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Preface 

This book is intended for statisticians, operations researchers. and all those 
who use simulation in their work and need a comprehensive guide to the 
current state of knowledge about simulation methods. Stochastic simulation 
has developed rapidly in the last decade, and much of the folklore about the 
subject is outdated or fallacious. This is indeed a subject in which "a little 
knowledge is a dangerous thing !" Although this is a comprehensive guide, 
most of the chapters contain explicit recommendations of methods and 
algorithms. (To encourage their use, Appendix B contains a selection of 
computer programs.) Thus, this book can also serve as an introduction. and 
no prior knowledge of the subject is assumed. 

Simulation is one of the easiest things one can do with a stochastic model, 
which may help to explain its popularity. Although easy to perform. some 
of the "tricks" used are subtle, and the analysis of what has been done can be 
much more complicated than is apparent at first sight. Simulation is best 
regarded as mathematical experimentation, and needs all the care and plan- 
ning that are regarded as a normal part of training in experimental sciences. 
The general mathematical level of this book is elementary, involving no more 
than a first course in probability and statistics. A notable exception is those 
parts of Chapter 2 that deal with the theoretical behavior of random-number 
generators, which contain a number of applications of number theory. All 
the necessary mathematics is developed there, but some prior knowledge of 
pure mathematics will help a great deal. Random-number generators are so 
fundamental that the reader should eventually tackle Chapter 2 unless he or 
she is suw that all the generators he or she uses are adequate (that is. have 
been checked by someone who understands that chapter). It might be dis- 
astrous to believe in your computer manufacturer! 

Chapters 3 and 4 cover drawing realizations from standard probability 
distributions and stochastic processes. The emphasis is on methods that 
are easy to program (compact and with a simple logic. therefore easy to 
check). These are particularly suitable for personal computers. A small 
number of workers have specialized in developing faster and increasingly 
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more complex algorithms. These are referenced but, in general. not de- 
scribed in detail. The coverage of methods was comprehensive at the time of 
writing. 

Even statisticians often fail to treat simulations seriously as experiments. 
Even more is possible in the way of design since the randomness was intro- 
duced by the experimenter and hence is under his or her complete control. 
Such techniques are described in Chapter 5 under the heading of “variance 
reduction.” A general knowledge of the statistical design of experiments is 
helpful here and essential to a competent practitioner of simulation. 
The analysis of the output of many simulation experiments, for example 
queueing systems, is also more complicated than many users suppose, 
although not as difficult as the literature makes out! This topic is discussed 
in Chapter 6. 

Chapter 7 discusses many novel uses of simulation. It can be used, for 
example, in optimizing designs of integrated circuits and in fundamentally 
new ideas in statistical inference. 

The literature on simulation is vast, and I have made no attempt to cite 
comprehensively. There are several published bibliographies, but a lot of 
the work has been superseded or is misleading. 

The exercises vary considerably in difficulty. Some are routine exercises 
in developing algorithms from general theory or in providing illustrative 
examples. Others are of an open-ended nature; they suggest experiments to 
be done and demand access to a computer (although the humblest personal 
computer would suffice). 

Simulation has long been a Cinderella subject, particularly in statistics. 
I hope this book shows that it raises fascinating mathematical and statistical 
problems that demand attention. 

BRIAN D. RIPLEY 
Glusgoic. 
Ocroher I986 
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C H A P T E R  1 

Aims of Simulation 

The terminology of our subject can be confusing, with some authors insisting 
on shades of meaning that do not have widespread agreement. A dictionary 
definition of “to simulate” is 

Feign, . . . , pretend to be, act like, resemble, wear the guise of, mimic,. . . 
imitate conditions of (situation etc.) with model, for convenience or 
training. . . . 

Concise Oxford Dictionary, 1976 ed. 

In everyday usage “simulated” has a derogatory ring, but the value of simu- 
lators in training pilots is also recognized. In its technical sense simulation 
involves using a model to produce results. rather than experiment with the 
real system under study (which may not yet exist). For example, simulation is 
used to the explore the extraction of oil from an oil reserve. If the model has 
a stochastic element, we have stochastic simulation, the subject of this 
monograph. 

