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Preface

This book is a sequel to Volume I, Fundamental Probability: A Computational Approach
(2006), http://www.wiley.com/WileyCDA/WileyTitle/productCd-04
70025948.html, which covered the topics typically associated with a first course in
probability at an undergraduate level. This volume is particularly suited to beginning
graduate students in statistics, finance and econometrics, and can be used indepen-
dently of Volume I, although references are made to it. For example, the third equation
of Chapter 2 in Volume I is referred to as (I.2.3), whereas (2.3) means the third equation of
Chapter 2 of the present book. Similarly, a reference to Section I.2.3 means Section 3 of
Chapter 2 in Volume I.

The presentation style is the same as that in Volume I. In particular, computational
aspects are incorporated throughout. Programs in Matlab are given for all computations
in the text, and the book’s website will provide these programs, as well as translations
in the R language. Also, as in Volume I, emphasis is placed on solving more practical
and challenging problems than is often done in such a course. As a case in point,
Chapter 1 emphasizes the use of characteristic functions for calculating the density
and distribution of random variables by way of (i) numerically computing the integrals
involved in the inversion formulae, and (ii) the use of the fast Fourier transform. As
many students may not be comfortable with the required mathematical machinery, a
stand-alone introduction to complex numbers, Fourier series and the discrete Fourier
transform are given as well.

The remaining chapters, in brief, are as follows.
Chapter 2 uses the tools developed in Chapter 1 to calculate the distribution of sums

of random variables. I start with the usual, algebraically trivial examples using the
moment generating function (m.g.f.) of independent and identically distributed (i.i.d)
random variables (r.v.s), such as gamma and Bernoulli. More interesting and useful,
but less commonly discussed, is the question of how to compute the distribution of a
sum of independent r.v.s when the resulting m.g.f. is not ‘recognizable’, e.g., a sum of
independent gamma r.v.s with different scale parameters, or the sum of binomial r.v.s
with differing values of p, or the sum of independent normal and Laplace r.v.s.

Chapter 3 presents the multivariate normal distribution. Along with numerous ex-
amples and detailed coverage of the standard topics, computational methods for cal-
culating the c.d.f. of the bivariate case are discussed, as well as partial correlation,



xii Preface

which is required for understanding the partial autocorrelation function in time series
analysis.

Chapter 4 is on asymptotics. As some of this material is mathematically more chal-
lenging, the emphasis is on providing careful and highly detailed proofs of basic results
and as much intuition as possible.

Chapter 5 gives a basic introduction to univariate and multivariate saddlepoint
approximations, which allow us to quickly and accurately invert the m.g.f. of sums
of independent random variables without requiring the numerical integration (and
occasional numeric problems) associated with the inversion formulae. The methods
complement those developed in Chapters 1 and 2, and will be used extensively in
Chapter 10. The beauty, simplicity, and accuracy of this method are reason enough to
discuss it, but its applicability to such a wide range of topics is what should make this
methodology as much of a standard topic as is the central limit theorem. Much of the
section on multivariate saddlepoint methods was written by my graduate student and
fellow researcher, Simon Broda.

Chapter 6 deals with order statistics. The presentation is quite detailed, with numer-
ous examples, as well as some results which are not often seen in textbooks, including
a brief discussion of order statistics in the non-i.i.d. case.

Chapter 7 is somewhat unique and provides an overview on how to help ‘classify’
some of the hundreds of distributions available. Of course, not all methods can be
covered, but the ideas of nesting, generalizing, and asymmetric extensions are intro-
duced. Mixture distributions are also discussed in detail, leading up to derivation of
the variance–gamma distribution.

Chapter 8 is about the stable Paretian distribution, with emphasis on its computation,
basic properties, and uses. With the unprecedented growth of it in applications (due
primarily to its computational complexity having been overcome), this should prove to
be a useful and timely topic well worth covering. Sections 8.3.2 and 8.3.3 were written
together with my graduate student and fellow researcher, Yianna Tchopourian.

Chapter 9 is dedicated to the (generalized) inverse Gaussian and (generalized) hyper-
bolic distributions, and their connections. In addition to being mathematically intrigu-
ing, they are well suited for modelling a wide variety of phenomena. The author of
this chapter, and all its problems and solutions, is my academic colleague Walther
Paravicini.

