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Preface 

This is a guide to the analysis of spatial data. Spatially arranged measure- 
ments and spatial patterns occur in a surprisingly wide variety of scientific 
disciplines. The origins of human life link studies of the evolution of 
galaxies, the structure of biological cells, and settlement patterns in 
archeology. Ecologists study the interactions among plants and animals. 
Foresters and agriculturalists need to investigate plant competition and 
account for soil variations in their experiments. The estimation of rainfall 
and of ore and petroleum reserves is of prime economic importance. 
Rocks, metals, and tissue and blood cells are all studied at a microscopic 
level. The aim of this book is to bring together the abundance of recent 
research in many fields into the analysis of spatial data and to make 
practically available the methods made possible by the computer revolu- 
tion. 

The emphasis throughout is on looking at data. Each chapter is devoted 
to a particular class of problems and a data format. The two longest and 
most important are on smoothing and interpolation (producing contour 
maps, estimating rainfall or petroleum reserves) and on mapped point 
patterns (trees, towns, galaxies, birds’ nests). Shorter chapters cover: 

The regional variables of economic and human geography. 
Spatially arranged experiments. 
Quadrat counts. 
Sampling a spatially correlated variable. 
Sampling plants and animals and testing their patterns. 

The final chapter looks briefly at the use of image analyzers to investigate 
complex spatial patterns, and stereology: how to gain information on 
three-dimensional structures from linear or planar sections. Some emphasis 
is placed on going beyond simple tests to detect “nonrandom” patterns as 
well as on fitting explanatory models to data. Some general families of 
models are discussed, but the reader is urged to find or invent models that 
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vi PREFACE 

reflect the theories of his or her own discipline, such as central place theory 
for town locations. The techniques presented are designed for both of John 
Tukey’s divisions of exploratory and confirmatory data analysis. 

The level of mathematical difficulty varies considerably. The formal 
prerequisites are few: matrix algebra, some probability and statistics, and 
basic topology in parts of Chapter 9. An acquaintance with time series 
analysis would be helpful, especially for Chapter 5 .  I have tried to confine 
the formal mathematics to the essential minimum. Mathematically able 
readers will be able to find their fill in the references. It is perhaps 
inevitable that some of the mathematical justifications are far deeper than 
is the practical import of the results. But beware. There is much appealing 
but incorrect mathematics in the spatial literature, and some of the subtlest 
arguments are used to discover undesirable properties of simple proce- 
dures. I recommend readers who find the going tough to skip ahead to the 
examples before seriously tackling the theory. 

Computers, especially computer graphics, are an essential tool in spatial 
statistics. Useful data sets are too large and most of the methods too 
tedious for hand calculation to be contemplated. Even data collection is 
being increasingly automated. The worked examples were analyzed at an 
interactive graphics terminal by FORTRAN programs running on Imperial 
College’s CDC 6500/Cyber 174 system. Unfortunately, the reader cannot 
follow my decisions as I rotated plots, investigated contour levels, and 
altered smoothing parameters. There is no substitute for experience at a 
computer terminal using one’s own data. Therefore, it was a difficult 
decision not to include programs. There was at the time of writing no 
agreed-upon standard for computer graphics, and the availability of plot- 
ting and other utility operations varied widely. The choice of language was 
also debatable. I could only use interactive graphics from FORTRAN, whereas 
microcomputers were becoming available with BASIC or PASCAL,. Hints on 
algorithms and computation are included. 

The bibliography is the only example I know of that attempts a compre- 
hensive coverage of the spatial literature. It contains not only references to 
the theory and methods, but a large number of accounts of applications in 
many disciplines as well. Guides to the literature are given at the end of 
several chapters and sections. 

B. D. RIPLEY 

London 
March I981 
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C H A P T E R  1 

Introduction 

1.1 WHY SPATIAL STATISTICS? 

Men have been drawing maps and so studying spatial patterns for millenia, 
yet the need to reduce such information to numbers is rather recent. The 
human eye and brain form a marvelous mechanism with which to analyze 
and recognize patterns, yet they are subjective, likely to tire, and so to err. 
The explosion in computing power available to the average researcher now 
makes it possible to do routinely the intricate computations needed to 
explore complex spatial patterns. 

