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PREFACE 

What is a constructive approach, and why should one take it? 
If you look at the table of contents for this book, you'll see mostly familiar 

topics, but with a slightly different emphasis. There's a long chapter on the real 
numbers, followed by one on "An Inverse Function Theorem." The chapter on limits, 
sequences and series is followed by one on uniform continuity—why not just pointwise 
continuity? A chapter on the Riemann integral is followed by one on differentiation— 
but it's actually uniform differentiation. All of these departures from the structure 
of the usual real analysis text result from a careful reassessment of the role of the 
course in the technical education of undergraduates. 

Not every student in Real Analysis is a math major, and, in many schools, only 
a small percentage of math majors intend to do graduate work in mathematics. 
A modern course is populated by a wide range of students. Some are headed for 
careers in secondary education, while there is often a large contingent from the 
physical sciences and an even larger group from computer science. These students 
are in the course because they need or want more than a cookbook calculus course. 
Some need to know more about computability and calculability of floating-point 
numbers, hence more about the actual nature of the reals. They also need to know 
about continuity because they need to know about approximations; some need to 
know about convergence and improper integrals because they need to know about 
computing special functions and transforms. 

But real analysis is not primarily focused on computing. It is, significantly, a 
course that shapes the way students think about mathematics. Very often it is a 
student's introduction to precise reasoning and writing. 

So. I begin with a careful construction of the real numbers, the field on which 
most of analysis is played. The approach here, due to Gabriel Stolzenberg, is via 
intervals of rational numbers and the arithmetic of such intervals. The many elemen-
tary theorems about the properties of this arithmetic later reappear as properties of 
the real numbers, and verifying them provides a gentle introduction to the art and 
practice of devising and writing readable and correct proofs. Furthermore, there is 
a useful metaphor: a rational interval is exactly what is obtained when a scientist 
uses instruments of limited (but known) accuracy to measure something. Families 
of rational intervals then correspond to multiple measurements, and the condition 
on a family that any two of its intervals must meet establishes the consistency of its 
measurements. Finally, a real number is defined to be a family of rational intervals 
that is consistent in this sense, and that contains intervals of arbitrarily small length. 
Interval arithmetic, carried over to families of intervals, now becomes real arithmetic, 
and conditions on the lengths of intervals become the properties of approximation 
of reals by rationals. 

At this point, the students see that the reals have a far more complex structure 
than the rationals. One important example is the traditional Law of Trichotomy, 
namely that precisely one of x < y, y < x, or x = y must hold. This property holds 
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for the rationals, since rational arithmetic is basically integer arithmetic. However, 
reals can, in general, only be approximated by rationals. Modern computer algebra 
systems allow the user to specify a tolerance, which is expressed as the number of 
decimal places. This number can be chosen as large as one pleases, but not infinitely 
large. The corresponding tolerance, say €, tells us how closely we can distinguish 
reals using the computer's rational representation. These considerations lead to the 
formulation of real number comparison that we prove and use throughout the book. 
6-Trichotomy Given any tolerance e > 0, then for any reals x and y, x < y, y < x, 
or x and y are within e of each other. 

Thus, a construction of the reals based on rational measurement and an analysis 
of what we can actually calculate produces a concordance of theory and practice 
that students of the sciences easily relate to. 

Using the notion of e-trichotomy as a tool for comparing real numbers enables us 
to describe a bisection-like algorithm for finding the inverse of a function / , providing 
it satisfies upper and lower bounds on its difference quotient *\ytjJ?t. This leads 
directly to the construction of nth root, exponential and logarithm functions. 

Another hallmark of the constructivist program is its emphasis on uniform vs. 
pointwise continuity: 

• f is pointwise continuous at a if, given any e > 0 we can find a Sa(e) > 0 such 
that \f(x) — f(a)\ < e whenever \x — a\ < Sa(e). 

• f is uniformly continuous on S if, given any e > 0 we can find a 0(e) > 0 such 
that \f(x) — f(y)\ < e whenever \x — y\ < 6(e) and x,y e S. 

Uniform continuity on S implies pointwise continuity at each point of <S, but the 
converse is not true: there is no general procedure for constructing a single 6 from 
the infinitely many Sa. Not only is uniform continuity a stronger notion, it is the 
more desirable version of continuity since it is the one most useful in studying con-
vergence and integrability. It turns out that the usual proofs that the basic functions 
of analysis are pointwise continuous also prove that these functions are uniformly 
continuous on appropriate intervals. We exploit this fact from the very beginning, 
and only use the stronger and more important uniform version of continuity. 

We take a similar approach to differentiability. Instead of talking about the 
derivative of a function at a point, we talk about the derivative function on an 
interval. As with uniform continuity, this notion of uniform differentiability is the 
one that is of most importance in later theory and applications. In fact, it is an 
approach that generalizes readily to vector-valued functions of several variables. 

An important consequence of using uniform notions is that they produce trans-
parent proofs of important theorems such as the existence of the Riemann integral 
and the Fundamental Theorem of Calculus. 

The pointwise versions of continuity and differentiability do lead to a number 
of classical examples of functions which are or aren't continuous or differentiable 
on various dense or nowhere dense subsets of intervals. Since we are emphasizing 
uniform notions, these examples are relegated to discussions in an appendix and a 
few exercises, which can be covered at the discretion of the instructor. 