Chapter 10 provides a quite detailed account of the singly and doubly noncentral
F, t and beta distributions. For each, several methods for the exact calculation of the
distribution are provided, as well as discussion of approximate methods, most notably
the saddlepoint approximation.

The Appendix contains a list of tables, including those for abbreviations, special
functions, general notation, generating functions and inversion formulae, distribution
naming conventions, distributional subsets (e.g., χ2 ⊆ Gam and N ⊆ SαS), Student’s t
generalizations, noncentral distributions, relationships among major distributions, and
mixture relationships.

As in Volume I, the examples are marked with symbols to designate their relative
importance, with �, � and � indicating low, medium and high importance, respec-
tively. Also as in Volume I, there are many exercises, and they are furnished with stars
to indicate their difficulty and/or amount of time required for solution. Solutions to all
exercises, in full detail, are available for instructors, as are lecture notes for beamer
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presentation. As discussed in the Preface to Volume I, not everything in the text is
supposed to be (or could be) covered in the classroom. I prefer to use lecture time for
discussing the major results and letting students work on some problems (algebraically
and with a computer), leaving some derivations and examples for reading outside of
the classroom.

The companion website for the book is http://www.wiley.com/go/
intermediate.
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SUMS OF RANDOM VARIABLES





1

Generating functions

The shortest path between two truths in the real domain passes through the
complex domain. (Jacques Hadamard)

There are various integrals of the form∫ ∞

−∞
g(t, x) dFX(x) = E[g(t, X)] (1.1)

which are often of great value for studying r.v.s. For example, taking g(n, x) = xn and
g(n, x) = |x|n, for n ∈ N, give the algebraic and absolute moments, respectively, while
g(n, x) = x[n] = x(x − 1) · · · (x − n+ 1) yields the factorial moments of X, which
are of use for lattice r.v.s. Also important (if not essential) for working with lattice
distributions with nonnegative support is the probability generating function, obtained
by taking g(t, x) = tx in (1.1), i.e., PX(t) :=∑∞

x=0 t
xpx , where px = Pr(X = x).1

For our purposes, we will concentrate on the use of the two forms g(t, x) = exp(tx)
and g(t, x) = exp(itx), which are not only applicable to both discrete and continuous
r.v.s, but also, as we shall see, of enormous theoretical and practical use.

1.1 The moment generating function

The moment generating function (m.g.f.), of random variable X is the function MX:
R �→ X≥0 (where X is the extended real line) given by t �→ E

[
etX
]
. The m.g.f. MX

is said to exist if it is finite on a neighbourhood of zero, i.e., if there is an h > 0
such that, ∀t ∈ (−h, h), MX(t) <∞. If MX exists, then the largest (open) interval I

1 Probability generating functions arise ubiquitously in the study of stochastic processes (often the ‘next
course’ after an introduction to probability such as this). There are numerous books, at various levels, on
stochastic processes; three highly recommended ‘entry-level’ accounts which make generous use of probability
generating functions are Kao (1996), Jones and Smith (2001), and Stirzaker (2003). See also Wilf (1994) for
a general account of generating functions.

Intermediate Probability: A Computational Approach M. Paolella
 2007 John Wiley & Sons, Ltd



4 Generating functions

around zero such that MX(t) <∞ for t ∈ I is referred to as the convergence strip (of
the m.g.f.) of X.

1.1.1 Moments and the m.g.f.

A fundamental result is that, if MX exists, then all positive moments of X exist. This
is worth emphasizing:

If MX exists, then ∀r ∈ R>0, E
[|X|r] <∞. (1.2)

To prove (1.2), let r be an arbitrary positive (real) number, and recall that
limx→∞ xr/ex = 0, as shown in (I.7.3) and (I.A.36). This implies that, ∀ t ∈ R \ 0,
limx→∞ xr/e|tx| = 0. Choose an h > 0 such that (−h, h) is in the convergence strip of
X, and a value t such that 0 < t < h (so that E

[
etX
]
and E

[
e−tX

]
are finite). Then there

must exist an x0 such that |x|r < e|tx| for |x| > x0. For |x| ≤ x0, there exists a finite
constant K0 such that |x|r < K0e|tx|. Thus, there exists a K such that |x|r < Ke|tx|
for all x, so that, from the inequality-preserving nature of expectation (see Section
I.4.4.2), E

[|X|r] ≤ KE
[
e|tX|

]
. Finally, from the trivial identity e|tx| ≤ etx + e−tx and

the linearity of the expectation operator, E
[
e|tX|

] ≤ E
[
etX
]+ E

[
e−tX

]
<∞, showing

that E
[|X|r] is finite.