One sense of the word “statistics” is a collection of numbers, and spatial 
statistics includes “spatial data analysis,” the reduction of spatial patterns 
to a few clear and useful summaries. But statistics goes beyond this into 
what John Tukey has called “confirmatory data analysis,” in which these 
summaries are compared with what might be expected from theories of 
how the pattern might have originated and developed. Consider, for 
example, Figure 1 . 1 ~ ~  which is a map of trees in a rectangular plot. 
Figure 1.lb shows a summary of these data as a graph, together with 
confidence limits for the sort of graph we would get if each tree had been 
placed at random in the plot, without any reference to the positions of the 
rest of the trees. This example shows one of the characteristic features of 
the subject. There are so many different types of spatial patterns that we 
need to summarize the data in one or more graphs rather than by single 
numbers, such as the mean and standard deviation of classical statistics. 

Almost invariably we will have only a single example of a particular 
pattern rather than the many replications of measurements found in the 
experimental sciences. To get some idea of the variability of such data, 
we are forced to make some assumption of stationarity of the underlying 
mechanism that generated the pattern. Such an assumption has often 
been disputed, particularly in the geographic literature. Its validity may 
depend on the questions being asked. For instance, if we are looking at 

1 



O D  

0 

L 

0 . 5  

(6) 

Fig. 1.1 ( a )  Point patterns of trees. (6)  Summary of data with a 95% confidence band. See 
Figure 8.6 for further details. 
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TYPES OF DATA 3 

population density we may wish to know whether we need to invoke the 
topography (which might suggest nonstationarity) to explain the observed 
variations in density. Patterns that vary in a systematic way from place to 
place are called heterogeneous (opposite homogeneous). But we might be 
studying the grouping of houses that we might expect to interact, either 
clustering together because of human gregariousness or inhibiting where 
houses need to be close to sufficient land. Patterns can also exhibit 
preferred directions, called anisotropy (opposite isotropy). For example, 
forests that were originally planted in rows may show directionality in the 
crowns of the trees (Ford, 1976). We will assume that the data have been 
subdivided into sufficiently small units or that they have had obvious 
trends removed to permit us, where necessary, to invoke homogeneity or 
isotropy. 

1.2 TYPES OF DATA 

The basic subdivision of this volume is by the type of data to be analyzed. 
The tree positions given in Figure l.la are an example of a point pattern. 
Other examples are the locations of birds’ nests, of imperfections in metals 
or rocks, galaxies, towns, and earthquakes. Of course, none of these is 
actually a point, but in each case the sizes of the objects are so small 
compared with the distances between them that their size may be ignored. 
(Sometimes size is an important explanatory variable associated with a 
point. For example, we might expect the area of the hinterland of a town 
to depend on its population size.) Maps of point patterns are discussed in 
Chapter 8. 

Sometimes points are so numerous that complete mapping would be an 
unjustified effort (consider clover plants in a grassland). Two methods of 
sampling such point patterns are discussed in Chapters 6 and 7. In 
Chapter 6 we consider methods based on taking sample areas, called 
quadrats, and counting objects within each, whereas in Chapter 7 the 
methods are based on measuring distances to or between objects. Chapter 
7 also deals with two cases in which complete mapping is either uneco- 
nomical or impossible; trees in a dense forest and animal populations such 
as deer and moorland grouse (game birds). 

Many variables that were originally point patterns are recorded as 
regional totals, such as census information. If these regions are genuinely 
distinct, we may wish to test for correlation between the regional statistics, 
taking account of the connections between the regions measured by, say, 
the lengths of the common borders (if any) or freight costs between them. 



( b )  

Fig. 1.2 (a), ( b )  A simulated surface. (c), ( d )  Two reconstructions from the sample points 
indicated as circles. 
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Fig. 1.2 (continued) 

5 



6 INTRODUCTION 

Summary measures for what is known as “spatial autocorrelation” are 
discussed in Section 5.4. They are particularly useful when applied to the 
residuals from the regression of one regional statistic on others. 

Where the regions are small administrative units we might wish to 
smooth the data to produce a map of population density, average income, 
or similar variable. This problem of reconstructing a surface from irregu- 
larly spaced sample points is common; all topographical maps are 
prepared from such data, as is rainfall information. Geologists, oil pros- 
pectors, and mining engineers all have to reconstruct facets of an under- 
ground pattern such as the volume and average grade of ore in various 
parts of a mine, using spatially arranged samples. Such problems are 
considered in Chapter 4. Figure 1.2 illustrates a surface and two recon- 
structions. 