Preface ix 

In summary, then, this is neither a text in numerical analysis nor one intended 
solely to prepare students to be professional mathematicians. It is a thoroughly 
rigorous modern account of the theoretical underpinnings of calculus; and, being 
constructive in nature, every proof of every result is direct and ultimately compution-
ally verifiable (at least in principle). In particular, existence is never established by 
showing that the assumption of non-existence leads to a contradiction. By looking 
through the index or table of contents, you'll see that nothing of importance for 
undergraduates has been left off or compromised by our approach. The payoff of the 
constructive approach, however, is that it makes sense—not just to math majors, 
but to students from all branches of the sciences. 
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INTRODUCTION (MOSTLY FOR INSTRUCTORS) 

Formally, Real Analysis—the course—is a presentation of the theoretical underpin-
nings of calculus. It is about the Big Three: continuity, differentiability and con-
vergence. Yet it is also, for many, an introduction to reading, writing, and thinking 
mathematics. I have tried to address all of these issues in this book. 

In the first chapter we construct the real numbers, starting with the rationals. 
This lays the groundwork for the entire book. The basic concept here is that of a 
family of rational intervals. A real number is a family of rational intervals which 
satisfies two important conditions: consistency (any two intervals in the family inter-
sect) and fineness (the family contains intervals of arbitrarily small length). These 
conditions, together with the arithmetic that families inherit from the rationals, lead 
to all of the familiar algebraic properties of the reals. We establish these properties 
via quite a few propositions and one main theorem (completeness). Proving these 
results requires 

• knowing simple properties of the arithmetic of rational numbers, 

• applying elementary algebra and simple logic, and 

• learning to apply new definitions and newly proved results. 

Thus, Chapter 1 is critical because it provides not only the mathematical ideas 
that permeate the rest of the text, but also the introduction to the reasoning and 
writing skills necessary for doing and communicating mathematics. Nothing is more 
boring than having to read a seemingly endless theorem-proof sequence, so I have 
tried to provide just enough sample proofs and hints so that readers can proceed on 
their own. Many propositions are left as exercises; indeed, the exercises provide a 
vital part of the whole pedagogical process. I take this chapter at a leisurely pace, 
allowing students to write, critique, and rewrite their work. It is an investment of 
time well worth making early in the course. 

Chapter 1 ends with what may be the central result of any real analysis course: 
the completeness of the reals. This is expressed in terms of families of real intervals, 
but in Chapter 3 it is rephrased in the language of Cauchy sequences. 

Chapter 2 uses the Completeness Theorem to prove the useful Inverse Function 
Theorem. This, in turn, is used to construct nth roots, general exponential func-
tions, and logarithms. A section is devoted to the Euler number e and the natural 
logarithm. 

Chapter 3 introduces sequences, limits, and series and derives basic formulas and 
inequalities for the various functions already constructed. 

xiii 



X I V Introduction 

In Chapter 4 we encounter uniform continuity. Since this version of continuity is 
the one most used in more advanced courses, we relegate the idea of pointwise conti-
nuity to the exercises. Nothing is lost, however, since the usual verifications of point-
wise continuity for the basic functions of calculus are used with little modification to 
establish uniform continuity of these functions on intervals. We also encounter many 
interesting and important consequences of uniform continuity, among them bound-
edness and the extension of uniformly continuous functions from dense subsets—for 
example, extending functions from a punctured interval [a, 6] — { x i , . . . ,xn} to the 
closed interval [a, 6]. 

In Chapter 5, we use the Completeness Theorem again, this time to construct 
the Riemann integral f f for functions uniformly continuous on an interval [a, ò]. 
The results previously established for limits and extensions of uniformly continuous 
functions can now be applied to define and calculate improper integrals. It is here 
that we introduce the important idea of functions defined as integrals. This includes 
the definition of the arctangent as an integral, an alternate definition of the nat-
ural logarithm (previously defined as an inverse function), and the use of improper 
integrals to construct the Gamma function and Laplace transforms. 

Chapter 6 on differentiation emphasizes the derivative as a function rather than 
a pointwise limit. All the usual formulas from calculus are derived. In particular, the 
uniform version of differentiability that we use makes for very short and illuminating 
proofs of two central results of calculus: 

• The Law of Bounded Change, which says that bounds for the deriva-
tive (i.e. A < f'(x) < B) are bounds for the difference quotient (i.e. A < 
f(v) _ f(x) J-^-—J-±-t < B). (This is sometimes called the "Mean Value Inequality.") 

y - x 

• The Fundamental Theorem of Calculus. 

In this chapter, we also derive some rather more difficult results on differentiating 
under the integral sign. In the case of improper integrals, we introduce "dominated 
convergence" assumptions, which we will also use later in studying series of functions. 

In Chapter 7, nearly all of the ideas developed in the course are applied to study-
ing the properties of sequences and series of continuous and differentiable functions. 
The particular case of power series is given special attention. The chapter ends 
with the definition of the periodic (trigonometric) functions as power series and a 
derivation of their properties (including a definition of ir)—all without pictures. My 
students invariably enjoy this; in fact, with just a few simplifications and detours, it 
has even worked well for high school students taking AP calculus. 

