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Preface 

In this book we provide a vector approach to linear models, followed by specific 
examples of what is known as the car~onical form (Scheffk). This connection pro- 
vides a transparent path to the subject of analysis of variance (ANOVA), illustrated 
for both regression and a number of orthogonal experimental designs. The approach 
endeavors to eliminate some of the mystery in the development of ANOVA and var- 
ious representations of orthogonal designs. Many books list many different types of 
ANOVA for use in a variety of situations. To the mathematically oriented statistician 
or indeed any student of statistics, these books do not ease the understanding of where 
such ANOVA comes from but can be useful references when seeking ANOVA for 
use in particular situations. By coming to understand some basic rudiments of math- 
ematics and statistics, one can prepare oneself to relate to the statistical applications, 
of which there are many. This may be a process that takes years and some experience. 
This book can be a useful foundation on such a career path. 

In the first chapter, eight well-known examples of statistical models that involve 
fixed-effects parameters are presented in the vector form of the linear model. Some 
preliminary objectives of such linear models are then given. This gentle introduction 
is complemented by a simple model involving a regression through the origin with one 
explanatory variable. Such a model is used to demonstrate that the direct approach to 
least squares theory soon becomes unwieldy. This, then, is the reason for embarking 
on the vector approach, which is underpinned by a fairly succinct account of vector 
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space theory and projections onto orthogonal subspaces. In this sense the book is 
like many others written in the general area of ANOVA, since least squares theory 
involves the geometry of orthogonal spaces and projections of observation vectors 
onto orthogonal subspaces that lie within a vector space. Least squares regression is 
then justified in the classical way through Gauss-Markov theory, followed by some 
basic distribution theory and hypothesis testing of fixed-effects parameters. 

Where this book differs significantly from most books on ANOVA is in the dis- 
cussion beginning in Chapter 5 regarding Helmert matrices and Kronecker products 
(combined). This allows succinct and explicit forms of contrasts that yield both the 
orthogonal components in ANOVA, including projection matrices, and distributions 
of component sums of squares with illustrations for a number of designs, including 
two-way ANOVA, Latin squares, and 2k factorial designs. The general approach 
to orthogonal designs is then discussed by introducing relationship algebra and the 
triple classification. As with any linear model estimation and fitting, one also needs 
to consider residual analysis in the form of diagnostic checking or the possibility of 
robust fitting and identification of outliers. The classical approaches to diagnostic 
checking are then followed up with a brief discussion of robust methods. Here re- 
cent research highlighting robust adaptive methods which automatically identify the 
outliers and give least squares estimates with the outliers removed is discussed. The 
particular approach to ANOVA given in the earlier chapters is then generalized to 
include models with random effects, such as in mixed model analysis. Illustrations 
include a split plot experimental design. The representation of orthogonal compo- 
nents here is new albeit the ANOVA techniques themselves are well documented in 
the literature. 

Many books on the theory of linear models begin with basic distribution theory 
and descriptions of density functions with consequent definitions of expectation and 
variance. In this book we assume such theory, presuming students andlor researchers 
who embark on reading it have a knowledge of these basic statistical ideas. Typi- 
cally, then, competing books develop early the ideas of likelihood theory, since least 
squares estimates can be motivated by introducing likelihood, assuming the normal 
parametric density for the errors. We however, take a historical approach, - be- 
ginning with least squares theory. Nevertheless, the theory of likelihood estimation 
allows for a general umbrella that covers estimation more generally. There are, of 
course, several likelihood approaches, just as there is more than one choice for the 
parametric density function for the errors. Consequently, we pay attention to some 
of the different likelihood approaches, which are discussed in detail in Chapter 9. 

In what may seem a digression, in Chapter 10 we return to the general theory of 
the choice of contrasts. Although this may appear to be a chapter that could follow 
Chapter 7, it involves somewhat complicated algebra and is not necessarily directed 
immediately at ANOVA. The explicit forms of the orthogonal contrasts for the linear 
model given earlier in the book can in fact be generalized. By restricting ourselves 
to the error contrasts and full rank models, we illustrate a general formulation for the 
error contrasts and highlight some classical representations of such. Discussion then 
proceeds to extensions involving less than full rank models. 

