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Preface

We study applications of nonparametric function estimation into risk manage-
ment, portfolio management, and option pricing.

The methods of nonparametric function estimation have not been commonly
used in risk management. The scarcity of data in the tails of a distribution makes
it difficult to utilize the methods of nonparametric function estimation. How-
ever, it has turned out that some semiparametric methods are able to improve
purely parametric methods.

Academic research has paid less attention to portfolio selection, as compared
to the attention that has been paid to risk management and option pricing. We
study applications of nonparametric prediction methods to portfolio selection.
The use of nonparametric function estimation to reach practical financial deci-
sions is an important part of machine learning.

Option pricing might be the most widely studied part of quantitative finance
in academic research. In fact, the birth of modern quantitative finance is often
dated to the 1973 publication of the Black–Scholes option pricing formula.
Option pricing has been dominated by parametric methods, and it is especially
interesting to provide some insights of nonparametric function estimation into
option pricing.

The book is suitable for mathematicians and statisticians who would like to
know about applications of mathematics and statistics into finance. In addi-
tion, the book is suitable for graduate students, researchers, and practitioners
of quantitative finance who would like to study some underlying mathematics
of finance, and would like to learn new methods. Some parts of the book require
fluency in mathematics.

Klemelä (2014) is a book that contains risk management (volatility prediction
and quantile estimation) and it describes methods of nonparametric regression,
which can be applied in portfolio selection. In this book, we cover those topics
and also include a part about option pricing.



xiv Preface

The chapters are rather independent studies of well-defined topics. It is
possible to read the individual chapters without a detailed study of the previous
material.

The research in the book is reproducible, because we provide R-code of the
computations. It is my hope, that this makes it easier for students to utilize
the book, and makes it easier for instructors to adapt the material into their
teaching.

The web page of the book is available in http://jussiklemela.com/statfina/.

Jussi KlemeläHelsinki, Finland
June 2017

http://jussiklemela.com/statfina/
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1

Introduction

Nonparametric function estimation has many useful applications in quantita-
tive finance. We study four areas of quantitative finance: statistical finance, risk
management, portfolio management, and pricing of securities.1

A main theme of the book is to study quantitative finance starting only with
few modeling assumptions. For example, we study the performance of non-
parametric prediction in portfolio selection, and we study the performance
of nonparametric quadratic hedging in option pricing, without constructing
detailed models for the markets. We use some classical parametric methods,
such as Black–Scholes pricing, as benchmarks to provide comparisons with
nonparametric methods.

A second theme of the book is to put emphasis on the study of economic
significance instead of statistical significance. For example, studying economic
significance in portfolio selection could mean that we study whether prediction
methods are able to produce portfolios with large Sharpe ratios. In contrast,
studying statistical significance in portfolio selection could mean that we study
whether asset returns are predictable in the sense of the mean squared pre-
diction error. Studying economic significance in option pricing could mean
that we study whether hedging methods are able to well approximate the pay-
off of the option. In contrast, studying statistical significance in option pricing
could mean that we study the goodness-of-fit of our underlying model for asset
prices. Studying statistical significance can be important for understanding the
underlying reasons for economic significance. However, the study of economic
significance is of primary importance, and the study of statistical significance
is of secondary importance.

1 The quantitative finance section of preprint archive “arxiv.org” contains four additional sections:
computational finance, general finance, mathematical finance, and trading and market microstruc-
ture. We cover some topics of computational finance that are useful in derivative pricing, such
as lattice methods and Monte Carlo methods. In addition, we cover some topics of mathematical
finance, such as the fundamental theorems of asset pricing.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



2 1 Introduction

A third theme of the book is the connections between the various parts of
quantitative finance.

1) There are connections between risk management and portfolio selection: In
portfolio selection, it is important to consider not only the expected returns
but also the riskiness of the assets. In fact, the distinction between risk man-
agement and portfolio selection is not clear-cut.

2) There are connections between risk management and option pricing: The
prices of options are largely influenced by the riskiness of the underlying
assets.

3) There are connections between portfolio management and option pricing:
Options are important assets to be included in a portfolio. In addition, mul-
tiperiod portfolio selection and option hedging can both be casted in the
same mathematical framework.

Volatility prediction is useful in risk management, option pricing, and portfo-
lio selection. Thus, volatility prediction is a constant topic throughout the book.

1.1 Statistical Finance

Statistical finance makes statistical analysis of financial and economic data.
Chapter 2 contains a description of the basic financial instruments, and it

contains a description of the data sets that are analyzed in the book.
Chapter 3 studies univariate data analysis. We study univariate financial time

series, but ignore the time series properties of data. A decomposition of a uni-
variate distribution into the central part and into the tail parts is an important
theme of the chapter.

1) We use different estimators for the central part and for the tails. Non-
parametric density estimation is efficient at the center of a univariate
distribution, but in the tails of the distribution the scarcity of data makes
nonparametric estimation difficult. When we combine a nonparametric
estimator for the central part and a parametric estimator for the tails then
we obtain a semiparametric estimator for the distribution.

2) We use different visualization methods for the central part and for the tails.
We apply two basic visualization tools: (1) kernel density estimates and (2)
tail plots. Kernel density estimates can be used to visualize and to estimate
the central part of the distribution. Tail plots are an empirical distribution
based tool, and they can be used to visualize the tails of the distribution.

