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Preface 

Combinatorics has been very active since the appearance of the first edition 
of this book in 1967. Important new results and new methods have both 
broadened and unified the subject. 

In the period 1972-1975 Richard Wilson proved the major asymptotic result 
on block designs. For a design D with parameters (t\ fc, r, k, A) the elementary 
relations bk = vr and r(k — 1) = k(v — 1) must hold. He shows that, subject to 
these conditions, given k and /., a design always exists for sufficiently large v. 
He treated the even broader case of pairwise balanced designs in which block 
sizes &,, i = 1, . . . , m are permitted. These results are given in Section 15.6. 

In 1926 B. L. van der Waerden conjectured that, for a doubly stochastic 
matrix (nonnegative entries summing to 1 in every row and column) of size, the 
minimum value of the permanent would be n !/w\ this being achieved with every 
entry being 1/n. The truth of this was proved by Egorychev in 1980. The proof 
of this is given in Section 5.4. 

Perhaps challenged by the statement in the first edition that "no infinite 
class of Williamson matrices has been found," Richard Turyn in 1972 found an 
infinite class. This is given in Section 14.3. 

The theory of error-correcting codes has been growing by leaps and bounds. 
Its relationship to design theory was brought out in 1973 by a major paper by 
F. J. MacWilliams, N. J. A. Sloane, and J. W. Thompson. This connection and 
some of its consequences are the subject of the new Chapter 17. 

This book is not an encyclopaedia. In particular, the recent proof of the 
famous four-color conjecture is not included. But a concious effort has been 
made to bring it up to date in the areas it covers. 

Many people have been helpful. A partial list is: H. J. Ryser, W. H. Mills, 
R. M. Wilson, W. G. Bridges, R. Mena, E. F. Assmus, J. L. Hayden, R. Calder-
bank, N. J. A. Sloane, R. J. McEliece, D. Knuth, S. S. Shrikhande, Navin 
Singhi, Clement Lam, J. H. van Lint, J. I. Hall, J. J. Seidel, and Robert Roth. 

MARSHALL HALL, JR. 

Atlanta, Georgia 
January 1986 
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Preface to the First Edition 

Combinatorial theory is the name now given to the subject formerly called 
"combinatorial analysis" or "combinatorics," though these terms are still used 
by many people. Like many branches of Mathematics, its boundaries are not 
clearly defined, but the central problem may be considered that of arranging 
objects according to specified rules and finding out in how many ways this may 
be done. If the specified rules are very simple, then the chief emphasis is on the 
enumeration of the number of ways in which the arrangement may be made. 
If the rules are subtle or complicated, the chief problem is whether or not such 
arrangements exist, and to find methods for constructing the arrangements. 
An intermediate area is the relationship between related choices, and a typical 
theorem will assert that the maximum for one kind of choice is equal to the 
minimum for another kind. 

The text is divided into three major segments. The first four chapters deal 
with problems of enumeration. Chapters 5 through 9 deal with the intermediate 
area of theorems on choice. Chapters 10 through 16 are concerned with the 
existence and construction of designs. 

The theory of enumeration is covered extensively in the classical work of 
Major P. A. MacMahon, Combinatorial Analysis, London, Vol. 1,1915, Vol. II, 
1916, and in the recent book by John Riordan, An Introduction to Combinatorial 
Analysis, John Wiley & Sons, Inc., New York, 1958. The treatment of this 
subject in the first four chapters of this book is relatively brief, and does not 
attempt to match the scope of these books. H. J. Ryser in the Carus mono-
graph, Combinatorial Mathematics, 1963, gives a brief but elegant account of the 
theorems on choice and the construction and existence of block designs. 

Many people have been helpful to me in preparing this book. These include 
Dr. Leonard Baumert, Professor Robert Dilworth, Dr. Karl Goldberg, Pro-
fessor Donald Knuth, Dr. Morris Newman, and Professor A. W. Tucker. 
Special thanks are due to Professors Garrett Birkhoff, Robert Greenwood, and 
Herbert Ryser, who read the entire manuscript and gave me many helpful 
suggestions. In preparation of the manuscript and correction of clerical errors, 
the assistance of Mrs. Kay Hardt, Dr. Allen Pfeffer, and Mr. Robert McEliece 
was invaluable. 
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X Preface 

I am indebted to the Literary Executor of the late Sir Ronald A. Fisher, 
F.R.S., Cambridge, to Dr. Frank Yates, F.R.S., Rothamsted, and to Messrs. 
Oliver & Boyd Ltd., Edinburgh, for permission to quote a portion of text from 
their book Statistical Tables for Biological, Agricultural, and Medical Research. 
I also wish to thank Dr. C. R. Rao of the Indian Statistical Institute and the 
editors of Sankhya for permission to quote from the paper "A Study of BIB 
Designs with Replications 11 to 15." 

MARSHALL HALL, JR. 

Pasadena, California 
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1 

Permutations and 
Combinations 

1.1. DEFINITIONS 

A permutation is an ordered selection of objects from a set S. 
A combination is an unordered selection of objects from a set S. 

We may or may not permit repetition in our permutations and combinations. 
Thus, selecting two letters from the three letters a, b, c, we have nine permuta-
tions with repetitions permitted: 

aa, ab, ac, ba, bb, be, ca, cb, cc. 

We have six permutations without repetitions: 

ab, ac, ba, be, ca, cb. 

