what the norm is for a particular space X (such as the norms defined 
for the spaces in all of Examples 1.1-1.12 in this section), or if Xis just an arbi-
trary normed linear space with whatever generic norm "||||"Xmust have, we 
will drop any specific representation of the norm and just refer to the pair 
(X,||||) as the normed linear space X. 

Before considering our first examples, it is important to notice that all 
normed linear spaces (X||||) have the more familiar property of being metric 
spaces. That is, one can always induce a metric structure on X via the formula 
p(x,y) = \\x- y\\- Thus, this functional p as just given, is a well-defined metric on 
the linear space X [so that (X,p) is always a metric space, as the student should 
be able to readily verify for himself]. This leads us to the next definition. 

Definition 1.2. We say that a normed linear space (X,||||) is a Banach space 
whenever the metric space (X,p) derived from (Χ,||·||) as before is a complete 
metric space. 

Thus, in a Banach space X unless otherwise noted, convergence is always 
with respect to the metric induced by the particular norm for X. 

Before proceeding further, we give some examples and simple conse-
quences of these definitions. We start with a list of basic, and what should be 
familiar, examples. 

Example 1.1: IR and C. The real number system, IR, with its usual linear struc-
ture and norm defined to be "absolute value" is a Banach space, as the student 
should know from any typical undergraduate analysis text. Likewise, the 
complex numbers, C, together with its usual linear structure and absolute value 
for a norm, constitutes a complex Banach space. (We shall agree to use the 
word "complex" whenever the underlying scalar field of a Banach space is 
specifically the complex number system, otherwise, all Banach spaces referred 
to are real Banach spaces.) 

Example 1.2: W and C . Let n e N, then Euclidean it-space, IR", with the usual 
linear operations of vector addition and scalar multiplication together with the 
Euclidean norm for x - (xhx2,x3,... ,xn) e IR" defined by 

IWI=IK*I , *2, *3 , . . . , * „ ) i i = ( Σ ι = ] xf) 
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is a Banach space that is sometimes denoted by the symbol l\ (note that here, 
the 2 refers to the "/2-norm", which will be defined in Example 1.9, while the 
n refers to the dimension of the space and signifies that we are looking at some 
sort of finite-dimensional space). In proving that IR" with this norm is a Banach 
space, the only seemingly difficult step is in establishing Property (iii) of the 
norm. While the student should either already know or be able to verify this 
directly, we will postpone our proof until Example 1.9, where it will be estab-
lished in a more general setting. The completeness of the Euclidean spaces 
comes, of course, from the fact we know convergence here is just "coordi-
natewise" convergence and, since IR itself is complete, verifying that this prop-
erty holds should represent no problem. One should note that similarly, C , 
complex Euclidean π-space, is also a Banach space. 

Our next example, standard fare in any reasonable beginning analysis 
course, is given here for good reason. The basic idea and techniques presented 
serve as a model (in fact, often with only minimal modification) for how to 
deal with a variety of similar, yet important, examples that will be encountered 
later. While this particular example is very specific, as it is worked through, the 
student should look for places where the specificity is not really used. Think-
ing about what properties of the underlying real interval and of the actual col-
lection of functions defined on that interval actually possess and of how these 
are really used to achieve the desired results will provide an insight into not 
only the following example, but into a number of other spaces, beginning with 
Example 1.7. Grasping this general idea of deducing more abstract-oriented 
information from particular more familiar examples is one that will not only 
arise often in one's mathematical career, but often provides the basis on which 
valuable research is conducted. 

Example 1.3: C([0,1]). The space C([0,1]) of continuous real-valued functions 
(or, complex-valued functions) on the interval [0,1] with the usual linear oper-
ations of pointwise addition and scalar multiplication is a Banach space when 
endowed with the norm: ||/||~ = sup{|/"(r)|: 0< i< 1) f o r / e C([0,1]). (Recall 
that we know this supremum exists since any continuous function defined on 
a compact set, such as [0,1], is bounded, and hence ||/||„ < °° for any such/.) 