The final chapter relates to further directions and a summary. It is not meant to be 



exhaustive but to put forth additional approaches to estimation and testing, several of 
which I have described elsewhere. 

This volume has evolved from my experience as a student, teacher, and researcher 
at several institutions around the world, but in particular at Murdoch University in 
Western Australia, where since 1984, I have taught a one-semester graduate degree 
unit on linear models and experimental design. The unit currently sits at the hon- 
ours or fourth-year level of an Australian university degree, so the book should be 
valuable as a graduate text for students at the master's or Ph.D. level at an American 
university. My research interests in the area of ANOVA were inspired by my holding 
a postdoctoral position at the University of London and the Swiss Federal Institute of 
Technology and a position as visiting professor at the University of North Carolina at 
Chapel Hill, the latter in the fall of 1983, even though my research at that time focused 
principally on time-series analysis and robustness theory. Using robust techniques 
in regression is a valid alternative to the classical least squares methods, combined 
with diagnostic tools based on examination of residuals. Typically, however, we must 
learn to walk before we can run, and the beauty of discussing classical distribution 
theory for regression and ANOVA in experimental design transcends the claims that 
we should always use robust techniques, as contended by some"robustniks". There 
are often good reasons for using robust methods and comparing results to classical 
approaches, but when there are few observations per cell or treatment combination 
exploiting the structure in the data using classical techniques can be more worthwhile 
than employing the black box approach of implementing a robust method. [See, in 
particular, a recent discussion of Clarke and Monaco (2004).] 

I have included a set of problems at the end of each chapter. There are a total of 
46 problems of varying degrees of difficulty. These have been developed over the 
years of teaching at Murdoch University. I encourage the reader to attempt as many 
problems as possible as these will reinforce knowledge learned in the chapter and in 
some cases, open up new areas of understanding. 

There are some deliberate omissions in this book. The discussion of randomization 
in Section 6.7 is relatively brief. Randomization is important as a statistical concept, 
particularly in practice, and a full appreciation of it can be achieved by taking an ap- 
plied statistics course. The book also has a relatively succinct discussion of variance 
components. The idea is to give a flavor of what can be done without elucidating 
each scenario that can be imagined. 

Other topics, such as considering missing values and connectivity, although inter- 
esting, are not discussed, to keep the book to a reasonable length. Again, little space 
is given to distinguishing between the uppercase Y used as the random variable rep- 
resentation of a vector of observations and the lower case y used to denote actual 
measurements. As the distribution of components in ANOVA is discussed in depth 
we retain the use of upper case Y in representations of ANOVA. 

The book assumes a knowledge of matrix theory and a course in probability and 
statistical inference where students are exposed to concepts such as expectation and 
variance and covariance, in particular of normal random variables. It is assumed that 
the classical results of asserting independence of jointly normal distributed variables 
when they have zero covariance were learned in a previous course. Also assumed are 
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the concepts of hypothesis testing and confidence intervals, in particular when the Stu- 
dent t-distribution is involved. Knowledge of chi-squared and Fisher's F-distributions 
is assumed, although discussion of these is given in more detail in Chapter 4. The 
vector space theory in Chapter 2 will hopefully build on concepts learned earlier in 
an appropriate mathematics course, but if this is not the case, several easy examples 
and illustrations of concepts are provided. These are important for an understanding 
of ANOVA as described later in the book. 

In conclusion, I emphasize that this book is pitched at an advanced level of study 
and has been collated and inspired by the original research and teaching of the author. 
Although the inspiration for writing the book came from my own research, I have 
borrowed certain details from several authors, duly acknowledged in the text. To any 
authors who may, unwittingly, not have been mentioned, I apologize. Although much 
of the research in this area is historical, my presentation differs significantly from that 
of most books in this area. 