Chapter 4 studies multivariate data analysis. Multivariate data analysis con-
siders simultaneously several time series, but the time series properties are
ignored, and thus the analysis can be called cross-sectional. A basic concept
is the copula, which makes it possible to compose a multivariate distribution
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into the part that describes the dependence and into the parts that describe
the marginal distributions. We can estimate the marginal distributions using
nonparametric methods, but to estimate dependence for a high-dimensional
distribution it can be useful to apply parametric models. Combining nonpara-
metric estimators of marginals and a parametric estimator of the copula leads
to a semiparametric estimator of the distribution. Note that there is an analogy
between the decomposition of a multivariate distribution into the copula and
the marginals, and between the decomposition of a univariate distribution into
the tails and the central area.

Chapter 5 studies time series analysis. Time series analysis adds the elements
of dependence and time variation into the univariate and multivariate data anal-
ysis. Completely nonparametric time series modeling tends to become quite
multidimensional, because dependence over k consecutive time points leads
to the estimation of a k-dimensional distribution. However, a rather conve-
nient method for time series analysis is obtained by taking as a starting point
a univariate or a multivariate parametric model, and estimating the parameter
using time localized smoothing. For example, we can apply time localized least
squares or time localized maximum likelihood.

Chapter 6 studies prediction. Prediction is a central topic in time series
analysis. The previous observations are used to predict the future observations.
A distinction is made between moving average type of predictors and state
space type of predictors. Both types of predictors can arise from parametric
time series modeling: moving average and GARCH (1, 1) models lead to moving
average predictors, and autoregressive models lead to state space predictors. It
is easy to construct nonparametric moving average predictors, and nonpara-
metric regression analysis leads to nonparametric state space predictors.

1.2 Risk Management

Risk management studies measurement and management of financial risks. We
concentrate on the market risk, which means the risk of unfavorable moves of
asset prices.2

Chapter 7 studies volatility prediction. Prediction of volatility means in our
terminology that the square of the return of a financial asset is predicted. The
volatility prediction is extremely useful in almost every part of quantitative

2 Other relevant types of risk are credit risk, liquidity risk, and operational risk. Credit risk means
the risk of the default of a debtor and the risks resulting from downgrading the rating of a debtor.
Liquidity risk means the risk from additional cost of liquidating a position when buyers are rare.
Operational risk means the risk caused by natural disasters, failures of the physical plant and equip-
ment of a firm, failures in electronic trading, clearing or wire transfers, trading and legal liability
losses, internal and external theft and fraud, inappropriate contractual negotiations, criminal mis-
management, lawsuits, bad advice, and safety issues.
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finance: we can apply volatility prediction in quantile estimation, and volatility
prediction is an essential tool in option pricing and in portfolio selection.
In addition, volatility prediction is needed when trading with variance
products. We concentrate on the following three methods:
1) GARCH models are a classical and successful method to produce volatility

predictions.
2) Exponentially weighted moving averages of squared returns lead to volatility

predictions that are as good as GARCH (1, 1) predictions.
3) Nonparametric state space smoothing leads to improvements of GARCH

(1, 1) predictions. We apply kernel regression with two explanatory
variables: a moving average of squared returns and a moving average of
returns. The response variable is a future squared return. A moving average
of squared returns is in itself a good volatility predictor, but including a
kernel regression on top of moving averages improves the predictions. In
particular, we can take the leverage effect into account. The leverage effect
means that when past returns have been low, then the future volatility tends
to be higher, as compared to the future volatility when the past returns have
been high.

Chapter 8 studies estimation of quantiles. The term value-at-risk is used to
denote upper quantiles of a loss distribution of a financial asset. Value-at-risk
at level 0.5 < p < 1 has a direct interpretation in risk management: it is such
value that the probability of losing more has a smaller probability than 1 − p.
We concentrate on the following three main classes of quantile estimators:
1) The empirical quantile estimator is a quantile of the empirical distribution.

The empirical quantile estimator has many variants, since it can be used in
conditional quantile estimation and it can be modified by kernel smoothing.
In addition, empirical quantiles can be combined with volatility based and
excess distribution based methods, since empirical quantiles can be used to
estimate the quantiles of the residuals.

2) Volatility based quantile estimators apply a location-scale model. A volatil-
ity estimator leads directly to a quantile estimator, since estimation of the
location is less important. The performance of volatility based quantile esti-
mators depends on the choice of the base distribution, whose location and
scale is estimated. However, in a time series setting the use of the empirical
quantiles of the residuals provides a method that bypasses the problem of
the choice of the base distribution.

3) Excess distribution based quantile estimators model the tail parametrically.
These estimators ignore the central part of the distribution and model only
the tail part parametrically. The tail part of the distribution is called the
excess distribution. Extreme value theory can be used to justify the choice
of the generalized Pareto distribution as the model for the excess distribu-
tion. Empirical work has confirmed that the generalized Pareto distribution
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provides a good fit in many cases. In a time series setting the estimation can
be improved if the parameters of the excess distribution are taken to be time
changing. In addition, in a time series setting we can make the estimation
more robust to the choice of the parametric model by applying the empiri-
cal quantiles of the residuals. In this case, the definition of a residual is more
involved than in the case of volatility based quantile estimators.

1.3 Portfolio Management

Portfolio management studies optimal security selection and capital allocation.
In addition, portfolio management studies performance measurement.

Chapter 9 discusses some basic concepts of portfolio theory.

1) A major issue is to introduce concepts for the comparison of wealth dis-
tributions and return distributions. The comparison can be made by the
Markowitz mean–variance criterion or by the expected utility. We need to
define what it means that a return distribution is better than another return
distribution. This is needed both in portfolio selection and in performance
measurement.

2) A second major issue is the distinction between the one period portfolio
selection and multiperiod portfolio selection. We concentrate on the one
period portfolio selection, but it is instructive to discuss the differences
between the approaches.