Usually the locations of the sample points are fixed from other consider- 
ations, but in Chapter 3 we consider how sample points should be chosen 
to give the best estimate of the average level of a surface. 

Data arranged on a rectangular grid are not as common as might be 
expected by analogy with time-series theory. They seem to arise only 
from man’s experiments, either where he has deliberately sampled sys- 
tematically or from agricultural field trials in which a field has been 
divided into rectangular parcels. Clearly, we would expect neighboring 
plots to have similar fertility and hence that the yields would be spatially 
autocorrelated. We show in Chapter 5 how such data might be analyzed. 

The least explored class of patterns are those of two or more phases 
forming a mosaic. Patterns of vegetation provide two-dimensional exam- 
ples, but most of the interest is in three dimensions, in bone and tissue and 
rock grains and pores. Descriptions of patterns such as that shown in 
Figure 1.3 were facilitated by the invention of image analyzers during the 
1960s, these being scanning microscopes connected to computers to analyze 
the vast amounts of output. Stereology is the theory of reconstructing 
information on three-dimensional patterns from planar sections (see, for 
example, Figure 1.3) or linear probes. This area is the subject of Chapter 9. 

All the models of the mechanisms that might generate patterns described 
in the chapters for each type of data are stochastic processes. Chapter 2, 
on “basic stochastic processes,” gives an introduction to what is needed of 
the mathematical theory, to generic families of models, and to ways in 
which the computer can be used to experiment with models. 

Most of the theory and methods apply equally in two or three dimen- 
sions. Where formulas depend on the dimension, only the two- 
dimensional case is given unless otherwise stated. Planar data are by far 
the most common; all the examples are planar. 
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Fig. 1 3  Simplified pore space (black) in a section of smackover carbonate rock. 

Spatial Topics Omitted 

This volume concentrates on information on location, ignoring the con- 
cepts of shape and form reflected in the monographs of Grenander (1976, 
1978), Mandelbrot (1977), and Bookstein (1978). Some specialized topics 
omitted are on the spread of epidemics (Bartholomew, 1973; Mollison, 
1977) and percolation theory (Shante and Kilpatrick, 1971; Welsh, 1977; 
Smythe and Wierman, 1978). Each of these references is more concerned 
with mathematical modeling than with analyzing data. 

Many of the 
same methods can be used, but adequate data seem rare (earthquake 
occurrences being an exception). Often the best way to deal with space- 
time data is to compare the maps in successive time periods. Another 
generalization is to multitype problems in which the objects are of different 
types or where two or more patterns or surfaces are to be related. Again, 
the extension of many of the methods is simple. Whenever a pair of 
points is considered, take one from each of the two patterns or surfaces. 
If three or more surfaces or patterns are considered, take them in pairs. 
In general, the theory of multitype procedures is not satisfactory and there 
are few examples of its use. Pielou (1977) gives examples of some of the 
methods of “classical” statistics used on these problems. 

Little attention is given here to space-time problems. 
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More information on applications in specific disciplines may be found 
in: 

Animal ecology Southwood (1978) 
Archeology Hodder and Orton (1976) 
Geography Bartels and Ketellapper (1979) 

Bennett (1979) 
Berry and Marble (1 968) 
Cliff and Ord (1973) 
Getis and Boots (1978) 
Haggett et al. (1977) 
Rayner (1971) 
Rogers (1974) 
Davis (1973) 
David (1977) 
Guarascio et al. (1976) 
Journel and Huijbregts (1978) 
Matheron (1965, 1967a) 

Kershaw ( 1973) 
Patil et al. (1971) 
Pielou (1977) 

Plant ecology Greig-Smith (1964) 

Geology 
Mining 



C H A P T E R  2 

Basic Stochastic Processes 

This chapter assumes a basic knowledge of probability theory and sets up 
some of the background of the models and methods used in later chapters. 
Section 2.4 is more mathematical and is not necessary for an understand- 
ing of the rest of the material (although its ideas are used in Sections 5.2 
and 8.4). 

2.1 DEFINITIONS 

A stochastic process is a collection of random variables { Z( t )I t E T }  inde- 
xed by a set T, It has been usual to take T to be a subset of the real 
numbers, say { 1,2,3.  - - } or [0, 00). However, we need more general 
index sets such as pairs of integers (labeling the plots in a field trial), the 
plane (labeling topographic heights), and rectangles in the plane (labeling 
counts of plants). The great distinction between these indices and those 
representing time is that the latter have an ordering. 