The last chapter of the book is organized around Fourier series, but it also pro-
vides an introduction to some of the more advanced ideas in functional analysis: 
inner products of functions, the Bessel and Cauchy-Schwartz inequalities and their 
applications, kernels and convolutions, and Abel summability. The early sections 
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also introduce the complex numbers and the properties of complex-valued functions 
of a real variable. 

There is enough material in the eight chapters to give a full-year course, especially 
if a lot of the more challenging exercises are assigned and discussed in class. Some of 
the exercises which have several parts and require more extensive work are labeled 
"projects." 

I have usually given Real Analysis as a one-semester course. I generally get to 
cover the following. 

1. Chapter 1: sections 1.0 through 1.7 (omitting 1.8 and skimming some of the 
material on absolute value and betweenness). 

2. Chapter 2: in which I skip the more technical results—especially the 1- and 
2-sided versions of the Inverse Function Theorem and some of the inequalities 
relating to the Euler number e. 

3. Chapter 3: just what I need to talk about convergence of series. 

4. Chapter 4: section 4.1 and the beginning of section 4.2 (omitting extensions 
of continuous functions), some material on limits from Chapter 3. 

5. Chapter 5: sections 5.1 and 5.2. 

6. Chapter 6: sections 6.1 through 6.3. 

7. Chapter 7: just the material on power series. 

Having done this for one semester, if there is enough student interest in a second 
semester, or a student wants to do a reading course, I can cover the more technical 
topics such as improper integrals, general convergence of sequences of functions, 
complex numbers, and Fourier series. 

After teaching Real Analysis for many years, I'd say that my general experi-
ence has been that there is no general experience. Student ability, background and 
motivation can vary a lot from year to year, and I think it is a mistake to commit 
to a strict syllabus before you know your class. What is critical is that students do 
lots of problems and write lots of proofs. It is also very important that the central 
definitions and examples be memorized. I give several quizzes devoted exclusively 
to this. On the other hand, the more difficult material (proofs) is best tested via 
problem sets. Students seem to do these best—and enjoy them more—when working 
with one or two others. (But I do require independent write-ups!) 

In terms of submitting mathematical work, most students initially write it out 
by hand. Since I typically require rewrites, many soon learn to use an equation 
editor with their word-processor. The software package Scientific Notebook is a 
good alternative, especially if you can get your school to underwrite its purchase. I 
have even had a few ambitious students learn to use Tffi or J^T^X. 

It is important to remember that this is an undergraduate course, and that most 
students taking it are probably not intending to go to graduate school in theoretical 
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mathematics. The goal here is to have students understand the mathematics, be able 
to create some on their own, and come away with happy memories of the experience. 
There is also plenty of challenging material here, especially in the problems, for the 
talented and highly motivated student. The approach I have taken in this book has 
worked well over the years for me and my students. I hope it does for you and yours 
as well. 



0. PRELIMINARIES 

0.1 The Natural Numbers 

You have to begin somewhere. We begin with the whole numbers: 0, 1, 2, .. .and 
assume that we know what they are and that they have all the basic properties we 
know and love. Here are some of them: 

1. (Commutative laws) m + n = n + m, mn = nm 

2. (Associative laws) fc + (m-fn) = ( H m ) + n , k(mn) = (km)n 

3. (Distributive law) k- (m + n) = h-m + k-n 

4. (Additive identity) m + 0 = m 

5. (Multiplicative identity) ra • 1 = m 

6. (Cancellation) 

(a) If ?n 4- k = n -f k, then m = n. 

(b) If m • k = n • k and A: ^ 0, then m = n. 

7. (Inequalities) 

(a) m < n if and only if there is a non-zero whole number k with m 4- k = n. 
(b) m < n if and only if m > n is false. 
(c) For any ki m + k <n + k\i and only if m < n (same for <). 
(d) For any fc=^0,m-fc<n-fcif and only if m < n (same for <). 
(e) (Trichotomy) For any m, n, either m < n, n < m, or m = n. 

There are, of course, many more such properties, but we will not attempt to 
list them all, nor will we try to prove any of them. Attempts have been made to 
derive the whole numbers and their properties solely from the "laws of logic" or from 
certain axioms for set theory, but we will not go down that path. In fact, it is not 
even clear that such an approach is worthwhile, since the existence and properties 
of whole numbers is arguably as basic and intuitive as the laws of logic or set theory 
(perhaps even more so). 

We will denote the collection or set of whole numbers (including 0) by N, standing 
for natural numbers. 

NOTATION 0.1.1 n E N means that n is a natural number. 

1 



2 PRELIMINARIES 

One of the most useful properties of N is the following, which we have put in a box 
because of its importance. 

Principle of Mathematical Induction 
Suppose that S is a collection or set of natural numbers with the properties: 
(a) 5 contains the number 0, and 
(b) whenever S contains the number n it also contains n 4- 1. 
Then S is actually all of N. 

There are several alternative and equivalent versions of this principle; the version 
you use depends on the nature of the result you want to prove. 

Variation 1: Suppose S contains fc, and whenever S contains n it also contains 
n 4-1; then S contains all natural numbers > k. 

Variation 2: Suppose S contains 0, and whenever S contains all the numbers from 
0 through n it also contains n H-1; then S — N. 