Chapter 10 studies performance measurement.

1) The basic performance measures that we discuss are the Sharpe ratio, cer-
tainty equivalent, and the alpha of an asset.

2) Graphical tools are extremely helpful in performance measurement. The
performance measures are sensitive to the time period over which the per-
formance is measured. The graphical tools address the issue of the sensitivity
of the time period to the performance measures. The graphical tools help to
detect periods of good performance and the periods of bad performance,
and thus they give clues for searching explanations for good and bad perfor-
mance.

Chapter 11 studies Markowitz portfolio theory. Markowitz portfolios are
such portfolios that minimize the variance of the portfolio return, under a
minimal requirement for the expected return of the portfolio. Markowitz
portfolios can be utilized in dynamic portfolio selection by predicting the
future returns, future squared returns, and future products of returns of two
assets, as will be done in Chapter 12.

Chapter 12 studies dynamic portfolio selection. Dynamic portfolio selection
means in our terminology such trading where the weights of the portfolio are
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rebalanced at the beginning of each period using the available information.
Dynamic portfolio selection utilizes the fact that the expected returns, the
expected squared returns (variances), and the expected products of returns
(covariances) change in time. The classical insight of efficient markets has to be
modified to take into account the predictability of future returns and squared
returns.
1) First, we discuss how prediction can be used in portfolio selection. Time

series regression can be applied in portfolio selection both when we use
the maximization of the expected utility and when we use mean–variance
preferences. In the case of the maximization of the expected utility, we pre-
dict the future utility transformed returns with time series regression. In the
case of mean–variance preferences we predict, the future returns, squared
returns, and products of returns.

2) The Markowitz criterion can be seen as decomposing the expected utility
into the first two moments. The decomposition has the advantage that dif-
ferent methods can be used to predict the returns, squared returns, and
products of returns. The main issue is to study the different types of pre-
dictability of the mean and the variance. In fact, most of the predictability
comes from the variance part, whereas the expectation part has a much
weaker predictability.
a) We need to use different prediction horizons for the prediction of the

returns and for the prediction of the squared returns. For the prediction
of the returns we need to use a prediction horizon of 1 year or more. For
the prediction of squared returns we can use a prediction horizon of 1
month or less.

b) We need to use different prediction methods for the prediction of the
returns and for the prediction of the squared returns. For the prediction
of the returns, it is useful to apply such explanatory variables as dividend
yield and term spread. For the prediction of the squared returns we can
apply GARCH predictors or exponentially weighted moving averages.

1.4 Pricing of Securities

Pricing of securities considers valuation and hedging of financial securities and
their derivatives.

Chapter 13 studies principles of asset pricing. We start the chapter by a
heuristic introduction to pricing of securities, and discuss such concepts as
absolute pricing, relative pricing using arbitrage, and relative pricing using
“statistical arbitrage.”3

3 The term statistical arbitrage refers often to pairs trading and to the application of mean rever-
sion. We use term statistical arbitrage more generally, to refer to cases where two payoffs are close
to each other with high probability. Thus, also term probabilistic arbitrage could be used.
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1) The first main topic is to state and prove the first fundamental theorem of
asset pricing in discrete time models, and to state the second fundamental
theorem of asset pricing. These theorems provide the foundations on which
we build the development of statistical methods of asset pricing. We give a
constructive proof of the first fundamental theorem of asset pricing, instead
of using tools of abstract functional analysis. The constructive proof of the
first fundamental theorem of asset pricing turns out to be useful, because the
method can be applied in practise to price options in incomplete models.
The construction uses the Esscher martingale measure, and it is a special
case of using utility functions to price derivatives.

2) The second main topic is to discuss evaluation of pricing and hedging meth-
ods. The basic evaluation method will be to measure the hedging error. The
hedging error is the difference between the payoff of the derivative and the
terminal value of the hedging portfolio. By measuring the hedging error,
we simultaneously measure the modeling error and the estimation error.
Minimizing the hedging error has economic significance, whereas modeling
error and estimation error are underlying statistical concepts. Thus, empha-
sizing the hedging error is an example of emphasizing economic significance
instead of statistical significance.

Chapter 14 studies pricing by arbitrage. The principle of arbitrage-free pric-
ing combines two different topics: pricing of futures and pricing of options in
complete models, like binary models and the Black–Scholes model.

1) A main topic is pricing in multiperiod binary models. First, these models
introduce the idea of backward induction, which is an important numerical
tool to value options in the Black–Scholes model, and which is an important
tool in quadratic hedging. Second, these models lead asymptotically to the
Black–Scholes prices.

2) A second main topic is to study the properties of Black–Scholes hedging. We
illustrate how hedging frequency, strike price, expected return, and volatil-
ity influence the hedging error. These illustrations give insight into hedging
methods in general, and not only into Black–Scholes hedging.

3) A third main topic is to study how Black–Scholes pricing and hedging per-
forms with various volatility predictors. Black–Scholes pricing and hedging
provides a benchmark, against which we can measure the performance of
other pricing methods. Black–Scholes pricing and hedging assumes that
the stock prices have a log-normal distribution with a constant volatility.
However, when we combine Black–Scholes pricing and hedging with a time
changing GARCH (1, 1) volatility, then we obtain a method that is hard to
beat.