We have six combinations with repetitions permitted: 

aa, bb, cc, ab, ac, be, 

and three combinations without repetitions: 

ab, ac, be. 

The number of permutations of n things taken r at a time, without repetition, 
written nPr, is easily evaluated. For in a permutation ala2" ar we may choose 
ax as any of the n objects, a2 as any one of the remaining (n — 1) objects, and 
having chosen axa2 * * * ai9 we may take ai+1 as any one of the (n — i) remaining 
objects. Hence, 

nPr = n(n - 1) • • • (n - r + 1) = —^— = (n)r. (1.1.1) 
(n - r)\ 

1 



2 Permutations and Combinations 

A combination of n things taken r at a time without repetition, say, ala2"ar, 
will lead to r! different permutations, namely, all r! permutations of ^ , . . . , ar. 
Hence the number of combinations of n things taken r at a time, written nCr, 
is given by 

. C , - ^ - - * - ( " ) . (1.1.2) 
r! (H — r)\r\ \rj 

which is the familiar binomial coefficient. Indeed, in the product (x + yf = 
(x + y) •••(x + y), the coefficient of the term xryn~r is the number of ways of 
choosing r of the factors x + y, from which we take an x, and then y from the 
remaining n — r factors x + y. We note that 

nCr = nCn-r. (1.1.3) 

The number of permutations of n things taken r at a time, repeats permitted, is 
nr, since in a1a2 • • • ar there are M choices for each of aj , a2,..., ar in turn. 

To find the number of combinations of n things taken r at a time with repeats 
permitted, we cannot simply divide nr by an appropriate factor, since different 
combinations may yield a different number of permutations. Thus, taking 
combinations of a, b, c\ d, e three at a time, the combination abc gives six per-
mutations, the combination aab gives three permutations, and the combination 
aaa gives only one permutation. Here we use the device of counting a different 
set, which is in one-to-one correspondence with our given set. To a given 
combination (say, bbd\ let us adjoin the entire set abcde and write the whole set 
in order abbbcdde and then insert marks separating the different letters thus: 
a | bbb \c\dd\e. In general, to a combination of r letters, repeats permitted, 
from a set of n letters adjoin all n letters and write in order the set of (n + r) 
letters and then insert (n — 1) marks between the different letters. Thus, with 
(n -f r) positions to be filled and (« + r - 1) spaces between these positions, 
we are to insert (n — 1) marks. The number of ways of doing this is 

"::7')-C+;-'> 
There is a one-to-one correspondence between the ways of inserting the (n — 1) 
marks in the (« + r - 1) spaces and the combinations with repeats of n things 
taken r at a time. Hence, this number is ("+r

r~ *). The expression for the number 
of combinations, n things taken r at a time, without repeats and with repeats, 
are similar in form. Thus, for five things taken three at a time, the numbers are, 
respectively, 

5 -4-3 A 5-6-7 
m and r^r 



1.1. Definitions 3 

where the factors in the numerators decrease in one case and increase in the 
other. 

The number of combinations with repeats permitted of n things taken r at a 
time is the number of solutions (xx, x 2 , . . . , x„) in nonnegative integers x, of 

r = Xj + x2 + • • • + xn, (1.1.5) 

where x, is the number of times the ith object is included in the combination. 
This suggests another, but similar, evaluation of the number of combinations. 
Put y{ = x, + l , i = 1 , . . . , n. Then (1.1.5) becomes 

n + r = yx + y2 + ••• + y„, (1.1.6) 

and, the number of solutions (y i , . . .,)>„) of (1.1.6) in positive integers y{ is 
clearly the same as the number of solutions of (1.1.5) in nonnegative integers. 
If we take (n + r) dots and place (n — 1) marks in the (n + r - 1) spaces between 
the dots, we may take yx as the number in the first set of dots, y2 as the number 
in the second set, and so on. Thus, again we see that the number of solutions of 
(1.1.6) is C ^ 1 ) , and this is in turn the number of nonnegative solutions of 
(1.1.5), and so it is the number of combinations of n things r at a time with 
repeats permitted. 

As a further application of this method we may find the number of combina-
tions of 1, 2 , . . . , n taken r at a time without including repeats or consecutive 
numbers. Let us list 1, 2 , . . . , n in order and put a mark after each number 
selected. If there are xx numbers before the first mark, x2 between the first 
and second mark, and finally xr+ x after the last mark, then these determine the 
choice and 

« = x 1 + x 2 + , " + x r + | , (1.1.7) 

where xx ^ 1, x2 ^ 2 , . . . , xr ^ 2, and xr+ x ^ 0. We now write 

n - r + 2 = X! + ( x 2 - 1) + ••• + (x, - l) + (xr + l + 1), (1.1.8) 

giving a representation of n — r + 2 as a sum of (r 4- 1) positive integers, and 
this number is (n~^+l), the number of ways of putting r marks in (n — r + 1) 
spaces. 

There are an enormous number of identities involving binomial coefficients, 
a few of which follow: 

loW = 2"; <»•>•*» 
0, n > 0 
1. n = 0: (1.1.9b) £<-< 



4 Permutations and Combinations 

These may be derived from the relation 

(1 + x)« -£& 
To obtain (1.1.9a) and (1.1.9b), put x = 1 and x = - 1 , respectively. For (1.1.9c), 
differentiate with respect to x and then put x = - 1 . For (1.1.9d), differentiate r 
times with respect to x, divide by H, and put x = - 1. 