Mathematical induction is often compared to the behavior of dominos. The 
dominos are stood up on edge close to each other in a long row. When one is 
knocked over, it hits the next one (analogous to n in S implies n 4-1 in S), which in 
turn hits the next, etc. If then we hit the first (0 in 5), then they will all eventually 
fall (S is all of N). In Variation 1 above, we start by knocking over the fcth domino, 
so that it and all subsequent ones eventually fall. 

Here is an example of how a proof by induction works. 

EXAMPLE 0.1.2 Prove that for any n > 1, the sum of the first n odd numbers is n2. 

Proof. We use Variation 1 above with k = 1. We first verify the claim when 
n = 1: the first odd number is 1 and the first square is l2 = 1, so the claim holds 
in this case. Now we make the so-called "induction assumption" (or "induction 
hypothesis"), namely that the claim is true for some n > 1; so we have 

nth odd number 

1 + 3 + 5 + ---+ ( 2 n - l ) = n 2 . 

The idea is to use this to prove that the claim is true for the next number, n+1. So, 
starting with this equation, let's add the next odd number, 2n 4-1, to both sides: 

1 4- 3 4- 5 4- • • • + (2n - 1) 4- (2n + 1) = n2 4- (2n 4-1). 

The left-hand side is the sum of the first n 4-1 odd numbers, while the right-hand 
side is, of course, equal to (n 4-1)2. Thus, whenever the claim is true for a natural 
number n > 1 it is also true for n 4-1. All the dominos starting from n = 1 fall, and 
our proof is complete. ■ 
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I WARNING: After stating the induction assumption you might be I 
tempted to write 1 + 3 4- 5 H h (2n + l ) = ( n + l ) 2 , in an attempt 
to display what it is that must now be proved. DON'T DO IT! You 
may be tempted to use it to prove itself. Always proceed from what 
you know, never from what you want to know. If you must work 

I backwards, do it on scrap paper, but not in the final write-up. 

A careful derivation of the arithmetic properties of the the natural numbers N, 
using induction, was done by G. Peano (1858-1932). It is a lot of fun, but we will 
not pursue any of it here. 

Once we have the natural number N, it is a relatively easy and straightforward 
step to conceive of, or construct, the integers Z by adding on the "negatives" of the 
naturals. This gives us the collection consisting of 0, ±1 , ± 2 , . . . on which we have 
to define the laws of addition and multiplication, as well as the inequalities < and 
<. There is a clever way of doing this which avoids dealing with a lot of the special 
cases that the straightforward approach entails. We sketch this in the exercises at 
the end of the chapter. 

NOTATION 0.1.3 n £ Z means that n is an integer. 

So, we can now turn to the fractions. 

0.2 The Rationals 

The natural numbers 1, 2, 3,... are used for counting discrete objects. In fact, 
the idea of counting is based on an assumption of discreteness. If a quantity to 
be measured is not a whole number of the units used to measure it, then the unit 
is subdivided into smaller units (yards into feet into inches into tenth inches etc.) 
and combinations of units are used (e.g. 2 feet 10 inches plus 3 tenth-inches). It is 
unclear when the idea that a single number could represent such a measurement was 
first thought of, although the Babylonians, with their uniquely advanced positional 
notation, may have achieved this realization. If one magnitude M\ was used to 
measure another M^ and the first didn't go into the second evenly, the school of 
Euclid referred to the relationship not as a number but as a ratio (this term itself 
being undefined). If a common unit could be chosen that measured each magnitude 
evenly, say M\ = a units and M2 = b units, then the ratio of magnitudes would 
be equal to a ratio of whole numbers, M\ : Mi = a : b. M\ and M2 were called 
commensurable in this case. Thus, a ratio of commensurables was basically an 
ordered pair of whole numbers, and various laws were given for dealing with them; 
for example, ad'.bd — a: b. Prom Renaissance times this ordered pair a : b has been 
denoted with a slash: a/ò, and we now refer to it as a fraction or rational number 
instead of just a ratio. Historically, these ratios of whole numbers were accepted 
long before even negative whole numbers were used. 
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DEFINITION 0.2.1 (RATIONAL NUMBERS) A rational number is an ordered pair a/b, 

where a and b are integers and 6 ^ 0 . 

1. a/b = c/d means ad = cb. 

<* /L / » \ad<cb ifbd>0t .. . . _ . , ., 
2. ab < cd means < ; this is also written c/d > a/b. 

1 ' \ad>cb ifbd<0.' ' ' 
In the definition above, we used the term "ordered pair." This can be defined 

in the context of set theory, but we will not pursue that formality. Basically, an 
ordered pair of integers—in this case denoted a/b but sometimes by (a, b)—is simply 
a pair of integers where the order makes a difference. In other words, a/b is not 
necessarily the same as b/a. In fact, in the definition we make an explicit condition 
for ordered pairs to be equal, namely ad = cb. This is an example of the power 
we have when we make a definition of something hitherto undefined. Rationals are 
added, subtracted, multiplied and divided in the usual way. It is not difficult to 
show that equal rationals produce equal results under these arithmetic operations; 
for example, 2/4 = 1/2 and 2/4 + 3/7 = 1/2 4- 3/7. 