Chapter 15 gives an overview of several pricing methods in incomplete
models. Binary models and the Black–Scholes model are complete models,



8 1 Introduction

but we are interested in option pricing when the model makes only few
restrictions on the underlying distribution of the stock prices. Chapter 16 is
devoted to quadratic hedging, and in Chapter 15 we discuss pricing by utility
maximization, pricing by absolutely continuous changes of measures, pricing
in GARCH models, pricing by a nonparametric method, pricing by estimation
of the risk neutral density, and pricing by quantile hedging.
1) A main topic is to introduce two general approaches for pricing derivatives

in incomplete models: the method of utility functions and the method of
an absolutely continuous change of measure (Girsanov’s theorem). For
some Gaussian processes and for some utility functions these methods
coincide. The method of utility functions can be applied to construct a
nonparametric method of pricing options, whereas Girsanov’s theorem can
be applied in the case of some processes with Gaussian innovations, such
as some GARCH processes.

2) A second main topic is to discuss pricing in GARCH models. GARCH (1, 1)
model gives a reasonable fit to the distribution of stock prices. Girsanov’s
theorem can be used to find a natural pricing function when it is assumed
that the stock returns follow a GARCH (1, 1) process. Heston–Nandi mod-
ification of the standard GARCH (1, 1) model leads to a computationally
attractive pricing method. Heston–Nandi model has been rather popular,
and it can be considered as a discrete time version of continuous time
stochastic volatility models.

Chapter 16 studies quadratic hedging. In quadratic hedging the price and the
hedging coefficients are determined so that the mean squared hedging error is
minimized. The hedging error means the difference between the terminal value
of the hedging portfolio and the value of the option at the expiration.
1) A main aim of the chapter is to derive recursive formulas for quadratically

optimal prices and hedging coefficients. It is important to cover both the
global and the local quadratic hedging. Local quadratic hedging leads to
formulas that are easier to implement than the formulas of global quadratic
hedging. Quadratic hedging has some analogies with linear least squares
regression, but quadratic hedging is a version of sequential regression,
which is done in a time series setting. In addition, quadratic hedging
does not assume a linear model, but we are searching the best linear
approximation in the sense of the mean squared error.

2) A second main aim of the chapter is to implement quadratic hedging.
This will be done only for local quadratic hedging. We implement local
quadratic hedging nonparametrically, without assuming any model for the
underlying distribution of the stock prices. Although quadratic hedging
finds an optimal linear approximation for the payoff of the option, the
quadratically optimal price and hedging coefficients have a nonlinear
dependence on volatility, and thus nonparametric approach may lead to a
better fit for these nonlinear functions than a parametric modeling.
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Chapter 17 studies option strategies. Option strategies provide a large
number of return distributions to choose from, so that it is possible to create a
portfolio that is tailored to the expectations and the risk profile of each investor.
We discuss such option strategies as vertical spreads, strangles, straddles,
butterflies, condors, and calendar spreads. Options can be combined with
stocks to create covered calls and protective put. Options can be combined
with bonds to create capital guarantee products. We give insight into these
option strategies by estimating the return distributions of the strategies.

Chapter 18 describes interest rate derivatives. The market of interest rate
derivatives is even larger than the market of equity derivatives. Interest rate
forwards include forward zero-coupon bonds, forward rate agreements, and
swaps. Interest rate options include caps and floors.
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Statistical Finance
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2

Financial Instruments

The basic assets which are traded in financial markets include stocks and bonds.
A large part of financial markets consists of trading with derivative assets, like
futures and options, whose prices are derived from the prices of the basic assets.
Stock indexes can be considered as derivative assets, since the price of a stock
index is a linear combination of the prices of the underlying stocks. A stock
index is a more simple derivative asset than an option, whose terminal price is
a nonlinear function of the price of the underlying stock.

In addition, we describe in this section the data sets which are used through-
out the book to illustrate the methods.

2.1 Stocks

Stocks are securities representing an ownership in a corporation. The owner
of a stock has a limited liability. The limited liability implies that the price of a
stock is always nonnegative, so that the price St of a stock at time t satisfies

0 ≤ St <∞.

Stock issuing companies have a variety of legal forms depending on the country
of domicile of the company.1 Common stock typically gives voting rights in
company decisions, whereas preferred stock does not typically give voting
rights, but the owners of preferred stocks are entitled to receive a certain
amount of dividend payments before the owners of common stock can receive
any dividends.

1 Statistical data of stock prices is usually available only for the stocks that are publicly traded in
a stock exchange. In UK the companies whose stocks are publicly traded are called public lim-
ited companies (PLC), and in Germany they are called Aktiengesellschaften (AG). The companies
whose owners have a limited liability but whose stocks are not publicly traded are called private
companies limited by shares (Ltd), and Gesellschaft mit beschränkter Haftung (GmbH).

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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2.1.1 Stock Indexes

We define a stock index, give examples of the uses of stock indexes, and give
examples of popular stock indexes.

2.1.1.1 Definition of a Stock Index
The price of a stock index is a weighted sum of stock prices. The value It of a
stock index at time t is calculated by formula

It = C
d∑

i=1
niSi

t , (2.1)

where C is a constant, d is the number of stocks in the index, ni is the number of
shares of stock i, and Si

t is a suitably adjusted price of stock i at time t, where i =
1,… , d. Note that niSi

t is the market capitalization of stock i. The definition of a
stock index involves three parameters: constant C, numbers ni, and values Si

t :

1) The constant C can be chosen, for example, to make the value of the index
equal to 100 at a given past day. When the constitution of the index is
changed, then the constant C is changed, to keep the index equal to 100 at
the chosen day.

2) The numbers ni can equal the total number of shares of stock i, but they can
also be equal to the number of freely floating stocks. Float market capital-
ization excludes stocks which are not freely floating (cannot be bought in
the open market).