If we have permutations ala2 -anofn objects, of which bl are of one kind, 
b2 of a second kind, and b{ of an ith kind for i running to r, where naturally 
bi + b2 + • • • -f br = n, we may first replace the b{ objects of the ith kind by 
distinct objects in every case, and then we have n\ permutations. But by identify-
ing the like objects, we have counted each permutation b1\b2\- br\ times. 
Hence, the number of permutations is 

bt +fc2 + ••• + fcr = n, (1.1.10) 
bx\b2\~-brV 

the familiar multinomial coefficient. 

1.2. APPLICATIONS TO PROBABILITY 

In a given situation let us suppose that there are n possible outcomes, which 
we label xl9 x 2 , . . . , x „ , and which are mutually exclusive. We assign to the 
outcome x, a number p, = p(x,), where pt is a real number, pt ^ 0, and 
Pi + Pi + " ' + Pn = 1- If an event £ occurs along with the possibilities 
x f | , . . . , xfBi and not otherwise, we define the probability of E as p(E) = 
Pi, + *•• + />»„• The assignment of the initial probabilities pl9 p2,...*pn is 
not a mathematical problem, but is an estimate of the relative likelihoods of 
the different outcomes, and in any actual case the validity of the mathematical 
calculation of p(E) depends on the correctness of this assignment. 

There are many practical situations in which it seems reasonable to consider 
the n outcomes as equally likely, and so we take px = p2 • • • = pn = l/n. In 
this case the probability of the event E occurring along with m possible out-
comes, but no others, is p(E) = m/n. In such a situation the calculation of 
p(E) becomes the purely combinatorial problem of calculating m, the number 
of possible outcomes yielding the event £. In throwing at random a die whose 
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six faces are numbered from 1 to 6, it seems reasonable to assume that any 
face is as likely to come on top as any other, if the die is of uniform density. 
In this case, we take px = p2 = • • • = p6 = 1/6, where p, is the probability 
that the face numbered i will come up. If we are merely interested in whether 
or not a 6 comes up, we consider only two possible outcomes, putting p = 1/6 
as the probability for a 6 and ap' = 5/6 as the probability of not getting a 6. 

Let us suppose we have JV urns numbered from 1 to JV. We are to place at 
random n balls in the urns, where n < N. We ask the probability that each of 
the urns numbered 1 to n will contain exactly one ball. This probability depends 
on two things: (1) whether the balls are distinguishable or indistinguishable, 
and (2) whether there is an exclusion principle that does not allow a second 
ball to be placed in an urn that already contains one ball. If the n balls are 
distinguishable and there is no exclusion principle, there will be JV" ways of 
placing the n balls in the JV urns. There will be n\ ways of placing them in the 
urns numbered 1 , . . . , n, placing one in each of these urns. With these con-
ventions, the probability is 

P(£) = ^ ; . (1.2.1) 

If the balls are distinguishable and there is an exclusion principle, the first ball 
may be placed in any one of JV urns, the next in any one of (JV — 1) urns, and 
the ith in any one of (JV — i + 1) urns, whence the number of ways of placing 
the n balls in the JV urns is NPn = N(N - 1)- • (JV - n + 1). They may be 
placed in urns 1 , . . . , n in n! ways, and under these conventions, the probability is 

n 
p ( £ ) = = _ _ . (1.2.2) 

N* n 0 
If the balls are indistinguishable and there is no exclusion principle, we are 

asking for the solutions of xt + x2 + *-- + xiV = nin nonnegative integers xt, 
where x, is the number of balls placed in the ith urn. This, as we noted in the 
preceding section, is the number of combinations of JV things taken n at a time 
with repeats permitted, and is (N*"~lY Exactly one of these is the solution 
xl = x2 = • • • = x„ = 1, x„+! = xM + 2 = • • • = xN = 0; in this case our prob-
ability is 

rr1) 
From the physical standpoint, "indistinguishable" means that one combination 
is as likely as another. 
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If the balls are indistinguishable and there is an exclusion principle, the 
number of ways of placing the balls is merely the number of combinations of 
N things taken n at a time without repeats, and this is NC„ = (*). The choice 
of the first n urns is a single one of these combinations, and here the probability is 

Note that this is the same as (1.2.2), so that with an exclusion principle, the 
probability is the same whether the balls are distinguishable or not. 

In statistical physics we consider a collection of n particles, which may be 
protons, electrons, mesons, neutrons, neutrinos, or photons, each of which 
may be in any of N "states," which may be energy levels. The macroscopic 
state of the system of the n particles is a vector x = (xj, x 2 , . . . , xN), where 
xt is the number of particles in the ith state. The probability of any single 
macroscopic state depends on whether or not the particles are distinguishable 
and whether or not the particles obey the Pauli exclusion principle, which 
says that no two (indistinguishable) particles may be in the same state. If the 
particles are considered distinguishable and do not obey the exclusion principle, 
the probability of any single macroscopic state is given by (1.2.1) and the 
particles are said to obey the Maxwell-Boltzmann statistics. If the particles 
are indistinguishable and do not obey the exclusion principle, the probability 
is given by (1.2.3), and they are said to obey the Bose-Einstein statistics. If 
they are indistinguishable and do obey the exclusion principle, the probability 
is given by (1.2.4), and the particles are said to obey the Fermi-Dirac statistics. 
Electrons, protons, and neutrons obey Fermi-Dirac statistics. Photons and 
pi-mesons obey Bose-Einstein statistics. The case (1.2.2) of distinguishable 
particles with an exclusion principle does not arise in physics. 