Here is how the proof goes for addition. Suppose a/b = a'/b'a.nd c/d = d/d\ so 
that ab' = a'b and cd! = dd. Now, using the familiar rule for adding fractions (which 
we take as our definition of rational number addition): a/b + c/d — (ad-\-bc)/bd and 
a'/bf + d/d! = (a'd! 4- b'd)/b'd'. Are the right-hand sides of these last two equations 
equal? Check that (ad + bc)b'd' = (a'd' + b'd)bd by carefully multiplying out and 
using ab' = a'b and cd! — c'd. 

In the exercises we invite you to fill in the gaps in this quick exposition of the 
rational numbers. It is not essential to go through with all these details, but you 
might find it an enjoyable diversion, especially if you are not used to giving proofs 
in a non-geometric setting. 

NOTATION 0.2.2 r € Q means that r is a rational number. 

The integers are \ocated or represented or embedded in the rationa\s toy the as-
sociation: a —> a/1. When we refer to the rational integer a, for example, we will 
mean a/1. 

A word about ordering: The integers are discrete in the sense that for any integer 
n there is no integer between n and n + 1. In other words, every integer has a 
"next" integer. This is not true of the rationals: for any two rationals r = a/b 
and s = c/d, the rational (r + s) /2 = \(ad + cò)/òd, for example, lies strictly 
between rand s. In fact, there are infinitely many others in between r and s as well. 
However, even though the rationals are infinitely close together, given two rationals 
it is always possible to tell exactly which of the conditions r < s, r = s or r > s 
holds. This is because an order relation on rationals amounts to verifying an order 
relation between the integers ad and co, and any two integers can be compared in 
a finite number of steps. The actual (practical) number of steps depends on how 
these integers are represented. In our base 10 positional notation, for example, two 
integers of roughly the same size n require at most about log10 n comparisons of the 
digits 0 , . . . , 9, starting from the left. We summarize this computational fact in the 
following important result. 
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THEOREM 0.2.3 (TRICHOTOMY FOR THE RATIONALS) For any two rational num-

bers r and s, exactly one of the following conditions can be determined: r < s, r = 
s, r > s. 

Suppose that we can rule out the case r > s. By Trichotomy we must have either 
r < 5 or r = s. This defines what we might call the "weak" ordering of r and s, as 
opposed to the strong ordering r < s. 

DEFINITION 0.2.4 r < s means that r > s is false, i.e. r < s means that either 
r < s orr = s. This is also written s>r. 

r, n o e /L ^ /J \ ad < cb if bd > 0, 
COROLLARY 0.2.5 a/b< c/d <=$> < 

' - ' \ad>cb ifbd<0. 
Sometimes it is difficult to prove that r < s but easier to prove that r is less than 

or equal to any number bigger than s. That this proves r < s is often extremely 
useful, so we state it for rationals here, and will demonstrate it for real numbers 
later. We have called it the "Wiggle Lemma" because the presence of the e gives us 
some "wiggle room," or leeway, in establishing the inequality. 

LEMMA 0.2.6 (WIGGLE LEMMA FOR RATIONALS) Ifr and s are rationals, andr < 
s 4- € for every rational e > 0, then r < s. 

Proof. Let us assume r < s -f £ for all rational e > 0; we will show that r > s 

is impossible. If r > 5, let e = — — > 0. We have r = | ( r -f r) > | ( r + s) = 

r — s 
s H — = s + e, which contradicts our assumption. So r > s is false. ■ 

REMARK 0.2.7 Although the proof ends by establishing a contradiction, it is not an 
indirect proof. The statement r < s is defined to mean 'V > s" is false—i.e. produces 
a contradiction. 

The following special case occurs frequently in practice. 

COROLLARY 0.2.8 Suppose r and s are rationals and r < s -f- e for every rational 
€ > 0. Then r < s. 

Finally, we recall that |r|, the absolute value of r, is defined to be r if r > 0 and 
—r otherwise. Absolute value has many interesting properties, many of which we 
will deal with later when we state them for real numbers. One of the most important 
is the following. 

PROPOSITION 0.2.9 (TRIANGLE INEQUALITY FOR RATIONALS) |a + 6| < \a\ + |ò| 

(For a proof, see the exercises.) 



6 PRELIMINARIES 

Exercises 

1. (Project) Here is an outline for constructing the integers Z from the natural 
numbers N. The idea is to let an integer be an ordered pair (m, n) of natural 
numbers m and n. This is a "formal" or abstract definition, but intuitively 
you should think of this as the integer m — n (even though subtraction has not 
actually been defined for natural numbers). Since this is a definition of a new 
"object", we are free to define when these objects are to be equal. Intuitively, if 
(m, n) is m—n, and {m!,n') is m!—n1', then equality would give m—n = m!—n'. 
Since we have to build on just what we know for natural numbers, we write 
this equation as m 4- n' = m! 4- n and make our definition: 

DEFINITION For integers, (m.n) = (m^n') means m + n' = m! 4- n. 

We can similarly define addition of integers: (m, n)+(m' ,n') = (m + n, m! 4- n') 
(since (m- n) + (m! — n') = (m + m') — (n + n')). Multiplication is a little 
trickier: (m, n) • (m', n') = (mm! + rvn!', rnn' + mfn)(can you see why?). Now, 
if a = (m,n), define —a to be (n,m). Here are some things to prove: 

(a) The commutative and distributive laws for addition and multiplication. 