3) The values Si
t are calculated differently depending on whether the index is a

price return index or a total return index. Price return indexes are calculated
without regard to cash dividends but total return indexes are calculated by
reinvesting cash dividends. The adjusted closing price of a stock is the clos-
ing price of a stock which is adjusted to cash dividends, stock dividends,
stock splits, and also to more complex corporate actions, such as rights
offerings. The calculation of the adjusted closing price is often made by data
providers.

2.1.1.2 Uses of Stock Indexes
Stock indexes can be used to summarize information about stock markets.
Stock indexes can also be used as a proxy for the market index when testing
and applying finance theories. The market index is the stock index which sums
the values of all companies worldwide. Stock indexes are traded in futures
markets and in exchanges as exchange traded funds (ETF). Furthermore,
investment banks provide financial instruments whose values depend on stock
indexes.
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2.1.1.3 Examples of Stock Indexes

Dow Jones Industrial Average Dow Jones Industrial Average is an index where
the prices are not weighted by the number of shares, and thus Dow Jones Indus-
trial Average is an exception of the rule (2.1). Dow Jones Industrial Average is
just a sum of the prices of the components, multiplied by a constant.

S&P 500 S&P 500 was created at March 4, 1957. It was calculated back until
1928 and the basis value was taken to be 10 from 1941 until 1943. The S&P 500
index is a price return index, but there exists also total return versions (divi-
dends are invested back) and net total return versions (dividends minus taxes
are invested back) of the S&P 500 index. The S&P 500 is a market value weighted
index: prices of stocks are weighted according to the market capitalizations of
the companies. Since 2005 the index is float weighted, so that the market capi-
talization is calculated using only stocks that are available for public trading.

Nasdaq-100 Nasdaq-100 is calculated since January 31, 1985. The basis value
was at that day 250. Nasdaq-100 is a price index, so that the dividends are not
included in the value of the index. Nasdaq-100 is a different index than Nasdaq
Composite, which is based on 3000 companies. Nasdaq-100 is calculated using
the 100 largest companies in Nasdaq Composite. Nasdaq-100 is a market value
weighted index, but the influence of the largest companies is capped (the weight
of any single company is not allowed to be larger than 24%).

DAX 30 DAX 30 (Deutscher AktienindeX) was created at July 1, 1988. The basis
value is 1000 at December 31, 1987. DAX 30 is a performance index (dividends
are reinvested in calculating the value of the index). DAX 30 stock index is a
market value weighted index of 30 largest German companies. Market value
is calculated using only free floating stocks (stocks that are not owned by an
owner which has more than 5% of stocks). The largeness of a company is mea-
sured by taking into account both the free floating market value and the transac-
tion volume (total value of the stocks that are exchanged in a given time period).
The weight of any single company is not allowed to be larger than 10%.

2.1.2 Stock Prices and Returns

Statistical analysis of stock markets is usually done from time series of returns.
Before defining a return time series we describe the initial price data in its raw
form, as it is evolving in a stock exchange, and we describe some methods of
sampling of prices.
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2.1.2.1 Initial Price Data
During the opening hours of an exchange the stocks are changing hands at
irregular time points. The stock exchange receives bid prices with volumes
(numbers of stocks one is willing to buy with the given bid price) from buyers,
and ask prices with volumes from the sellers. The exchange has an algorithm
which allocates the stocks from the sellers to the buyers. The allocation hap-
pens when there are bid prices and ask prices that meet each other (ask prices
that are smaller or equal to bid prices). The algorithms of stock allocation take
into account the arrival times of the orders, the volumes of the orders, and the
types of the orders.

The most common order types are the market order and the limit order.
A market order expresses the intention to buy the stock at the lowest ask
price, or the intention to sell the stock at the highest bid price. A limit order
expresses the intention to buy the stock at the lowest ask price, under the
condition that the ask price is lower than the given limit price, or the intention
to sell the stock at the highest bid price, under the condition that the bid price
is higher than the given limit price.

2.1.2.2 Sampling of Prices
The price changes at irregular time intervals in a stock exchange, but for the
purpose of a statistical analysis we typically sample price at equispaced inter-
vals.

To obtain a time series of daily prices, we can pick the closing price of each
trading day. The closing price can be considered as the consensus reached
between the sellers and the buyers about the fair price, taking into account all
information gathered during the day. An alternative method would choose the
opening price.

However, depending on the purpose of the analysis, we can sample data once
in a second, once in 10 days, or once in a month, for example. Note that when
the sampling interval is longer (monthly, quarterly, or yearly), the number of
observations in a return time series will be smaller, and thus the statistical con-
clusions may be more vague. Note also, that the distribution of the returns may
vary depending on the sampling frequency.

It is not obvious how to define equispaced sampling, since we can measure
the time as the physical time, trading time, or effective trading time:
1) The physical time is the usual time in calendar days. Assume that we want

to sample data once in 20 days. If we use the physical time, then we calculate
all calendar days.

2) The trading time or market time takes into account only the time when mar-
kets are open. For example, when we want to sample data once in 20 days and
we use trading time, then we calculate only the trading days (not all calendar
days). However, information is accumulating also during the weekends (and
during the night), which would be an argument in favor of physical time.
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3) The effective trading time takes into account that the market activity is not
uniform during market hours. To define the sampling interval, we could take
into account the number of transactions, or the volume of the transactions.
The effective trading time is interesting especially when we gather intraday
data, but it can be used also in the case of longer sampling intervals, to cor-
rect for diminishing market activity during summer or at the end of year.2

Sampling daily closing prices can be interpreted as using the trading time,
because weekends and holidays are ignored in the daily sampling. Since there
is roughly the same number of trading days in every week and every month, we
can interpret sampling the weekly and monthly closing prices both as using the
physical time and using the trading time. Discussion about scales in finance is
provided by Mantegna and Stanley (2000).