Perth, Western Australia 
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NOTATION 

V for every 

e equivalent 

=+ implies 

11 . 1 1  Euclidean norm 

<< . >> linear space spanned by a vector or vectors 

Qo Kronecker product 

e identity operator 

E [ X ]  expectation o f  random variable X 



xviii NOTATION 

dim{U) dimension of the space U 

K ( A )  kernel of the linear transformation: L A  : x  + A x  

M ( A )  space spanned by the columns of matrix A  

N ( p ,  C) multivariate normal distribution with mean p  and covariance matrix C 

P projection operator 

Rn Euclidean n-space 

R ( A )  range of the linear transformation: L A  : x  + A x  

Sxv XI"=* (.2 - Z ) ( Y ~  - id 

S2 ANOVA sample estimate of residual or error variance 

S2 true sum of squared unobserved residuals 

ssl error or residual sum of squares under the full model R 

SU error or residual sum of squares under a submodel w 

u l orthogonal complement of U 

U1 4 Uz direct sum of spaces U1, U2 where U1 n U2 = 0 

Ul @ Uz direct sum of two orthogonal spaces U 1 ,  Uz 

q = E[Y]  vector whose elements are expectations of elements of Y 

XI"=, xi X I  + x z  + ... + X n  



CHAPTER 1 

INTRODUCTION 

The objective of this chapter is to provide a formal definition of the linear model in its 
basic form and to illustrate, using examples that should be familiar to the interested 
reader of statistics, the motivation behind the use of this form of the linear model. 
Representation of the linear model in its vector matrix form is a unifying feature of 
these examples, which include both regression and factorial models usually associated 
with the analysis of variance. By considering the objectives of fitting and testing and 
writing down the confidence intervals for parameters for one of the simpler regres- 
sion models, we show that the non-vector matrix approach soon becomes unwieldy 
and even quite complicated. On the other hand, the vector matrix approach requires 
some initial algebra, which is described in detail in Chapter 2. Along with some 
easy-to-follow theory dealing with distributions, this lends itself to a straightforward 
analysis of the regression model. All of this is then used to embark on a description 
of models commonly associated with the analysis of variance. Embracing the com- 
mon approach to both types of models helps clear some of the mystery associated 
with analysis of variance, in particular by providing some understanding as to how 
the usual degrees of freedom and distributions for component sums of squares are 
actually derived. In the current chapter we introduce the notation and terminology 

Linecrr Models: The Theory and Applicution rfAnc~l\ais of Variance. By Brenton R. Clarke 
Copyright @ 2008 John Wiley & Sons. Inc. 



2 INTRODUCTION 

used as a springboard for the rest of the book. 

1.1 THE LINEAR MODEL AND EXAMPLES 

The linear model embraces a large section of the statistical literature, having been 
studied seriously ever since the times of Gauss (1777-1855) and Legendre (1752- 
1833), and comes in a variety of forms. For our purposes up to Chapter 8, we consider 
the linear model to be expressible in the general form 

where Y represents an n x 1 vector of dependent observations, X is an n x k design 
matrix, is a k x 1 parameter vector, and E is an n x 1 vector of unobserved residuals 
with the property that the expectation or mean value of each component in the vector 
is zero; this is expressed in vector notation as E[E]  = 0. That is, observations in the 
vector Y are scattered about their mean. Since the expectation operator is a linear 
operator, we can write in vector notation 

E [ Y ]  = X P  (- 77, say). (1.2) 

In the following, the linear form (1 .I), together with the assumption(s) made about 
the unobserved residuals E ,  will be denoted by R. To demonstrate the variety of forms 
that this linear model (1.1) can include, we consider several examples. The model 
(1 . l )  is generalized in Chapter 8 to incorporate models with variance components, 
including random effects, but for the moment, we discusshed-effects models, which 
are numerous and of some importance. The first example is one of the simplest and 
introduces some basic terminology. 