To see that this is indeed a norm as claimed, first note that Properties (i) 
and (ii) of the norm are readily verified for ||||«,.To establish Property (iii), let 
/] and f2 be in C([0,1]) and observe that for each t e [0,1], 

l(/+/2XOI = D5(0 + /2(0|á|/WI+l/2(0|. 

Now note that by definition of the norm, we have |/i(r)| < ||/i||,„ and |/2(f)| < ||/2||„„, 
so that for each t, |(/, +f2)(t)\ < ||/,||M + ||/2||„. From this it follows that 

11/, + ΛIL = sup{| (/, + /2 XOI: 0 < r < 1} < 11/! |L -H ||/2 |L 
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and Property (iii) is established. 
Finally, to see that C([0,1]) is a Banach space, we must show that 

Cauchy sequences in C([0,1]) (with respect to the metric induced by ||·||_) 
converge in C([0,1]). So, let /„ e C([0,1]) for ne N, and suppose that ||/„ -/„,||~ 
-> 0 as n,m -> °°. We will first construct what turns out to be the "appro-
priate" function / : [0,1] -> U, then show that our sequence (/„)„ actually 
converges to this function, and finally conclude with showing this function is 
in C([0,1]). 

To this end, we first observe that since (/„)„ is a Cauchy sequence, there 
is for each ε>0 a natural number Nc such that \f„(t) -fm(t)\ <ε/3 for all 
n,m > Νε and all / e [0,1]. In particular, for each fixed t e [0,1] (f„(t))„ is a 
Cauchy sequence of real numbers and hence convergent. Now define for 
each te [0,1] :/(í) = limn/„(í) and observe that for all te [0,1], |/{í)-/m(í)| = 
lim„ |/π(/)-/m(f)|á ε/3 whenever n,m>Ne. From this it follows that given 
ε > 0, there is a positive integer Ne such that for m>Ne 

||/ - / JL - sup{|/(/) - fm(t)\: 0 < t < 1} < e/3 < ε 

so that (/m)m converges (uniformly, in fact!) to /. We need only show the 
continuity of / to be through. So, using the same Νε as before, for η = Ν& 
we have by the continuity of each /„ that given t e [0,1] there exists a neigh-
borhood U, of t such that if s e U„ then |/„(i) -f„(s)\ < ε/3. From this we have 
that if s e U„ then 

\f(t)-f(s)\<\f(t)-fn(t)Hfn(t)-fn(s)h\fn(s)-f(s)\ 

<ε/3 + ε/3 + ε/3 
= ε 

and thus / is continuous at t (for each t in [0,1]). The proof of this example is 
compete. 

One should note, before going to the next example, that embedded in this 
proof is the fact that the uniform limit of a sequence of continuous functions 
is itself continuous. 

Example 1.4: C(X). If one looks carefully at the previous example, it will be 
noticed that the set [0,1] itself was explicitly used very little except in defining 
the norm; essentially only the inherent properties of the set were employed. 
Consequently, if we substitute for [0,1] any Hausdorff topological space 3C that 
is compact, we have that C(JC), with its usual linear pointwise operations and 
norm defined by 

\\f\L = sup{\f(k)\:keX} 



EXAMPLES OF BANACH SPACES 21 

is a Banach space. Of course, if we consider the collection of all continuous, 
complex-valued functions on OC, then (C(X), \[\\«,) constitutes a complex 
Banach space. 

Before proceeding with any further examples, we will study a few of the 
basic properties of normed linear spaces. This first fact shows us that in a 
normed linear space, the topological structure (determined by the norm on 
the space), and the linear structure (given by the vector space nature of X 
itself) blend together nicely. It also gives rise naturally to a more general class 
of spaces, which include Banach spaces, and which, for us, it will be necessary 
to study and understand in greater detail. As a thorough comprehension of 
these spaces is not really needed until we begin looking at duality theory in 
Chapter 3, here we describe only briefly what they are and what specifically 
distinguishes them from Banach spaces. 