(b) If a, b and c are integers and a = 6, then a 4- c = ò 4- c 

(c) a 4- ( -a ) = 0. 

(d) ( -a)ò = a(-b) = -ab. 

(e) If a + e = 6 -h c then a = ò (hint: add — c to both sides and use some of 
the results above). 

(f) -(-a) = a. 

You may also want to define the inequalities < and < and prove some of the 
properties for inequalities listed in the text for the natural numbers. If you do 
this, you can also define \m\ and prove that \m\ \n\ = \mn\. 

Note that the usual natural numbers can be considered integers by representing 
the natural number m by the integer (m, 0); thus, for example, 1 is represented 
by (1,0) (which, incidentally, is equal, as an integer, to (2,1) or (12,11), etc.). 
Now you can show that 1 • a = a, for example, by noting that (1,0) • (m,n) — 
(771, n). 

2. (Project) In the text we have defined rational numbers as ordered pairs a/b of 
integers (ò ^ 0) with the equality relationship (for rationals) that a/b = c/d 
means ad = be. We also defined a/b < c/d (see 0.2.1). 

DEFINITION For rationals r = a/b and s = c/d : 

ad 4- be —a a 
• (Sums and Negatives) r + s = ———, —r = —— = — . 

od b —b 

• (Products and Reciprocals) rs = 7-:, and if r ^ 0, then 1/r = - . 
bd a 

• (Differences and Quotients) r — s = r + (—s), and if s ^ 0, then r/s = 
r( l /a) . 
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Here are some things to prove: 

(a) The commutative and distributive laws for addition and multiplication. 
(b) If r, 5, and t are rationals, and r — s, then rt — st. (We proved a similar 

thing for addition of rationals in the text.) 
(c) r + (-r) = 0, and if r ^ 0 then r (1/r) = 1. 
(d) (—r)s = r(—s) = —rs. 

(e) If r 4-1 = 5 -f t then r = 5. If r£ = st and £ ^ 0, then r = s. 

(f) - ( - r ) = r, and if r ^ 0, l / ( l / r ) = r. 
(g) If r > s and £ > 0, then rt > rs. If r < 0, then rt < rs. 

(h) Define < for rationals and discuss its properties. Also, define \r\ = 
\m/n\ = \m\ / \n\. Prove that \rs\ = \r\ \s\. 

3. Prove the Triangle Inequality, |o +6 | < |a| + |6|, for integers. The simplest 
way is to separate into the cases a and b both positive, both negative, and 
one positive, one negative. (You may assume that m — n < m + n for natural 
numbers.) 

4. Prove the Triangle Inequality T + - < - + - for rationals by using the 
fact that it's true for integers (see previous exercise). You may assume that 
\rs\ = \r\ \s\ for rationals r and s. Hint: Consider multiplying or dividing 
through by |6d|. 

The remaining exercises involve mathematical induction. 

5. PROPOSITION If n > 1, then n2 > n + 1. 
Here are two proofs of this proposition; one is a good one and the other is bad 
form. Explain. 
Proof # 1 . This is clearly true for n = 2. Suppose (induction hypothesis) 
that it's true for some number n > 1. We want to show (n +1)2 > (n 4-1) + 1: 

n2 + 2n + l > n + 2 

Now subtract n -f 1 from both sides: 

n2 + n > 1. 

This last statement is clearly true since n is at least 2. ■ 

Proof # 2 . This is clearly true for n = 2. Suppose (induction hypothesis) 
that it's true for some number n > 1. We then have 

n2 > n + 1. 
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Since we want an (n + l ) 2 , add 2n + 1 to both sides: 

n2 4- 2n 4- 1 > 3n + 2. 

Since n > 0, 2n > 0 so, adding n + 2 to both sides yields 3n + 2 > n 4- 2. 
Combining this with the above gives 

(n 4-1)2 = n2 + 2n 4- 1 > 3n 4- 2 > n + 2 = (n 4-1) + 1. 

Thus, the statement is true for n 4- 1 and we are done. ■ 

6. Prove: 

(a) l 2 4- 22 + 32 + - • • + n2 = "(^W*»**) when n > 0. 

(b) If n > 4, n! > 2n . 

(c) (1 + x ) n > 14- nx. (You must make an assumption about x. What is it?) 

(d) For 0 < u < 1 and integers n > 0, (1 - u)n < 1 - un. What about n = 0? 

(e) For 0 < u and integers n > 0, 1 — un < n ( l — u). 

(f ) If n > 4, 2 n > n2. (By the way, will 100n eventually be bigger than n100?) 

7. Prove that xn — yn is divisible by x — y (as polynomials) (Hint: When looking 
at xk+1 - yk+1

i subtract and add yxk in the middle.) Prove that xn + yn is 
divisible by x + y when n is odd. 

8. The Fibonacci sequence / i , /2 , / j •. • is defined as follows: 

/ l = 1, h = 1, / n = / n - l + fn-2 for fl > 3. 

Prove the amazing formula: 

(Hint: Let a = ^ ^ , ^ = ^ ^ . Then it is helpful to note that a + 1 = a2 

and ß + 1 = ß2. Also, use Variation 2 of mathematical induction; i.e. in the 
induction step, show that if the claim is true for all numbers less than n, it is 
true for n as well.) 