At high temperatures, when the number N is large and the different micro-
scopic states are approximately equally likely, the Fermi-Dirac and Bose-
Einstein statistics are essentially the same as the classical Maxwell-Boltzmann 
statistics. At low temperatures, the low-energy levels are more likely than the 
high-energy ones, and then the preceding models must be modified accordingly. 

PROBLEMS 

1. Prove 

Hint: (1 + x)r(l + x)s = (1 + x)'*5. Give an alternate proof of this identity 
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by considering the number of ways of choosing a committee of m people 
out of a group of r men and s women. 

2. A flag is to be designed with 13 horizontal stripes colored red, white, or 
blue, subject to the condition that no stripe be of the same color as the one 
above it. In how many ways may this be done? 

3. How many positive integers less than 10" (in the decimal scale) have their 
digits in nondecreasing order? 

4. In how many ways may n identical gifts be given to r children (a) under no 
restriction and (b) if each child must receive at least one gift? 

5. A hand of five cards is selected from a deck of An cards that contains four 
different suits, each with n cards, n ^ 5, numbered 1 , . . . , n. Rank in order 
of increasing frequency, depending on the value of n, the following hands: 
a straight flush (five consecutively numbered cards of the same suit), four 
of a kind (four cards having the same number), full house (three cards of 
one number, the other two of another number), flush (five cards of the same 
suit), straight (five consecutively numbered cards), three of a kind (three 
cards of the same number), two pair (two cards of one number, two others 
of a second number), and a pair (two cards of a number). 



2 

Inversion Formulae 

2.1. THE PRINCIPLE OF INCLUSION AND EXCLUSION. 
MOBIUS INVERSION 

Suppose we have N objects and a number of properties P( l ) , . . . , P(n). Let Nt 

be the number of objects with property P(i) and, more generally, Nili2...if the 
number of objects with properties P(it), P(i2), •••, and P(ir). Then we assert 
that the number of objects N(0) with none of the properties is given by the 
inversion formula 

N(0) = N - 5 > * + X NMa + " ' 
i , < i 2 

+(-if Z Ntlll...it + ---+(-irNl2...„. (2.1.1) 
i , < i 2 ••• <i4 

We now prove this. An object with none of the properties is counted once in 
the term N and does not contribute to the remaining terms. An object A with 
the property P(j) is counted once in N and once in Nj, and so contributes 1 
to the term JV, — 1 to the term — £ . Nh and thus contributes 1 — 1 = 0 to the 
right-hand side of (2.1.1). An object A with exactly r properties, say, j x , . . . , j r , 
contributes 1 to the sum 

Z Niti^..i , when s ^ r 

for every choice of ix,..., is from j x , . . . Jr—that is, for Q choices. Hence, A 
contributes to the right-hand side of (2.1.1) exactly 

1 -(0+Q+"■+(_i)s(D+"+(_i) ,C)=(i_i )r=a (2i-2) 

Thus, the right-hand side of (2.1.1) counts each element with no properties 
exactly once, and every other element zero times; hence its value is N(0), as was 
to be proved. Use of the formula (2.1.1) is sometimes called the method of 
inclusion and exclusion. 

8 
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In the same way we may find the number N(r) of objects with exactly r 
properties. This is given by 

N(r)= X Nix_if + ... + (-Vr*(*\ X Nll...li + ---(2.1. 
«!<••• <ir W «!<• • <is 

3) 

On the right-hand side of (2.1.3) an object with exactly r properties is counted 
once in the first term and is not counted in the other terms. An object with 
exactly t properties, where t > r, contributes ( — l)s~r(rXs) to the term 

(-ir-(s
r) I Nfl...v 

V / i, < ••• <is 

But 

from the relation (1.1.9d), and so the relation (2.1.3) is proved. 
As an application of the method of inclusion and exclusion we consider the 

problem of derangements. How many permutations ax, a2,..., an of 1, 2 , . . . , 
n are there 

1 ,2 , . . . , i, . . . , n 
(2.1.5) 

ax,a2,..., aiy...,an 

such that we have a( =£ i for every i = 1, 2 , . . . , n? Here we take the N objects 
as the n! permutations a1,fl2,.->fl» and the property P(i) as a{f = i, / = 1 , . . . , n. 
Then Nili2...ir = (n — r)!, this being the number of permutations fixing r 
specified numbers. Furthermore, for £ Niii2...ir there are (") summands, this 
being the number of ways of choosing it, i2, • • • > 'V from 1, 2 , . . . , n. Applying 
(2.1.1) we have 

N(0) = n! - n • (w - 1)! 4- (Z) (n - 2)\ + • • • 

+ ( - i y r j ( w - r ) ! + ••• + ( - l ) " - l . (2.1.6) 

We may rewrite this in the form 

N(0) = n ! ( l - l + l - l + - + ( - i r - i + - - + ^ f ) . (2.1.7) 
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We recognize 

as the initial terms of an infinite series whose value is e~l. The infinite series is 
alternating, and the first omitted term is (-1)"+ 1 / (H + 1)!. From this we see 
that #(0) differs from nl/e by less than l/(w + 1), and so n\/e is an extremely 
good approximation to the number of derangements of n letters. 