Theorem 1.1. Addition and scalar multiplication are always continuous 
maps for any normed linear space; that is, the maps φ:ΧχΧ—>Χ and 
ψ: § x X —> X defined by (p(jrlrx2) = *ι +*2 and ψ(λ,χ) = λχ are continuous 
maps for any normed linear space X 

Proof. A quick thought about the definition of continuity together with a 
careful choice of constants yields our theorem as an easy consequence of the 
following two inequalities: 

yix^xj- φ(χι,χ2% = \\{χι -χΊ) + (χ2 -xil^hi -*ill + lk> -*2II 

and 

\\ψ(λ,,χ])-ψ{λ2,χ2)\\ = \\λ,χι-λλχ2+λ]χ2-λ2χ2\\ 

¿W^Xi - λ^Χ2\\ + \\λ1Χ2 - λ2Χ2\\ 

=\λ,\\\χ>-χ2\\+\^-λ2\\\χ2\\. m 

Guided in part by this result, we can make the following definition, which 
distinguishes these kinds of "nice" topologies from others. 

Definition 1.3. Let X be a linear space endowed with a topology τ. We call τ 
a linear topology on X whenever the operations of addition and scalar multi-
plication are continuous functions from X x X and S x X into X, respectively. 
In order to adhere to historical distinctions, if T is also a Trtopology (i.e., if 
singleton sets are closed in X), then the pair (Χ,τ) (or sometimes it is written 
Χ(τ)) is called a linear topological space (or a topological vector space). 

Thus, another way to state Theorem 1.1 is that every normed linear space is 
a topological vector space (although the converse to this is false, as a little 
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thought about topologies and what it might take to be "normable" should 
quickly reveal). 

Using Theorem 1.1, an easy induction argument (which we leave to the 
student) will now yield a proof of our next fact. 

Proposition 1.1. In a topological vector space (Χ,τ), all (finite) linear 
combinations of the scalars λι,λ2,... ,λ„ and vectors ;clrx2, · · ■ ■PCn determine 
continuous linear mappings of the product space Π"=ι§ χ ITiiXinto X. 

Moreover, the mappings ψ and φ from X to X itself and defined by 
ψ(χ) = λχ (for a fixed scalar λ * 0) and φ(χ) s χ + y (for a fixed vector v in X ) 
are homeomorphisms of X onto itself. (Recall that this means both ψ and φ 
are one-to-one, onto, continuous mappings with a continuous inverse.) 

A particular consequence of the continuity of these linear operations is our 
next fact. The student should pay close attention to the proof itself, as we will 
encounter this same technique in the future. 

Theorem 1.2. The closure of a linear subspace y of a topological vector space 
(Χ,τ) is still a (closed) linear subspace of X. 

Proof. Given a subset A of X, let us use the notation cl(A) to denote the 
closure of the set A in the topology τ. 

Now, consider the map ξ: XxX-^X given by ξ{χ\^ι) = λχΧχ + λ2Χζ for 
fixed scalars kuX2. Note that since y is a linear subspace of X, we have 

and further that ξ~\ν) c |"'(cl(y)). Moreover, since ξ is continuous, 
^_1(cl(y)) is a closed set and thus cl(y) xcl(y) c ^ ' (cl(y)) . From this it 
readily follows that cl( y ) is also "closed" under the operations of addition and 
scalar multiplication, and hence is a linear subspace of X as claimed.■ 

We now continue with our examples by presenting a common way in which 
new normed linear spaces arise from known spaces. 

Example 1.5. Let X be any normed linear space and y be a linear subspace 
of X. Then note that the restriction of the norm on X to y is clearly a norm 
on y. Under normal circumstances, this "restricted" norm is denoted with the 
same symbols as the original (the usage will thus be clear from context). So, 
we have that linear subspaces of normed linear spaces are themselves, in a 
natural way, normed linear spaces. 

Again, if we let X be a normed linear space and y be a linear subspace of 
X, then by Theorem 1.2 the closure of y with respect to the norm topology 
(that is, the topology induced by the metric derived from the norm) is a linear 