EXAMPLE 1.1 

The simplest example of the linear model is provided by a sample of n inde- 
pendent observations from a univariate normal distribution with mean p and 
variance a2 ,  denoted from now on by N ( p ,  a2) .  The model for these data can 
be represented in the form ( I .  1) by setting the design matrix X = In, the n x 1 
column of 1 's, and p = p, so that 

The vector E is N ( 0 ,  a21n), where In is the n x n identity matrix (i.e., E has 
a multivariate normal distribution with mean 0  and variance-covariance matrix 
a21n). 
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Note: A vector Z = [ZI, . . . , Z,,]' that follows a multivariate normal dis- 
tribution with mean p = ( P I , .  . . , k ~ ~ ) '  and variance-covariance matrix C, with 
elements a,, , is such that each component Z, - N(pz,  uii) and, moreover, 
cov(Z,, 2,) = u,,. If ui, = 0 for all i # j ( i  = 1,. . . , n; j = 1 , .  . . , n) ,  the 
Z,'s are independent. Further description of a multivariate normal distribution is 
given briefly in Chapter 4: in particular in definition 4.1. It is also noted here that 
the assumption ofjoint normality of the component variables {Zi)?=, is required 
in order that one may presume independence of the 2,'s based on knowledge 
of zero covariances for the off-diagonal elements in the covariance matrix. For 
more discussion of this, see Broffitt (1986), for example. 

The following example involves the modeling of a straight-line relationship be- 
tween two variables restricted so that the line passes through the origin. This is easy 
to understand and quite common in practice. This example is used in Section 1.2 to 
discuss the objectives of fitting a linear model. The particular model here is simple 
enough to make "least squares estimation and testing" by the direct approach to fitting 
feasible, but is by no means elementary. 

EXAMPLE 1.2 

The period T for a swing of the pendulum of length 4 is given by 
7 

If p = 2 ~ / &  and z = &, then 

T = zp. 

If one actually makes observations of T in the form of Y such that one can 
make an accurate measurement of e, and hence of x, but the measurement of T 
is subject to error, due for example, to the reaction time of a person clicking a 
stopwatch, then one is only entitled to write 

where F is the error of measurement of T (Figure 1 .  I). Suppose that measure- 
ments of Y are taken for different z, so that 

Suppose that the ci can be described as independent normal errors N(0 ,  a'), 
and interest is in the pairs (Yi ,  z,). The model can be represented as 

with E - N(0,a21n).  
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Figure 1.1 Possible scatterplot of periods of a pendulum versus the square root of a length 
of string. 

The next example is, in fact, a simple extension of Example 1.2, again where one 
is contemplating the fit of a straight-line relationship between two variables, although 
there is no restriction that the line must pass through the origin. It is commonly 
referred to as a simple linear regression. 

EXAMPLE 1.3 

Linear Regression on One Variable. Suppose that one has a sample Yl, . . . , Yn7 
where each Y, is normal, with mean a+pxi ,  and variance a2, where xi is known 
and a,  p, and a2 are unknown parameters to be estimated (xi nonrandom). 
Typical examples might be where Y is the weight of a baby at a certain age 
xi, or where Y is a measure of chemical response in an experiment performed 
at temperature xi. The model R : Y ,  - N ( a  + pxi, a2)  is represented in the 
form (I. 1) by choosing the design matrix 

and the parameter vector 0 = . Most frequently, one is interested in testing [;I 
the hypothesis H : ,l3 = 0, and x is often referred to as a concomitant variable. 
In some examples, xl  , . . . , x, are also random variables, but then one considers 
the conditional variation of Yi given xi. In this way the x's can be regarded as 
nonrandom. Examples include n married couples and 
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Y, = age of wife 
xi = age of husband, 

or n recordings of economic indices and 

Yi = price index in week i 
2, = wages index in week i. 

A more general example introduces what is known as a multiple linear regression 
model. Here one has, for each observation of the response variable, several values 
that can be inputs to that response. This model generalizes the simple linear regres- 
sion and has wide application in practice. See Problem 3-6 as a particular example 
involving two input variables. 

EXAMPLE 1.4 

Linear Regression on k Variables.; Suppose that one has n individuals and that 
for each a dependent variable Y and k concomitant variables, zl, . . . , zk are 
recorded. Let the value for the ith individual be 

Assume that E[Y,] = a + /'?lrl, + . . . + /ilkzkz, SO that the linear model is 
represented by 

Frequently, there is interest in a hypothesis of the form 

One is not always interested in fitting straight-line relationships between two vari- 
ables. Indeed, there are many times when one wants to fit a quadratic or even a 
cubic relationship through a scatterplot of the two variables. The following example 
encompasses both suggestions and is even more general. 