If we ask not only the number of derangements of 1, 2 , . . . , n but also the 
number of permutations ata2 • • • an of 1, 2 , . . . , n for which a( = i in exactly r 
instances for each value of r = 0, 1,.. . , n, the problem is known as the probleme 
des rencontres. The solution is an easy extension of the problem of derangements. 
We may choose r numbers from 1,.. . , n in (?) ways, and having chosen these 
we multiply by the number of derangements of the remaining (n - r) letters. 
This gives the number of permutations with exactly r agreements a, = / as 

N(r) = ^ ( l - l + i - + . + ( - i r ' . - _ L A (2.1.8) 
r! \ 2! (n — r)\J 

This could also have been found from the rule (2.1.3). 
For an additional type of inversion formula we turn to an arithmetical func-

tion, the Mobius function n(n). This is defined for positive integers n. If n > 1, 
then n has a unique factorization as a product of prime powers 

n = pj'p5>--p* (2.1.9) 

where the p's are different primes. We define n{ri) by the rules 

MD = 1, 

li(n) = 0, if any et > 1 in (2.1.9), (2.1.10) 

ix{n) = (-If, if ex = e2 = ■ • • = er = 1 in (2.1.9). 

Lemma 2.1.1. 

f 1, if n = 1 
I** ~\0. ifn>l, 

the sum being over all positive divisors d of n. 

Proof. If n = 1, then d = 1 is the only divisor, and /*(1) = 1. If n > 1 and 
n is given by (2.1.9), write n* = ptp2''' pr- Then a divisor d of n that is not a 
divisor of n* will have a multiple prime factor and we have fx(d) = 0. Hence, 
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£M<*)= E M 4 (2.1.1D 
d\n d\n* 

But Xd|n* M<0 is easily evaluated as 

1 -r+0+"■+(~i)k(0+■"=(i"i)r=°' (2,ii2) 

since there are ([) divisors that are the product of k distinct primes and for 
each of which n(d) = ( —1)\ Thus, our lemma is proved. 

Theorem 2.1.1 (Mobius inversion formula). Let f(n) and g(n) be functions de-
fined for every positive integer n satisfying 

f(n) = £ g(d). (2.1.13a) 
d\n 

Then we may invert this relation to express g in terms offby the rule 

0 ( n ) = £ / 4 < O / Q - (2.1.13b) 

The second relation also implies the first. 

Proof We have 

f[l) = Z d(dl for every d\n. 
W d'\nld 

Hence, 

Irt*)/(5>UxiiW)- Z g(n (2.i.i4) 
d\n \ « / d\n d'\n/d 

Let us write n = dd'ni. Then, for a fixed d', d ranges over the divisors of 
n/d'. Hence, 

£jiW)- Z 6 f W ' ) = Z ^ ' ) Z ^d) = g(n\ (2.1.15) 
d|n <f|(n/d) d'\n d\(n/d') 

since the sum 

Z M<*) = 0 
d|(n/d') 

by the lemma, except for d' = n. Thus, the right-hand side of (2.1.14) simplifies 
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to g(n) and our theorem is proved. Similarly, given (2.1.13b), we may substitute 
in the right-hand side of (2.1.13a) and find that it simplifies to f(n), proving 
(2.1.13a). 

Mobius inversion may be used to enumerate circular partitions. If letters 
al9a2,...,an are arranged in a circle with ax following a„, then any one of the 
linear sequences a2, a 3 , . . . , a n , ax\ a3,...,a„, ax, a2;...; an, a1 , . . . ,a l l_1 

may be thought of as determining the same circular sequence. But not all n 
linear sequences corresponding to the same circular sequence need be different. 
If, for a divisor d of H, the sequence ax, a 2 , . . . , a„ consists of a sequence of d 
letters ax, a2,.. .,ad repeated n/d times, the linear sequences repeat after the 
first d. With each circular sequence of length n we may associate a unique 
minimum period d such that the circular sequence consists of n/d repetitions of 
a sequence of d letters. Furthermore, each circular sequence of length d and 
period d where d\n may be repeated n/d times to give a circular sequence of 
length n and period d. Each of these sequences corresponds to exactly d different 
linear words of length n. If there are r different letters, there are r" linear permuta-
tions ala2-an. If M(d) is the number of circular sequences of length and 
period rf, then dM(d) is the number of linear sequences of length n corresponding 
to them. This gives us the equation 

Y.dM{d) = rn. (2.1.16) 
d\n 

If we take f(x) = r* and g(x) = xM(x), we may apply Mobius inversion to 
(2.1.16) and obtain 

nM(n)= 5>(d)r"d, (2.1.17) 
d\n 

whence 

M(n) = - I fi(d)rnd. (2.1.18) 

This gives the number of circular permutations of length and period n. If we 
wish the total number of circular permutations of length n, this number is T(n): 

T(n)= £A#(</). (2.1.19) 
d\n 

If we wish the total number of circular permutations of n objects in which the 
number of objects of each kind is specified (say, bt of the ith kind, / = 1 , . . . , r, 
where bx + b2 + • • • + br = n), we recall that the number of linear permuta-
tions is the multinomial coefficient 

r - r ^ - r r , bx + b2 + • • + br = n. (2.1.20) 
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Here a circular permutation of this kind of length n and period n/d will have d a 
divisor of all bx, b2,..., br, or, what amounts to the same thing, d a divisor of 
(bi,...,br), the greatest common divisor of bi9...9br. Thus, if M(bx,...,br\ 
b\ + i>2 + * * * + br = n, is the number of circular permutations of length and 
period n with bt objects of type i, i = 1 , . . . , r, the same argument given above 
yields 

»d l (* l f . _b r ) (bl/d)\'--(br/d)\ 

The probleme des menages is as follows: A hostess wishes to place n couples 
at a circular table so that men and women are in alternate places, but so that 
no husband will sit on either side of his wife. In how many ways may this be 
done? It is easy to see that it cannot be done with fewer than three couples, 
but for three or more couples it may be done. 