2.1.2.3 Stock Returns
Let us consider a time series S0,… , ST of stock prices, sampled at equispaced
time points. We can calculate gross returns, net returns, or logarithmic returns.

1) Gross returns (price relatives) are defined by
St+1

St
,

2) net returns (relative price differences) are defined by
St+1 − St

St
,

3) logarithmic returns (continuously compounded returns) are defined by

log
(St+1

St

)
,

where t = 0,… ,T − 1.
Gross returns are positive numbers like 1.02 (when the stock rose 2%) or 0.98

(when the stock fell 2%). Value zero for a gross return means bankruptcy. The
gross returns have a concrete interpretation: starting with wealth Wt and buy-
ing a stock with price St leads to the wealth Wt+1 = Wt × St+1∕St .

Net returns are obtained from gross returns by subtracting one, and thus net
returns are numbers larger than −1. Net returns are numbers like 0.02 (when
the stock rose 2%) or −0.02 (when the stock fell 2%). Value −1 for a net return
means bankruptcy.

2 Let Vu be the number or the volume of the transactions at time u. After sampling time ti is chosen,
we can determine the next sampling time ti+1 by

ti+1 = min
{

t ∶
∑

{Vu ∶ ti ≤ u ≤ t} ≥ C
}
,

where C > 0 is a constant.
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Logarithmic returns are obtained from gross returns by taking the loga-
rithm.3 A logarithmic return can take any real value, but typically logarithmic
returns are close to net returns, because log(x) ≈ x − 1 when x ≈ 1. Value −∞
for a logarithmic return means bankruptcy. The logarithmic function is an
example of a utility function, as discussed in Section 9.2.2. We will consider
taking the logarithm as an application of a utility function, and apply mainly
gross returns. However, there are some reasons for the use of logarithmic
returns. First, we can derive approximate distributions for the stock price by
applying limit theorems for the sum of the logarithmic returns, which makes
the study of logarithmic returns interesting. Indeed, we can write

ST = S0 exp

{T−1∑
t=0

log
(St+1

St

)}
. (2.2)

See (3.49) for a more detailed derivation of the log-normal model for stock
prices. Second, taking logarithms of returns transforms the original time series
of prices to a stationary time series, as explained in the connection of Figure 5.1.

For a statistical modeling we need typically a stationary time series. Station-
arity is defined in Section 5.1. For example, autoregressive moving average pro-
cesses (ARMA) and generalized autoregressive conditional heteroskedasticity
(GARCH) models, defined in Section 5.3, are stationary time series models. The
original time series of stock prices is not a stationary time series, but it can be
argued that a return time series is close to stationarity.4

Note that we can write, analogously to (2.2),

ST = S0 +
T−1∑
t=0

(St+1 − St).

Thus, we can derive approximate distributions for the stock price by apply-
ing limit theorems for the sum of the price differences. See (3.46) for a more
detailed derivation of the normal model for stock prices. The time series of
price differences is not a stationary time series, as discussed in the connection
of Figure 5.2. However, for short time periods a time series of price differences
can be approximately stationary. Thus, modeling price differences instead of
returns can be reasonable.

3 We take the logarithm to be the natural logarithm, with e (Euler’s number or Napier’s constant)
as the basis. The logarithmic functions with other bases could be used as well.
4 Time series {Yt} is called strictly stationary, if (Y1,… ,Yt) and (Y1+k ,… ,Yt+k) are identically dis-
tributed for all t, k ∈ {0,±1,±2,…}. Stationarity means, roughly speaking, that every subperiod of
the time series has similar statistical characteristics. For example, consider a stock whose price is
1$, which then rises to have a price of 100$. The change of 1$ is very large at the beginning of the
period but moderate at the end of the period. Thus, the time series of prices is not stationary.
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2.2 Fixed Income Instruments

One unit of currency today is better than one unit of currency tomorrow. Fixed
income research studies how much one should pay today, in order to receive a
cash payment at a future day.

Fixed income instruments are described in more detail in Chapter 18. Here
we give an overview of zero-coupon bonds, coupon paying bonds, interest
rates, and of calculation of bond returns.

2.2.1 Bonds

Bonds include zero-coupon bonds and coupon bearing bonds.

1) A zero-coupon bond, or a pure discount bond, is a certificate which gives
the owner a nominal amount P (principal) at the future maturity time T .
Typically we take P = 1.

2) Coupon bearing bonds make regular payments (coupons) before the final
payment at the maturity. A coupon bond can be defined as a series of
payments P1,… ,Pn at times T1,… ,Tn. The terminal payment contains the
principal and the final coupon payment.5

A zero-coupon bond is a more basic instrument than a coupon bond, because
a coupon bond can be defined as a portfolio of zero-coupon bonds. Let C(t0,Tn)
be the price of a coupon bond which starts at t0 and makes payments P1,… ,Pn
at times T1 < · · · < Tn, where T1 > t0. It holds that

C(t0,Tn) =
n∑

i=1
PiZ(t0,Ti),

where Z(t0,Ti) are the prices of zero-coupon bonds starting at t0 with maturity
Ti, and with principal P = 1.

The cash flow generated by a bond is determined when the bond is issued.
The bond can be traded before its maturity and its price can fluctuate before
the maturity. For example, the price of a zero-coupon bond with the nominal
amount P is equal to P at the maturity, but its price fluctuates until the maturity
is reached. The price fluctuates as a function of interest rate fluctuation. Thus,
bonds bear interest rate risk if they are not kept until maturity. If the bonds are
kept until maturity they bear the inflation risk and the risk of the default of the
issuer.