EXAMPLE 1.5 

Polynomial Regression (on one variable). In many physical examples a nonlin- 
ear relationship may exist between the dependent variable Y and the concomi- 
tant variable x. Also, many nonlinear relationships can be approximated by a 
polynomial expression. This model is written 

or equivalently (1.1), with each x,j = xi in the design matrix of (1.3). Again 
the hypotheses of interest are of the form 

For example, suppose that we are contemplating at most a cubic relationship 
where k = 3, but want to consider the hypothesis of a quadratic relationship 
only. This can be formulated as the hypothesis H3 : ,L13 = 0.  If, on the other 
hand, we were contemplating comparing the model with a cubic against a model 
with a straight line, this could be contemplated by considering a combination 
of hypotheses H2 : p2 = 0 and H3 : ,L13 = 0.  For instance, combining these 
would lead to a null hypothesis of Ho : = ,L13 = 0. See Example 4.1 for 
further discussion about combining tests for parameters and model selection.0 

Remark 1.1. In each example the assumptions about the distribution of Y are of two 
types: 

(a) The distribution of Y about its expected value E [ Y ]  = XP (= q, say), or 
equivalently, about the distribution of the errors E 

(b) The form for 17, for both the model R and the hypothesis H - ( H i , ,  . . . , H i y ) .  
which represents a combination of hypotheses { H ~ } : = ~ ~ ,  where indices ( i l ,  
. . . , i q )  c ( 1 , .  . . , k) 

Remark 1.2. In the following we denote by R both the model (I. 1) and any assump- 
tions made about it, usually in the form of the distribution of errors E .  If we are 
considering any particular hypothesis H ,  under assumptions of the model, we denote 

meaning the set of assumptions obtained by imposing the assumptions of hypothesis 
H in addition to assumptions of R. For the most part we will be interested in the 
assumption that errors E N N ( 0 ,  a21n), and consider mainly the form of q as in 
Remark 1.1 (b). In the latter part of the book, methods for examining the plausibility 
of this assumption on the error structure are described briefly. A typical departure 
from the assumption would be in cases of heteroscedasticity, where not all the errors 
in the vector E have common variance a2. 

The approach taken to discuss or compare the model with hypothesis H j  will be 
to make use of vector algebra. Reconsider Example 1.3. Under the model R, 
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That is, 77 is some linear combination of 1 and x. The hypothesis H:  = 0 is that 
7) = a1, whence v is now restricted to the subspace spanned by the vector 1. Use of 
the words suhspace and spanned here implies a knowledge of vector spaces that is 
introduced in Chapter 2, although they should easily be interpreted in this straightfor- 
ward illustration as the set of vectors that are a multiple of the vector 1, as opposed 
to the full space of vectors which are from the linear combination given above. The 
hypothesis in question here is that one is fitting a line with zero slope through the 
data. Should we reject the hypothesis for this model, we are saying essentially that 
it is meaningful to fit a straight line through the data which has nonzero slope. This 
is often referred to as saying that the regression is useful since it describes a linear 
relationship between two variables. 

Another example that comes up frequently in elementary statistics courses is where 
one wants to test a hypothesis of equal means, where, say, one has two independent 
samples of observations. Each sample could be as in Example 1.1, but the mean of 
each sample may be different; for instance, we may let p1 be the mean of the first 
sample and 112 be the mean of the second sample. Traditionally, the test of equality 
of means is discussed in the context of a two-independent-sample Student t-test for 
equality of means. However, we may couch such an example in the linear model 
framework by letting 1x1 be the size of the first sample and n2 be the size of the 
second sample, and describing the model as in the following example. 

EXAMPLE 1.6 

Let observations Y = [Yll,. . . , Yl,,, , &,. . . , Yzn,ll, such that under R the 
expectation vector 

711 = 712 = " ' = 7 
v = [ I  where { lnl (= PI> say) 

7121 = 7122 = . . . = 72n2 (= /J21 say) 

H : pi = p2 (= p, say) 

and under w 