The Daniell-Kolmogorov theorem states that to specify a stochastic 
process all we have to do is to give the joint distributions of any finite 
subset { Z ( t , ) ,  . . . , Z( t,)} in a consistent way, requiring 

P ( Z ( t i ) E A i , i = l  ,..., m , Z ( s ) E I W ) = P ( Z ( t i ) E A i , i = l  ,..., m) 

Such a specification is called the distribution of the process. We avoid 
subtle mathematics by only considering a finite number of observations on 
a stochastic process (except for the differentiability properties in Section 

We say that the stochastic process is stationary under translations or 
homogeneous if the distribution is unchanged when the origin of the index 
set is translated. For this to make sense the index set has to be un- 
bounded; it has to be either all pairs of integers or the whole plane. If T 
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10 BASIC STOCHASTIC PROCESSES 

is the whole of the plane or three-dimensional space, we can also consider 
processes that are stationary under rotations about the origin, called 
isotropic. Homogeneous and isotropic processes are stationary under rigid 
motions. The philosophy behind these definitions is discussed in Chapter 
1. Note that they can, at most, be partially checked by, for example, 
splitting the study region into disjoint parts and checking their similarity. 

2.2 COVARIANCES A N D  SPECI'RA 

The covariance C and correlation R between Z ( s )  and Z ( t )  for two points 
in T are defined by 

Homogeneity implies that C and R depend only on the vector h from s to 
t ,  whereas with isotropy they depend only on d(s , t ) .  We will use the 
notation C(h) or C ( r )  for these reductions. Note that by symmetry 
C(h)=C(-h), but C((-h, ,  h 2 ) )  may differ from C((h,, h2) ) .  We will 
usually plot C in the right half-plane; the other half-plane is found by a 
half-turn rotation. 

In general the distribution of a stochastic process is not completely 
determined by the mean r n ( s ) = E [ Z ( s ) ]  and covariance C ( s , t ) .  This is 
the case for an important class of processes, the Gaussian processes defined 
by the property that all finite collections { Z ( t , ) ,  . . . , Z(  t , ) }  are joint Nor- 
mal (that is, every linear combination has a Normal distribution). It is 
important to know which covariance functions can occur, for given m and 
C we can construct a Gaussian process via the Daniell-Kolmogorov 
theorem with that mean and covariance. The necessary and sufficient 
condition is that C should be nonnegative definite and symmetric, that is, 
that C ( t ,  s)=C(s, t )  and 

for all n ,  a ,,..., a,, t ,  ,..., t ,  (Breiman, 1968, Chapter 11). We often ask 
that C be strictly positive definite when (2.1) must be nonzero unless all a, 
are zero. 



COVARIANCES AND SPECTRA 1 1  

This condition of nonnegative definiteness occurs elsewhere, thus 
enabling us to give examples of valid covariance functions. The charac- 
teristic function of a d-dimensional symmetric random vector X is a non- 
negative definite continuous symmetric function on Rd. A continuous 
homogeneous covariance function of a stochastic process on Rd will be 
proportional to such a characteristic function. If X is rotationally sym- 
metric, the covariance is isotropic. Taking the d-dimensional Cauchy and 
Normal distributions (with densities proportional to 1/(1 +allxl12) and 
exp - allxll 2,  shows that e - - ( l r  and e are both isotropic covariances in 
any number of dimensions. The spectral density f is defined by 

1 f( w ) = - s exp{ - i d h }  C(h) d h  
P I d  

when this integral exists. Then 

C(h)=/exp( +iw'h)f(w)dw (2.3) 

Thus f /C(O) is the pdf of a random vector with characteristic function 
C/C(O). For processes on a lattice (2.2) is replaced by a sum and only 
frequencies for which each component is in the range [ -T, T] are consid- 
ered, so the integration in (2.3) is restricted to [ - T, nId. Any nonnegative 
function that gives a finite value of C(0) in (2.3) is a spectral density. 

The spectral density inherits the symmetry condition f( - a) = f ( w )  from 
the covariance function. If the covariance is isotropic f ( w )  becomes a 
function of T =  1 1  w 11 only, and we have 

in R2, where J, is the Bessel function (Quenouille, 1949). 
The requirement of isotropy on a covariance function is quite restrictive. 