Bonds can be divided by the issuer. The main classes are government bonds,
municipal bonds, and corporate bonds. Credit rating services give credit ratings

5 For example, a 5 year 4% semi-annual coupon bond with 1000$ face value makes ten 20$ pay-
ments every 6 months and the final payment of 1000$. Thus Pi = 20$ for i = 1,… , n − 1 and the
last payment is Pn = 1020$, where n = 10.
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to the bond issuers. Credit ratings help the investors to evaluate the probability
of the payment default. Credit rating services include Standard & Poor’s and
Moody’s.

US Treasury securities are backed by the US government. US Treasury secu-
rities include Treasury bills, Treasury notes, and Treasury bonds.

1) Treasury bills are zero-coupon bonds with original time to maturity of 1
year or less.6

2) Treasury notes are coupon bonds with original time to maturity between 2
and 10 years.

3) Treasury bonds are coupon bonds with original time to maturity of more
than 10 years.

Widely traded German government bonds include Bundesschatzanweisun-
gen (Schätze), which are 2 year notes, Bundesobligationen (Bobls), which are
5 year notes, and Bundesanleihen (Bunds and Buxl), which are 10 and 30 year
bonds.

There are many types of fixed income securities. Callable bonds are such
bonds that allow the bond issuer to purchase the bond back from the bond-
holders. The callable bonds make it possible for the issuer to retire old high-rate
bonds and issue new low-rate bonds. Floating rate bonds (floaters) are such
bonds whose rates are adjusted periodically to match inflation rates. Treasury
STRIPS are such fixed income securities where the principal and the interest
component of US Treasury securities are traded as separate zero coupon secu-
rities. The acronym STRIPS means separate trading of registered interest and
principal securities.

2.2.2 Interest Rates

Interest rates are the basis for many financial contracts. We can separate
between the government rates and the interbank rates. The government rates
are deduced from the bonds issued by the governments and the interbank rates
are obtained from the rates at which deposits are exchanged between banks.

Libor (London interbank offered rate) and Euribor (Euro interbank offered
rate) are important interbank rates. Eonia (Euro overnight index average) is an
overnight interest rate within the eurozone, but unlike the Euribor and Libor
does not include term loans. Eonia is similar to the federal funds rate in the
US. Sonia (Sterling overnight index average) is the reference rate for overnight
unsecured transactions in the Sterling market.

Euribor and Libor are comparable base rates. Euribor rates are trimmed aver-
ages of interbank interest rates at which a collection of European banks are

6 The Treasury issues bills with times to maturity of 13 weeks, 26 weeks, and 52 weeks (3-month
bills, 6-month bills, and 1-year bills). 13-week bills and 26-week bills are auctioned once a week
and 52-week bills are auctioned once a month.
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prepared to lend to one another. Libor rates are trimmed averages of interbank
interest rates at which a collection of banks on the London money market are
prepared to lend to one another. Euribor and Libor rates come in different
maturities. In contrast to Euribor rates, the Libor rates come in different cur-
rencies. Euribor and Libor rates are not based on actual transactions, whereas
Eonia is based on actual transactions. A study published in May 2008 in The
Wall Street Journal suggested that the banks may have understated the bor-
rowing costs. This led to reform proposals concerning the calculation of the
Libor rates.

The Eonia rate is the rate at which banks provide unsecured loans to each
other with a duration of 1 day within the Euro area. The Eonia rate is a vol-
ume weighted average of transactions on a given day and it is computed by the
European Central Bank by the close of the real-time gross settlement on each
business day. Eonia can be considered as the 1 day Euribor rate or as the Euro
version of overnight index swaps (OIS). The Eonia panel consists of over 50
mostly European banks. The banks are chosen to the panel based on their pre-
mium credit rating and the high volume of their money market transactions
conducted within the Eurozone. Banks on the Eonia panel are the same banks
included in the Euribor panel.

Euribor rates are used as a reference rate for euro-denominated forward rate
agreements, short term interest rate futures contracts, and interest rate swaps.
Libor rates are used for Sterling and US dollar-denominated instruments.

2.2.2.1 Definitions of Interest Rates
The different definitions of interest rate are discussed in detail in Chapter 18.
As an example we can consider a loan where the interest is paid at the end
of a given period, and the interest is quoted in annual rate. Rate conventions
determine how the quoted annual rate relates to the actual payment. Maybe
the most common convention is to pay P × rT∕360, where P is the principal, r
is the annual rate, and T is the number of calendar days of the deposit or loan.
Note that loan rates are either rates that apply to a loan starting now until a
given expiry, or forward rates, that are rates applying to a loan starting in the
future for a given period of time.

Rates are quoted in percents but they are compared in basis points, where a
basis point is 0.01%, that is, 1% is 100 basis points.

2.2.2.2 The Risk Free Rate
The risk free rate is different depending on the investment horizon. For one day
horizon the risk free rate could be the Eonia rate or the rate of a bank account,
and for 1 month horizon the risk free rate could be the rate of 1 month govern-
ment bond.
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2.2.3 Bond Prices and Returns

A 10 year zero-coupon bond has the time to maturity of 10 years at the emission,
after 1 year the time to maturity is 9 years, after 2 years the time to maturity is 8
years, and so on. The price of the zero-coupon bond is fluctuating according to
the fluctuation of the interest rates, until the price equals the nominal value at
the maturity. Thus, the price of the 10 year zero-coupon bond gives information
about the 10 year interest rate at the emission, after 1 year the price of the bond
gives information about the 9 year interest rate, after 2 years the price of the
bond gives information about the 8 year interest rate, and so on.