9. In studying the Mandelbrot set, one looks at a certain sequence of numbers 
Zo, Z\, Z2,... which have the following properties: 

Z0 = 0 

\Z\I = 2 4- e for a certain e > 0 

|3b+i| > | Z f c | 2 - | Z i | f o r a U * > 0 . 

Prove that, for all N > 0, |ZN+i | > 2 + TV • e. 
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10. Prove by induction that the product of n consecutive integers is divisible by 
n\. (Use "double induction" to prove that k(k -f- 1) . . . (k + n — 1) is divisible 
by n! by induction on n and k. This is a tricky problem and you must proceed 
very carefully!) 

11. Let's make the ridiculous claim that any n things are equal. Here is a proof 
by induction. When n = 1, then it is clearly true, since any thing is equal to 
itself. Now suppose that it's true for some n and consider any n + 1 things 
£i,X2,.. .xn jxn+i. The first n of these are equal by induction assumption, 
and so are the last n: 

equal by induction 

X i , X 2 , . . . , Xn 

X\ j *^2) •••! ^rij *En+l 

# 2 , •••, 2Jn, X n + i 
v v ' 

equal by induction 

Because of the overlap on the n — 1 things X2,.. - xn we have xi = X2 = • • • = 
^n = xn+i, so n + 1 things are always equal as well. What's wrong? 
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1. THE REAL NUMBERS AND 
COMPLETENESS 

1.0 Introduction 

The real numbers are much more complicated than the integers or the rationals. 
A popular representation presents them as "infinite" decimals. Those infinite dec-
imals that eventually repeat represent the rationals. Thus, for example, is 
represented as 0.3825252525... = 0.3825,where the bar over the 25 indicate that it 
repeats. On the other hand, the infinite decimal representing \/2, 1.414213562..., 
never repeats. Although we can define the collection of reals in this way, there are 
problems, the biggest one being how to define the arithmetic operations. For exam-
ple, in order to add two infinite decimals, we have to "start" somewhere—at some 
decimal place "on the right." But then we have the problem of carries: some addi-
tion of digits to the right of where we start may require a carry that could effect the 
digits at or to the left of where we start. There is no simple way of dealing with this 
difficulty: any solution involves more and more complications. Furthermore, we lose 
the simplicity of rationals since even simple ones such as 3/17 involve complicated, 
repeating, infinite decimals. 

There have been several classical constructions of the reals that avoid these prob-
lems, the most famous ones being Dedekind Cuts and Cauchy Sequences, named 
respectively for the mathematicians Richard Dedekind (1831 - 1916) and Augustine 
Cauchy (1789 - 1857). We will not discuss these constructions here, but will use a 
more modern one developed by Gabriel Stolzenberg, based on "interval arithmetic." 
There are several advantages to this approach. The first is that we deal exclusively 
with rational numbers and their arithmetic (so we avoid the difficulties inherent in 
the infinite decimals approach). Secondly, as we discuss below, intervals of rational 
numbers are very much like scientific measurements, which, because of the fallibility 
of our instruments, are actually ranges of possible values. Finally, the analogy be-
tween interval arithmetic and scientific measurement allows us to apply theoretical 
results from the former to produce applications to the latter in the study of errors 
and error propagation. 

So we begin with the study of rational intervals: [r, s], where r < s are rational 
numbers. We define their arithmetic—i.e. how to add, subtract, multiply, and divide 
them (as well as a few other manipulations). We also define the length of [r, s] to be 
5 — r, providing a measure of the "accuracy" of a measurement represented by this 
interval. Having done this, we turn to collections or families of rational intervals 
(representing a sequence or set of measurements). We define similar arithmetic 

11 



12 THE REAL NUMBERS AND COMPLETENESS 

operations on these families and then define two important properties that a family of 
intervals may have. The first of these, consistency, stipulates that any two intervals in 
the family intersect. The second, fineness, demands that the family contain intervals 
of arbitrarily small length. While this is seldom realizable in the real world, such a 
family can arise mathematically by taking partial sums of approximating series or 
other convergent numerical procedures. In fact, we will eventually define convergence 
using this idea. 

Our principle definition is that a real number is a fine and consistent family of 
rational intervals. We will show that such families inherit the standard arithmetic 
operations (addition, multiplication, absolute value, etc.) from the rationals; indeed, 
we will prove all the usual properties of real numbers necessary to deal with algebraic 
equations and inequalities. Finally, we end by proving the central property that dis-
tinguishes the reals from the rationals: completeness. This takes the form of proving 
that any fine and consistent family of real intervals contains a unique real number 
common to all the intervals. Applications of completeness will be found through-
out the following chapters, especially in the constructions of nth roots, exponential 
functions and logs, limits of series and functions, and the Riemann integral. 

1.1 Interval Arithmetic 

When a quantity—say a charge or weight, or volume—is measured, the instruments 
and methods used generally have a known or estimable accuracy. A numerical read-
ing, say 5.647, usually comes with an error estimate, say ±0.005. Thus, the quantity 
being measured lies in the range 5.647 ± 0.005, so is bounded below by 5.642 and 
above by 5.652. We can represent this by the interval [5.642,5.652]. Since instru-
ments read out either digitally or by dials and scales, the possible measurements 
resulting from this experiment are rational numbers lying in this interval. We now 
make some formal definitions related to this idea. 