Let us first place the women at alternate places, designating them by numbers 
1,2, . . . , n in circular order. Let the place to the left of the ith woman and on the 
right of the (i + l)th be numbered i, giving number n to the place between the 
nth woman and the first. Then the first husband can sit anywhere except in 
the nth or first place, and the ith husband anywhere except the (i — l)th or the 
ith. If husband number a( sits in place i, then axa2 -• an is a permutation of 
1, 2 , . . . , n and in the array 

1 2 ••• n- 1 n 

n 1 •-. w - 2 n - 1 (2.1.22) 

0 i «2 • • ' 0 n - i a« 

we see our condition is precisely that the permutation axa2 • • • an must be 
discordant with the first two rows. We are thus in a problem of inclusion and 
exclusion with properties P(l): ax = 1, /*,... ; P(i): a{f = i — 1, /*,... ; P(n): an = 
n — 1, /i. If P(i) is true for r values ai{, air, there will be (n — r)\ ways of 
completing the permutation. Thus, we must first calculate the number of ways 
of having P(i) true for r values, or, as we shall say, the number of ways of having r 
hits. The number of ways of having one hit is 2n, and by the circular symmetry 
of (2.1.22) we may suppose this to be either the n in the first column or the n 
in the nth column. We now list the remaining numbers, writing the columns 
one after another, giving either 

1, 1,2, 2, 3 n - 2,w - 2, n - 1, 

or (2.1.23) 

1,2, 2, 3, 3 , . . . , n - 2, n - 1, n - 1. 

Our remaining choices of (r - 1) numbers are restricted by saying that in the 
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arrays in (2.1.23) we may not choose two consecutive values because consecutive 
choices amount either to taking the same number twice or to taking both 
elements in a column of (2.1.22). This is the number of ways of choosing (r - 1) 
objects, no two consecutive, from a row of 2n — 3. This has been evaluated in 
Chapter 1 and is (2n

rl
r
1"

1)« This number is to be multiplied by In for the first 
choice, but the same set of r values could be obtained by regarding any one of 
the r values as the first, and so we must divide by r. Thus, our number is 

We may now apply formula (2.1.1) and find as our answer that the number of 
solutions Un of permutations discordant both with 1, 2 , . . . , n and 2, 3 , . . . ,« , 1 
is given by 

Un = n! - In - (n - 1)! + • • • + ( - 1)' ^— (2" ~ ^ (n - r)! 

+ ••• + ( - l ) " - 2 . (2.1.25) 

From this relation we may derive the recursion 

(n - 2)Un = n(n - 2)Un-x + nU„.2 + 4 ( - l ) n + 1 , n 7* 4. (2.1.26) 

This recursion can be proved without much difficulty. For r = 0 and 1, the 
terms in (n — 2)Un and n(n — 2)Lr„_1 are equal. For r = 2, . . . , M — 1, we 
have the identity involving the rth term of Un and l/„_ i and the (r — 2)th term 
of l /„- 2 : 

In (In - A 

, 2(n- 1) (In - r - 2 \ 

+ n. ^ - 2 ) /2n - r - 2 \ ,, ( 2 . , . 2 7 ) 

2n — r - 2\ r — 2 ) 

Finally, the term with r = n in (n — 2)Un and that with r = n — 2 in nVn.2 

combine, so that 

(n - 2K - 1)" • 2 = n( - If'2- 2 + 4( - l)n+1. (2.1.28) 

This proves the validity of the recursion (2.1.26). 
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2.2. PARTIALLY ORDERED SETS AND THEIR MOBIUS FUNCTIONS 

A partially ordered set P is a system P{..., x, y, . . .} of elements with an ordering 
relation x ^ y (read "x includes y") that holds for certain pairs of elements and 
an equality x = y, such that the following axioms hold: 

PO 1. x ^ xfor every x of P. 
PO 2. Ifx ^ y and y ^ z, then x ^ z. 
PO 3. Ifx ^ y and y ^ x, ffeen x = y. 

A simply ordered set or c/itfin also satisfies: 

PO 4. / / x , y are elements ofP, then either x ^ y or y ^ x. 

We write y ^ x as an alternate form of x ^ y, and x > y (or y < x) if x ^ y 
(or y ^ x) and x ± y. 

Partial ordering is a very general concept. Two particular cases of interest are: 

1. The elements of P are all the subsets of a finite set T, where we write 0 for 
the void subset and 1 for the set T itself, and y ^ x means that y is a subset 
of x. 