Another term, the Monte-Curlo method, arose during World War I1 for 
stochastic simulations of models of atomic collisions (branching processes). 
Sometimes it is used synonymously with stochastic simulation, but sometimes 
it carries a more specialized meaning of “doing something clever and sto- 
chastic with simulation.” This may involve simulating a different system 
from that under study, perhaps even using a stochastic model for a deter- 
ministic system (as in Monte-Carlo integration). We will not use Monte 
Carlo except in the conventional terms “Monte-Carlo integration” and 
“M onte-Carl o test .” 

Simulation can have many aims, which makes it impossible to give uni- 
versal guidelines to good practice. Tocher (1963) wrote one of the first texts 
on the subject. His title was The Art ofSirnulation, and simulation is still an 
art despite a much greater understanding of the simulator’s toolkit. The aim 
of this volume is to display those tools in their most useful form with guid- 
ance about their use. 

1 



2 AIMS OF SIMULATION 

1.1. THE TOOLS 

The first thing needed for a stochastic simulation is a source of random- 
ness. This is often taken for granted but is of fundamental importance. 
Regrettably many of the so-called random functions supplied with the most 
widespread computers are far from random, and many simulation studies 
have been invalidated as a consequence. 

Digital computers cannot easily be interfaced to a truly random phenom- 
enon such as the electronic noise in a diode. All random functions in common 
use are in fact pseudo-random, which is to say that they are deterministic, 
but mimic the properties of a sequence of independent uniformly distributed 
random variables. Their essence is unpredictability. Consider for example the 
following sequence 

13, 8, 1, 2, 11, 14, 7, 12, 13, 12, 17, 2, 11, 10, 3, 

It is generated by a simple deterministic rule, but no one had guessed what 
the rule was or what the next number is at the time of writing. (Exercise 1.1 
will give the game away, but try to guess first.) The algorithms commonly 
used are similar, and much mathematical analysis has gone into the question 
of how well they do mimic a random sequence. 

Only occasionally does one want independent, uniformly distributed 
random variables. However, they are a useful source of randomness that 
can be turned into anything else. Chapters 3 and 4 consider tools to make 
samples of all the standard distributions and stochastic processes from this 
source of randomness. 

Simulation for us is about sampling from stochastic models. Too much 
emphasis has been placed in the literature on producing the samples and 
too little on what is done with those samples. Any stochastic simulation 
involves observing a random phenomenon and so is a statistical experiment. 
Statisticians, even experts in the design of experiments, are notoriously bad 
at designing their own experiments! There is even more scope for designing 
a simulation experiment than a real one, for the randomness and the model 
are under our complete control. Thus techniques for the design and analysis 
of simulation experiments are important tools and still an under-researched 
area. 

1.2. MODELS 

A stochastic simulation is of a model, and the aims of simulation are closely 
connected to those of modeling. So, why model? Within the scope of sta- 
stistics and operations research we can usefully identify two principal 
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reasons: 

1. 

2. 

To summarize data. A very common example is the general linear 
model of statistics as used in regression and the analysis of variance. 
To predict observations. A regression equation can be used to predict 
a response under new conditions or to find a combination of control 
variables giving an optimum response. This “what if”  use of models 
is the basis of much of operations research. 

It is also useful to consider two classes of a model. Models can either be 
mechanistic or conoenient. For example, the general linear model is merely 
convenient whereas the models ofgenetics are thought to represent the actual 
mechanisms. The models of the physical world used by engineers are usually 
both deterministic and mechanistic, whereas most stochastic models are 
convenient. Either type of model can be used to help understand, to predict, 
or to aid decision-making. An example of the latter is the “convenient” 
models of errors in agricultural field trials which are used to help disentangle 
the true differences in fertility of plant varieties from the fertilities of the 
plots in which they were grown. 

To make use of a model one has two choices: 

1. To bring mathematical analysis to bear to try to understand the 
model’s behavior. This is very easy for a general linear model but 
nigh impossible for a complex queueing system or for the equations 
of fluid flow in a complex structure such as a rock. The work involved 
is usually laborious (although if one is lucky it may already have been 
done). There are also likely to be necessary approximations and 
questionable assumptions. 