Information of the bond markets is given by data providers in terms of the
yields. The yield of a zero-coupon bond is defined as

Y (t,T) = − 1
T − t

log Z(t,T), (2.3)

where T − t is the time to maturity in fractions of a year, and Z(t,T) is the bond
price with Z(T ,T) = 1. The price of a bond can be written in terms the yield as

Z(t,T) = exp{−(T − t)Y (t,T)}.

See Section 18.1.2 for a discussion of the yield of a zero-coupon bond.
Let s < t ≤ T , where T is the expiration day of the zero-coupon bond. The

prices are Z(s,T) and Z(t,T). The return of a bond trader is equal to

Z(t,T)
Z(s,T)

=
exp{−(T − t)Y (t,T)}
exp{−(T − s)Y (s,T)}

= exp{(T − s)[Y (s,T) − Y (t,T)] + (t − s)Y (t,T)}, (2.4)

where we used the fact T − t = T − s − (t − s).
Data providers give a time series Y0,… ,Yn of yields of a 𝜏 year bond, where

Yi = −1
𝜏

log Z(ti, ti + 𝜏),

where t0 < · · · < tn are the time points of sampling. How to obtain a time series
R0,… ,Rn of the returns of a bond investor? Let us denote ti = s, ti+1 = t, and
T − s = 𝜏 . Then Y (s,T) = Yi. Let us make approximation

Y (t,T) = Y (ti+1, ti + 𝜏) ≈ Y (ti+1, ti+1 + 𝜏) = Yi+1.

Then (2.4) implies

Ri ≈ exp{𝜏(Yi − Yi+1) + (ti+1 − ti)Yi+1}, (2.5)

where ti+1 − ti is the length of the sampling interval in fractions of a year. For
example, with monthly sampling ti+1 − ti = 1∕12.
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2.3 Derivatives

Derivatives are financial assets whose payoff is defined in terms of more basic
assets. We describe first forwards and futures, and after that we describe
options. For many assets trading with derivatives is more active than trading
with the basic assets. For example, exchange rates and commodities are traded
more actively in the future markets than in the spot markets.

Over-the-counter (OTC) derivatives are traded directly between two coun-
terparties. Exchange traded derivatives are traded in an exchange, which acts
as an intermediary party between the traders.

2.3.1 Forwards and Futures

First we define forwards and futures. After that we give examples of some
actively traded futures. Forwards are derivatives traded over the counter
whereas futures contracts are traded on exchanges. The underlyings of a for-
ward or a futures contract can be stocks (single-stock futures), commodities,
currencies, interest rates, or stock indexes, for example.

2.3.1.1 Forwards
A forward is a contract written at time t0, with a commitment to accept delivery
of (or to deliver) the specified number of units of the underlying asset at a future
date T , at forward price Ft0

, which is determined at t0.
At time t0 nothing changes hands, all exchanges will take place at time T . A

long position is a commitment to accept the delivery at time T . A short position
is a commitment to deliver the contracted amount. The current price of the
underlying is called the spot price.

2.3.1.2 Futures
A futures contract can be considered as a special case of a forward contract.
An instrument is called a futures contract if the trading is done in a futures
exchange, where the forward commitment is made through a homogenized
contract so that the size of the underlying asset, the quality of the underlying
asset, and the expiration date are preset. In addition, futures exchanges require
a daily mark-to-market of the positions.

A futures exchange acts as an intermediary between the participants of a
futures contract. The existence of the intermediary minimizes the risk of the
default of the participants of the contract. When a participant enters a futures
contract the exchange requires to put up an initial amount of liquid assets into
the margin account. Marking to market means that the daily futures price is
settled daily so that the exchange will draw money out of one party’s margin
account and put it into the others so that the daily loss or profit is taken into
account. If the margin account goes below a certain value, then a margin call
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is made and the account owner must add money to the margin account. In
contrast to futures contracts, forward contracts may not require any marking
to market until the expiration day.

A futures contract can be settled with cash or with the delivery of the under-
lying. For example, if the underlying of the futures contract is a stock index,
then the futures contract is usually settled with cash. A futures contract can
be closed before the expiration day by entering the opposite direction futures
contract.

On the delivery date, the amount exchanged is not the specified price on the
contract but the spot value (i.e., the original value agreed upon, since any gain
or loss has already been previously settled by marking to market).

The situation where the price of a commodity for future delivery is higher
than the spot price, or where a far future delivery price is higher than a nearer
future delivery, is known as contango. The reverse, where the price of a com-
modity for future delivery is lower than the spot price, or where a far future
delivery price is lower than a nearer future delivery, is known as backwardation.

2.3.2 Options

We describe calls and puts, applications of options, and some exotic options.

2.3.2.1 Calls and Puts
The buyer of a call option receives the right to buy the underlying instrument
and the buyer of a put option receives the right to sell the underlying instru-
ment.

An European call option gives the right to buy an asset at the given expiration
time T at the given strike price K . An European put option gives the right to sell
an asset at the given expiration time T at the given strike price K . Let us denote
with Ct the price of an European call option at time t and with St the price of
the asset. The value CT of the European call option at the expiration time T is
equal to

CT = max{ST − K , 0}.

Let us denote with Pt the price of a put option at time t. The value of the Euro-
pean put option at the expiration time T is equal to

PT = max{K − ST , 0}.

American options have a different mode concerning the right to exercise the
option than the European options. American call and put options can be exer-
cised at any time before the expiration date, whereas European options can be
exercised only at the expiration day. Thus an American option is more expen-
sive than the corresponding European option. When we use the term “option”
without a further qualification, then we refer to an European option.