Schoenberg (1938) conjectured that such a function was continuous, except 
possibly at the origin. Furthermore, Matern (1960, pp. 13- 19) shows that 

C ( r ) >  inf ( ~ ! ( ~ / U ) ~ J , ( U ) } C ( O )  k=(d-2)/2 
U 

so that isotropic correlations are bounded below by -0.403 in R2 and 
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- 0.218 in R3. Isotropic correlation functions are usually specified either 
by giving an isotropic spectral density or by ''mixing" the family eVar.  
Suppose we choose a from some distribution, then use a process with 
correlation function e - - ( l r .  The correlation function of the mixed process 
is E(e-"'). This argument shows that any Laplace transform can be a 
covariance function. (This is the class of functions with (- l)"C(")(r) > 0 
for n=O, 1,2,. .. , and all r>O).  One such family of functions are those 
proportional to r"K,(ar) for v > 0, with spectral densities proportional to 
1 /( b + ) I  w 11 2)v+d/2. Here K ,  is a Bessel function. The exponential corre- 
lation function is the special case Y =  1 (Whittle, 1954, 1956, 1963a). 

The class of known examples of isotropic correlation functions is not 
totally satisfactory, for in practice one often finds 

A famous example is given by Fairfield Smith (1938), who found k 3 / 2  
for yields from wheat trials. Whittle (1956) showed that (2.4) is equivalent 
to C ( r )  and f ( ~ )  behaving as r-' and T ( ' - ~ )  for large r and small T ,  

whereas all the standard examples of isotropic covariances decay exponen- 
tially at large distances. 

One way to form an isotropic process in Rd is to take a homogeneous 
process Z, with covariance function C ,  on R, to let Z(x) = Z,(x, )  and then 
give the whole of each realization an independent uniformly distributed 
rotation about the origin in Rd. Then the covariance function of Z is 

[Matheron, 1973, equation (4.1)) For d=  3 we have the simple results 

C ( r )  = &'C1( u r )  du, 

In fact (2.5) is the general form of an isotropic covariance in Rd. 
be re-expressed as 

It can 

C ( r )  = E {  C,( rV 1) (2.7) 

where V is the first coordinate of an independent uniformly distributed 
point on the surface of the unit ball in R". We have noted that C/C( 0) is 
the characteristic function of a random vector X. Because C is isotropic 
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X has a rotationally symmetric distribution and 

C(r)=C(O)E(exP(iIIXII V) (2.8) 

Comparison of (2.7) and (2.8) shows that we can take C , ( t )  = 
C(0) E(exp(itIIXII)), which is nonnegative definite and symmetric and so a 
covariance function in 88'.  

The inversion of (2.5) to find C,  from C provides a way to simulate these 
processes, as discussed in Section 2.5. 

Whittle (1954, 1956), Heine (1955), and Bartlett (1975) discuss the 
definition of continuous stochastic processes via differential equations. 
Stochastic differential equations theory is needed to justify their manipula- 
tions, which lead to explanatory models for some of the covariances 
studied here. 

23 POISSON AND POINT PROCESSES 

Point patterns convey a different sort of spatial information from those 
processes considered so far. They can be included by defining Z(x)= 1 if 
there is a point at x,O otherwise. This representation is useless, however, 
for P(Z(x)=  1) is usually zero and the distribution of the process then 
contains no information at all. We overcome this problem by indexing 
the stochastic process not by points but by sets, so Z ( A )  is the number of 
points in set A. Every realization of a point process is then a countable 
set of points, of which a finite number fall within any bounded set. The 
points can certainly be located by knowing the counts in each rectangle. 
In fact, it is sufficient to know which rectangles are nonempty. 

The basic point process is a Poisson process, defined by either or both of 
the following properties: 

1. The number of points in any set A has a Poisson distribution mean 

2. Counts in disjoint sets are independent. 
A( A )* 

Here A is a measure giving finite mass to bounded sets, called the mean 
measure. It is often defined by A(A)=j,A(x)dx for some nonnegative 
bounded function A(x). A homogeneous Poisson process has mean mea- 
sure A(A)=A area (A),  where X is a constant known as the intensity, the 
expected number of points per unit area. Note that a homogeneous 
Poisson process is automatically isotropic. 

The Poisson process can also be defined in a more constructive way. 
Consider the process on a bounded set E. By property 2 it is sufficient to 