2. To experiment with the model. For a stochastic model the response 
will vary, and we will want to create a number of realizations (sets of 
artificial data) for each set of parameters. 

Sometimes one of these choices may be unfruitful. We might not be able to 
make progress by analytical means or might not have the resources to simu- 
late the model. (It is almost always possible to simulate a well-defined model 
given sufficient resources.) 

The choice of analysis or simulation will depend on the purpose of 
modeling. Simulation is good at answering specific “what if” questions 
whereas analysis almost always deepens understanding of the model. One 
neglected use of simulation is a hybrid approach: do a simulation experi- 
ment, analyze it to produce a “convenient” model, and use this model for 
predictions and decisions. 

The cost analysis is rapidly tilting in favor of simulation as computer time 
becomes ever cheaper and mathematicians remain scarce. It may be incred- 
ible to younger readers that Cox and Smith (1961) reported a simulation 
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performed with the aid of a slide rule (a mechanical device to perform multi- 
plications and evaluate standard functions) and a table of random numbers. 
Nowadays (1984/5) desktop computers are further revolutionizing the ease 
of mathematical experimentation. 

1.3. SIMULATION AS EXPERIMENTATION 

We have stressed that simulation is experimental mathematics and that 
simulation studies should be designed carefully, a process often termed 
oariance reduction in this field. Their classification as experiments also has 
repercussions for the reporting of simulation studies. It is essential that 
enough details are given for the experiments to be repeated and the results 
checked. Hoaglin and Andrews (1975) gave some standards on reporting 
which seem to have been followed only exceptionally. In view of the pre- 
ceding warnings on the deficiencies of certain pseudo-random-number 
generators, it is important to report the generator used. 

Good design is the key to reducing the cost of the study when this is neces- 
sary. The cost of generating random variables and sampling from stochastic 
models is usually a tiny part of the cost of the study, so the main aim should 
be to make best use of a small number of replications. 

The analysis of simulation experiments also needs care, because the 
observations may not be independent. This can either occur deliberately as 
part of the design or because one is simulating a stochastic process through 
time. (The problems of analyzing observations of a simulated stochastic 
process apply equally to observing real processes, but this is done much less 
intensely.) Chapter 6 considers various ways to include dependence in the 
analysis or to select independent sets of observations. 

1.4. SIMULATION IN INFERENCE 

Simulation has recently become popular as part of statistical inference. The 
advantages are again the need to make fewer approximations, although 
interpretation may be more difficult. Monte-Carlo tests compare the data 
with simulated data from the supposed model. The similarity of real and 
simulated data provides a test of goodness-of-fit. Bootstrap methods re- 
sample from the data, using the data as a reference distribution to assess the 
variability or bias of an estimator. Both are discussed in Chapter 7. 
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1.5. EXAMPLES 

5 

Checking Distribution Theory 

“Student” (1908) when deriving his t distribution carried out a small simu- 
lation experiment. He had 3000 physical measurements on humans which 
were known to be approximately normally distributed. These were shuffled 
and divided into 750 sets of (XI, X 2 ,  X3, X4). From each sample of size four 
the t statistic was calculated, giving 750 realizations to compare with the 
theoretical density. (This was done for each of two measurements.) 

We can repeat this experiment with very much less effort. Figure 1.1 
shows a simple BASIC program to do so. The 750 numbers can be compared 
with a t distribution in any way we choose. Perhaps the simplest thing to do 
is to compare some moments with their population values. Each run of this 
program on a BBC microcomputer took 130 sec. (Appendix A gives details 
of the computers used in this work.) 

Simulation is often useful to check theoretical calculations. For example, 
the author was asked to check the solution to Sylvester’s problem (Kendall 

10  DIM X(4) 
20 FOR I%= 1 TO 750 
30 FOR J%= 1 TO 3 STEP 2 
40 U = 2 * R N D ( 1 ) - 1  
50 V=2*RND(1) - 1 
60 W = U*U +V*V 
70 IF W > 1 THEN 40 