DEFINITION 1.1.1 I is a rational interval means I = [r, s], where r and s are rational 
numbers and r < s. The intervals [r,s] and [u, v] are equal precisely when r = u and 
s = v. 

DEFINITION 1.1.2 x 6 [r, s] means that x is a rational number and r < x < s. 

The rational numbers r and s are called the endpoints of the interval [r, s]. Please 
note that these definitions are fairly abstract. An interval is not defined to be a set 
but simply a symbol [r,s\. Unlike set theory, we define the membership relation G. 
If you don't feel comfortable at this point with this degree of abstraction, that's ok: 
no harm will result if you think of the interval [r, s] as simply the set of rationals 
bounded by the endpoints r and s. 

EXAMPLE 1.1.3 [2/5,1/2] = [6/15,2/4] and 7/15 e [2/5,1/2],since 2/5 < 7/15 < 
1/2. 
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We will often use the following notation: I = [r,s] ; J = [u,v]; K = \p,q\ where 
r < s, u < v,and p < q are rational numbers. 

DEFINITION 1.1.4 (INCLUSION OF INTERVALS) [r,s] c [u.v] (or J D I) means that 
u <r and s < v. 

Note that, since intervals are determined solely in terms of their endpoints, this 
property has been defined solely in terms of endpoints. It 's usually a good idea to 
draw a picture to see intuitively what some condition means, so here is the picture 
for inclusion of intervals: 

u r s v 

Here is a model for how proofs should go. It is a bit more wordy than it has to 
be, but that 's ok for now. 

PROPOSITION 1.1.5 I C J and J C K implies that I C K. (More concisely: I C J 
andJcK=>IcK). 

Proof. First we write the intervals in term of their endpoints: / = [r,s],J= [u, v], 
and K = [p,g]. Now we go back to Definition 1.1.4 (and the above diagram) to 
unravel what our assumptions are saying: 

I C J means u < r and s < v 

J C K means p < u and v < q. 

We must apply the definition now to compare I and K using their endpoints. We 
can write p < u < r and s < v < q. We conclude from these that p < r and s < q 
which, according to the definition, means I C K. This is what we wanted to prove. 
■ 

The next two propositions assert that three statements "are equivalent." This 
means that when any one of them is true, so are each of the others. Thus, if the 
three statements are (1), (2), and (3), then we are actually making six assertions: 
(1) = > (2), (1) => (3), (2) = * (1), (2) = * (3), (3) = > (1) and (3) = » (2). 
However, you don't have to prove six separate implications, because it suffices to 
prove only (1) = > (2), (2) = > (3), and (3) => (1). If we know these three, then, 
for example, (2) => (3) =»* (1), so we get (2) => (1). The full proofs are left as 
exercises, though we include a piece of one to show what is expected. 

PROPOSITION 1.1.6 The following are equivalent: 

1. ICJ 

2. x el =>x e J 
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3. J contains the endpoints of I. 

Proof. We will prove just (1) =$► (2). Suppose, then, that (1) holds, so we are 
given I C J. With our usual notation, this means that u < r and s < v (see diagram 
above also). We must use this to prove x e I => x e J , so assume that x € / . By 
the definition of £ above, this means that r < x < s. But, combining this with u < r 
and s < v, we can write: u <r < x < s < v, so u < x <v, which means that x £ J . 
■ 

PROPOSITION 1.1.7 The following are equivalent: 

1. I = J 

2. x el<=*x e J 

3. I C J and J C I 

We now give the definitions of the fundamental arithmetic operations on intervals, 
also in terms of endpoints. Suppose, then, that / = [r,s] and J = [u,v], 

DEFINITION 1.1.8 (ADDITION OF INTERVALS) J + J is the interval [r + u,s + v\. 

DEFINITION 1.1.9 (NEGATION OF INTERVALS) - 7 is the interval [-s,-r]. 

DEFINITION 1.1.10 (SUBTRACTION OF INTERVALS) J-I is the intervalJ+(-I) = 
[u — 5, v — r]. 

NOTATION 1.1.11 (THE 0 INTERVAL) We mil occasionally denote the interval [0,0] 
simply by 0. 

Note that I — / = [r, s] 4- [—s, —r] = [r — s, s — r] which is not in general equal to 
the interval 0; however, we do have the following result. 

PROPOSITION 1.1.12 For all intervals I, 0 e I - I. 

(Question: for which intervals I is it true that I — I = [0,0]?) 

DEFINITION 1.1.13 (MULTIPLICATION OF INTERVALS) Fori = [^s] andj = [u,v], 

13 — [rmn(ruJrvisu,sv),rnax(ruirvisui sv)]. 

When the intervals are "non-negative," their product is much simpler: 

if a > 0, and c > 0 then [a, 6][c, d\ = [ac, bd]. 

However, with negative endpoints the situation is more complicated. For example, 

[-3,2][4,5] = [-15,10]. 

This definition of the product of two intervals, as you might expect, turns out to 
be rather difficult to apply when computing successive multiplications of intervals. 