2. The elements of P are the positive integers and y ^ x means that y divides x. 

It is easy to check the validity of the axioms in both instances. 
If T is a subset of a partially ordered set P, then an element x of P such that 

x ^ t for every t of T is called a lower bound of T. If z is a lower bound of T 
such that x ^ z for every lower bound x of T, then z is called a greatest lower 
bound of T From PO 3 it follows that if T has a greatest lower bound, it is 
necessarily unique. Similarly, if x ^ t for every t of 7J x is called an upper bound 
of 7̂  and if z is an upper bound of T such that x ^ z for every upper bound x, 
then z is called a teflsf upper bound of T and again is clearly unique if it exists. 
If P itself has a greatest lower bound, this is called its zero element, and if it 
has a least upper bound this is called the all element (or sometimes the unit 
element). An interval [x, y] where x ^ y is the set of elements w such that 
x ^ w < y. If x and y are the only elements in the interval [x, y], we say that 
y covers x. A partially ordered set P is said to be locally finite if the number of 
elements in every interval [x, y] is finite. 

The Mobius function and Mobius inversion were defined for functions over 
locally finite partially ordered sets originally by L. Weisner [1] and P. Hall [2]. 
This idea was greatly expanded by G. C. Rota [1]. A brief treatment is given 
here, based on Rota's work. 

We consider a class of real-valued functions /(x, y) defined for x, y 6 P, a 
locally finite partially ordered set. We require that / (x, y) = 0 if x ^ y. The 
sum of two such functions, as well as multiplication by scalars, is defined as 
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usual. The product h = fg is defined as follows: 

h(x,y)= X /(x, z)g(z, y), x, y fixed. (2.2.1) 

This product is well defined, since the sum on the right is finite, P being locally 
finite. Under the operations of sum, scalar product, and the product rule 
h = fg of (2.2.1), the functions /(x, y) define the incidence algebra A(P) of P. 
It is easy to verify that the multiplication defined for A(P) is associative and 
distributive and that A(P) has an identity, the Kronecker delta function 
<5(x,x) = l,<5(x,y) = 0 i fx ±y. 

Lemma 2.2.1. A function / (x , y) of A(P) has both a left and a right inverse if 
and only iff(x, x) ^ 0 for every x of P. 

Proof In (2.2.1) take h(x, y) = <5(x, y). Now, given /, we wish to solve for g. 
Since this requires 1 = 5(x, x) = /(x, x) for every x, the condition /(x, x) ^ 0 
for every x of P is clearly necessary. Thus, suppose / (x, x) ^ 0 for every x. 
Then g(xy x) = / (x, x)~1 for every x. To evaluate g(x9 y) with x < y, we may 
assume inductively that we have already found g(z, y) for every z satisfying 
x < z ^ y. Then 

h(x, y) = <5(x, y) = 0 = £ /(x, z)^(z, y), 

whence 

- / (x ,x)0(x,y)= X /(x, z)gf(z, >>), (2.2.2) 

and we may find #(x, y), since /(x, x) ^ 0 and all terms of the finite sum on the 
right are known. Thus, / has a right inverse. Similarly applying our induction 
to terms x ^ z < y, we may use (2.2.1), interchanging the roles of / and g to 
show that / has a left inverse. But if fg{ = 1 = <5(x, y) and g2f = 1, then by a 
familiar argument, g2 = <M = 02(f9i) = (Gif)G\ = *0i = 0i a n d the left and 
right inverses are the same. 

Definition. Let P be a locally finite partially ordered set and A(P) its incidence 
algebra. The zeta function £(x, y) of A(P) is that function for which £(x, y) = 1 
for x ^ >-, £(x, y) = 0 otherwise. The Mobius function /i(x, y) of A(P) is the 
inverse of the zeta function. 

Since £(x, x) = 1 =£ 0 for every x, by our lemma f(x, y) has an inverse function 
/i(x, j), which is both a right and left inverse of it. Hence, we have 

/i(x, x) = 1, for every x of P. (2.2.3) 
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For x < y, we have 

/i(x, y) = - X Mx> z)> x < yf i x e d- (2-2-4) 

^(x, y) = - Z /i(z, y), x < y fixed. (2.2.5) 
x<z^y 

Here (2.2.4) expressed the Mobius function as the left inverse of zeta, and 
(2.2.5) expresses it as the right inverse. 

The Mobius inversion theorem follows. 

Theorem 2.2.1. Let Pbea locally finite partially ordered set with a zero element 
0. Letf(x) be given for all xofP and let g(x) be determined from f(x) by the rule 

0(*)= I f(y\ all x of P. (2.2.6) 
y^x 

Then, i/*/x(y, z) is the Mobius function ofP, we have 

/(*) = £ 0{yMy, x), all x of P. (2.2.7) 
y^x 

Proof Since every interval [0, x] is finite, the sums in (2.2.6) and (2.2.7) are 
well defined. For a fixed x, consider the sum 

S = I g(yMy, x) = X ( I /I*)) M^ *), (2.2.8) 
y^x y^x \z^y / 

where we have substituted from (2.2.6). Now interchange the order of sum-
mation to get 

S = Z f(z) Z M>\ ?) = Z /UKU, y) Z MJ\ -x) 
2 < x y^x z y<x 

= I /U) I Clz, y)rt)\ *) = I / ( * *> = /"(*). (2-2.9) 

Since 5 = /(x), we have proved (2.2.7), the conclusion of our theorem. 
Let us now determine the Mobius function for the two special cases men-

tioned at the beginning of this section. 
In case 1, P is the partially ordered set of all subsets of a finite set 7, ordered 

by inclusion. Here we assert that for x ^ y\ 

Mx,>') = (-ir(>)"nU), (2.2.10) 

where n(x), n(y) are respectively the number of elements of T in x and in y. 
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The assertion is certainly true when n(y) — n(x) = 0 or 1. By induction assume 
(2.2.10) to be true for w(y) — n(x) ^ r - 1 and consider a case with n(y) - n(x) = 
r. Then (2.2.4) becomes 

M x , y ) = - l + ( ; ) - ( ; ) + - ( ; ) ( - i y + - - ( r : , ) ( - ! ) - , (2.2.11) 

since there are (J) z's with x ^ z < y with w(z) - n(x) = ;, namely, the subsets 
of T obtained by adjoining to xj of the r elements of y not in x. Comparison 
of (2.2.11) with the binomial expansion of (1 — l)r = 0 gives j*(x, y) = ( — l)r, 
as was to be shown. 