90 X(J%) = C+U 
100 X(J% + 1) = C*V 
110 NEXT J% 
120SUM=O 
130 FOR J%=1 TO 4 
140 SUM = SUM +X(J%) 
150 NEXT J% 
160 XBAR = SUM/4 
170SUM=O 
180 FOR J % = l  TO 4 
190 SUM = SUM + (X(J%) - XBAR)-2 
200 NEXT J% 
210 S=SQR(SUM/3) 
220 T = SQR(4)*XBAR/S 
230 PRINT T 
240 NEXT I% 

80 C = SQR ( (  - 2*LN (W) ) /W)  

Figure 1.1. A BASIC program to repeat Student‘s simulations. The function RND(1) returns 
a pseudo-random number, Lines 40 to 100 code algorithm 3.9 to produce normal variates. 
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and Moran, 1963; Solomon, 1978). Four points are placed at  random in a 
disc and their convex hull found. What is the probability that it is a triangle? 
The theoretical value is 35/12z2. A simulation study was performed with 
100,OOO replications. In 29,432 cases the convex hull was a triangle, giving a 
95% confidence interval for the probability of (0.291 50.2971) and confirming 
the theoretical value, 0.2955. The whole study took half an hour, using a 
VAXl1/782 (including programming). 

Much of statistical practice is based on asymptotic distributions, and 
simulation is much used to check the accuracy of asymptotic results for small 
samples. Ripley and Silverman (1978) considered the distribution of d,  the 
smallest distance between any pair of n random points in the unit square. 
Their asymptotic result is that n(n - l)d2 has an exponential distribution 
with mean 2/z (see also Theorem 2.6). Large values of d provide the rejection 
region of a test of inhibition between points, so we will count the number 
of values of T = n(n - l)d2 2 1.907, the 95% point of the asymptotic 
distribution. Figure 1.2 shows the program and Table 1 .1  gives the results. 
The count has a binomial (10,000,0.05) distribution on the asymptotic theory, 
so the acceptance region of a 5% test is (457, 543) (using a normal approxi- 
mation). Thus our experiment gives us no reason to doubt the asymptotic 
theory even for sample sizes as small as n = 10. 

1 0  1NPUT"N". N% 

30 INPUT "Reps". R% 
40 CNT = 0 
50 D C = I  9 0 7 / ( N % * ( N % - l ) )  
60 FOR L% = 1 TO R% 
70 FOR I%= 1 TO N% 
80 X(l%) = RND(1)  

20 D I M  X(N?'o). Y(N%) 

9 0 Y ( I % ) = R N D ( 1 )  
100 NEXT I% 
110 D = 2  
120 FOR I% = 2 TO N% 
1 30 X I  = X( I%) Y1 = Y (I%) 
140 FOR J % = l  TO I % - 1  
150 DD = ( X I  - X(J%))-2 + (Y1 - Y ( J % ) ) ) ^  2 
1 6 0 I F D D  < C T H E N D = D D  
170 NEXT J%, I% 
1 8 0 I F D > D C T H E N C N T = C N T + l  
190 NEXT I% 
200 PRINT "Count=", CNT 

Figure 1.2. BASIC program to check exponential distribution for n(n - l)d' 
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Table 1.1. Results from Figure 1.2 

n CNT out of R”/, Time (min) 

10 516 10,000 103 
15 516 10,000 221 
20 509 10,000 405 

This experiment was run overnight on a personal computer and so was 
free. Nevertheless we should still consider whether we could have obtained 
more information from the experiment. [In fact we only used the fact that 
at least one or no pairs (x, y) had n(n - l)d(x, y) < 1.907, so we could have 
stopped searching as soon as one was found.] Clearly we could have checked 
other percentage points with the same data. Could we make use of the actual 
values of T ?  One possibility is to assume that the tail of the distribution of T 
isexponential ofunknown mean iK1, and toestimate P(T > 1.907) = P - ’ ” ’ ~  

for an estimate 2 of i,, say obtained from the observations with T > 1. 
Exercise 1.4 shows that this idea is worthwhile only in the extreme tail. 