Let T be the integers 1, 2 , . . . , n and let properties P(l), P(2),..., P(n) be 
associated with these integers. Let K be a set of N elements, each of which has 
the properties P(i), i € x for some subset x of T. Let f(x) be the number of 
elements of K having exactly the properties P(i), i j£ x, x a subset of T. Then, if 
we put 

9(x) = I f(y\ (2.2.12) 

the function g(x) is the number of elements of K having all the properties P(i) 
for i £ x and possibly others. Here, for x = 7; the inversion (2.2.7) gives us 

/ ( D = 0 ( 7 ) - £ 0(,,) + ... + ( - i y £ 0{>,) 
«(y) = n - 1 n(y) = n - j 

+ --- + ( - i r I 0(y). (2.2.13) 

But here f(T) = iV(0) is the number of elements having none of the properties 
g(T) = N, since this counts all elements having properties of the void set and 
possibly others. If n(y) = n — j , then g(y) counts all elements having the j 
properties not in y and possibly others. But this shows that (2.2.13) is the 
principle of inclusion and exclusion of (2.1.1). 

In case 2, P is the partially ordered set of the positive integers, where x ^ y 
means that x divides y. 

Here in a segment [x, y], if x ^ z ^ y, then z = xd, where d\{y/x)9 and so 
this segment corresponds to the divisors of y/x. Note that the integer 1 is the 
zero element of P. Comparison of (2.2.4) with the lemma preceding Theorem 
2.1.1 shows that u(x, y) = fi(y/x) in this case. Thus, Theorem 2.1.1 on Mobius 
inversion is the special case of Theorem 2.2.1 for P, the positive integers partially 
ordered by division. 

PROBLEMS 

1. Let A be the n x n matrix with zeros down the main diagonal and l's 
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elsewhere. The determinant of A is ( — l)n-1(w — 1). (This will be shown 
in Section 10.2.) Of the n\ terms in the expansion of the determinant of A, 
how many are 4-1, —1,0, respectively? 

2. Given the array 

0 1 2 3 4 5 6 7 8 9 

1 2 3 4 0 6 7 8 9 5 

a0 ax a2 a3 a4 a5 a6 an as a9, 

in how many ways can we choose a 0 , . . . , a9 as a permutation of 0 , . . . , 9 
so that no column of the array will have a repeated number? 

3. Show that Un in (2.1.25) is approximately n\/e2. 

4. The function A(n) is defined for positive integers n by the rule 

£A(d) = logn. 
d\n 

Prove that A(n) = log p if n = f, p a prime, and A(n) = 0 otherwise. 

5. Find the Mobius functions of the two partially ordered sets P1, P2 with five 
elements 0, a, b, c, 1, where: (a) in P{, 0 ^ a ^ 1, 0 ^ b ^ 1, 0 ^ c ^ 1, 
and there are no further inclusions; (b) in P2, 0 ^ a ^ 1, 0 < b ^ c ^ 1, 
and there are no further inclusions. 
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Generating Functions 
and Recursions 

3.1. RULES AND PROPERTIES 

If u0, ux, w2,.. •, t/„,... is a sequence of numbers, we may associate with this 
sequence a generating function g(x) by the rule 

g(x) = u0 4 u{x 4 u2x
2 4 • • • 4 wnx

w + • • •. (3.1.1) 

If this series has a circle of convergence with a radius R > 0, then it may happen 
that the properties of the function g(x) enable us to evaluate the coefficients 
un (or at least give estimates of their order of magnitude) or perhaps find other 
information of value. If h(x) is the generating function of the sequence v0, vt, 
i ;2 , . . . , i ;n , . . . , then 

h(x) = v0 4 t^x -f v2x
2 4 • • • 4 vnxn 4 • • •. (3.1.2) 

If we add (3.1.1) multiplied by c, and (3.1.2) multiplied by d, we have 

cg(x) 4 dh(x) = (cu0 + di>0) + (cui + dt^x + ••• + (CM„ 4- <toB)x" 4 •••, (3.1.3) 

and if we multiply, we have 

g(x)h(x) = w0 4 u^x 4 w2x2 4 • • ■ 4 wnxn 4 • • •, (3.1.4) 

where for every n = 1, 2, 3 , . . . , 

w„ = u0vn 4 Mi^-! 4 ••• 4 un.1vl 4 M„I;O. (3.1.5) 

Even if the series for g(x) and h{x) are not convergent, we may regard (3.1.3), 
(3.1.4), and (3.1.5) as defining formal operations on formal series. In these 
terms we easily verify that the addition, multiplication by scalars, and series 
multiplication satisfy the associative, commutative, and distributive laws. 
Furthermore, if u0 £ 0 and if we take v0 = MQ \ we may use (3.1.5) to determine 
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