Comparing Estimators 

Andrews et al. (1972) report a large simulation experiment that used variance 
reduction very effectively. Consider a location-parameter estimation 
problem : 

Estimate H in ( f ( x  - 8)  1 ZT E R 1 from x!,  . . . , x,, 

The density f is symmetric and is similar to the normal density. The idea is 
to find estimators that perform well across a wide class of possible densities 
,f Some obvious estimators of 8 are the sample mean and the sample median, 
and a trimmed mean (the mean of all except the r largest and r smallest 
values). Let T ( x )  be such an estimator. All the estimators considered were 
location equivariant (xi + x i  + c implies T --t T + c) and many were scale 
equivariant ( x i  -+ .$xi implies T -+ sT). Our examples are both location 
and scale equivariant. 

The key to the variance reduction was that all simulations were done for 
.f’ belonging to the so-called normal/independent family. That is, f is the 
density of X = Z / S ,  where Z - N(0 ,  1) and S > 0 is independent of Z. 
Consider first conditioning on S, = sl, . . . , S, = s,. Then X i  - N ( 0 ,  1/$), 
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and suitable statistics for the (Xi) are 2 and s where 

Define Ci  = ( X i  - @ / S .  Then for a location and scale equivariant estimator 
IT: 

T(x) = 1 + sT(c) 

The point here is that T(c)  is much less variable than T(x) .  We will assume 
T is unbiased, so E&T) = 8. Consider 

say, so the expec!ation is merely over the location a;d scale of the sample. 
Conditionally, X and S are independent, with X N N(0, l /Csf) and 
(n - 1)S2 - x , ” - ~ .  Thus 

U(C, S) = ~ { r i  - e + S T ( C ) ) ~  

= ~ ( 2  - e ) 2  + ~ ( r i  - e)sT(c) + E ( s ~ ) T ( c ) ~  

where all expectations are conditional on C = c, S = s. Finally, 

1 
and this is found by a simulation experiment as an average over many samples 
(XI , .  . . , X,) of the random variables. Almost no more work is needed than in 
calculating T(X), but the estimate of var(T) obtained is much more accurate 
(see Table 1.2). 

The essence of this transformation is to average analytically over as much 
of the variation as possible. The assumption on f is slightly restrictive, but 
includes Student’s t distribution as well as the Cauchy, Laplace, and con- 
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Table 1.2. Estimates of n x'var(T) Based on 200 Replications for 
Sample Size n = 25 for the Mean, Median, and Trimmed Mean (r = 2) 
Estimators T 

U 

1.5 2 5 10 100 

Mean 
Average 
s.e. 1 a 

s.e.2" 
Variance reduction 

Median 
Average 
s.e. 1 
s.e.2 
Variance reduction 

Average 
s.e. 1 
s.e.2 
Variance reduction 

Trimmed mean 

1.57 
0.14 
0.048 

9 

2.17 
0.19 
0.1 1 

3 

I .72 
0.18 
0.065 

7 

1.53 
0.18 
0.062 

8 

1.96 
0.23 
0.093 

6 

1.61 
0.16 
0.065 

6 

1.185 
0.10 
0.019 

27 

1.67 
0.14 
0.064 

5 

1.22 
0.080 
0.022 

12 

1.096 
0.095 
0.010 

90 

1.55 
0.14 
0.052 

7 

1.14 
0.097 
0.01 5 

40 

1.009 
0.084 
0.001 7 
2,400 

1.60 
0.1 1 
0.05 1 

5 

1.051 
0.084 
0.0052 

260 
~ ~~~ 

"The s.e.1 and s.e.2 are standard errors from direct estimation and 
conditional estimation. The distribution of Sf was u - '  x gamma(a), so 
x, - t 2 z .  

taminated normal distributions. I t  is a small price to pay for a six-fold reduc- 
tion in experimental replication. I t  should be stressed that negligible extra 
work is involved. Instead of for each replication 

1. 
2. Form V = T(X)' 

Sample Z , ,  . . . , Z ,  - N ( 0 ,  l),  S , ,  . . . , S,,  set Xi = Zi/Si 

and averaging V ,  we 

1. 
2. Calculate 2, i 
3. 

Sample Z , ,  . . . , Z ,  - N ( 0 ,  l),  S,,  . . . , S,,  set Xi = ZJS, 

Form V = l/c S,? + { T(X) - 2)'/S2 

and average I/: The variance reduction is most when T ( c )  is most nearly 
constant, but is always worthwhile. 