Remark: This previous argument also shows that, if the m.g.f. of X is finite on
the interval (−h, h) for some h > 0, then so is the m.g.f. of r.v. |X| on the same
neighbourhood. Let |t | < h, so that E

[
et |X|

]
is finite, and let k ∈ N ∪ 0. From the Tay-

lor series of ex , it follows that 0 ≤ |tX|k/k! ≤ e|tX|, implying E
[|tX|k] ≤ k! E

[
e|tX|

]
<∞. Moreover, for all N ∈ N,

S(N) :=
N∑
k=0

∣∣∣∣∣E
[|tX|k]
k!

∣∣∣∣∣ =
N∑
k=0

E
[|tX|k]
k!

= E

(
N∑
k=0

|tX|k
k!

)
≤ E

[
e|tX|

]
,

so that

lim
N→∞

S(N) =
∞∑
k=0

E
[|tX|k]
k!

≤ E
[
e|tX|

]
and the infinite series converges absolutely. Now, as |E [(tX)k] | ≤ E

[|tX|k] <∞, it
follows that the series

∑∞
k=0 E

[
(tX)k

]
/k! also converges. As

∑∞
k=0(tX)

k/k! converges
pointwise to etX, and |etX| ≤ e|tX|, the dominated convergence theorem applied to the
integral of the expectation operator implies

lim
N→∞

E

[
N∑
k=0

(tX)k

k!

]
= E

[
etX
]
.
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That is,

MX(t) = E
[
etX
] = E

[ ∞∑
k=0

(tX)k

k!

]
=

∞∑
k=0

tk

k!
E
[
Xk
]
, (1.3)

which is important for the next result. �

It can be shown that termwise differentiation of (1.3) is valid, so that the j th
derivative with respect to t is

M(j)

X (t) =
∞∑
i=j

t i−j

(i − j)!
E
[
Xi
] = ∞∑

n=0

tn

n!
E
[
Xn+j ]

= E

[ ∞∑
n=0

(tX)n Xj

n!

]
= E

[
Xj

∞∑
n=0

(tX)n

n!

]
= E

[
XjetX

]
, (1.4)

or

M(j)
X (t)

∣∣∣
t=0
= E

[
Xj
]
.

Similarly, it can be shown that we are justified in arriving at (1.4) by simply writing

M(j)

X (t) = dj

dtj
E
[
etX
] = E

[
dj

dtj
etX
]
= E

[
XjetX

]
.

In general, if MZ(t) is the m.g.f. of r.v. Z and X = µ+ σZ, then it is easy to
show that

MX(t) = E
[
etX
] = E

[
et(µ+σZ)

] = etµMZ(tσ ) . (1.5)

The next two examples illustrates the computation of the m.g.f. in a discrete and
continuous case, respectively.

� Example 1.1 Let X ∼ DUnif (θ) with p.m.f. fX (x; θ) = θ−1I{1,2,...,θ} (x). The m.g.f.
of X is

MX(t) = E
[
etX
] = 1

θ

θ∑
j=1

etj ,

so that

M ′
X(t) =

1

θ

θ∑
j=1

jetj , E [X] = M ′
X(0) =

1

θ

θ∑
j=1

j = θ + 1

2
,
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and

M ′′
X(t) =

1

θ

θ∑
j=1

j 2etj , E
[
X2] = M ′′

X(0) =
1

θ

θ∑
j=1

j 2 = (θ + 1) (2θ + 1)

6
,

from which it follows that

V (X) = µ′2 − µ2 = (θ + 1) (2θ + 1)

6
−
(
θ + 1

2

)2

= (θ − 1)(θ + 1)

12
,

recalling (I.4.40). More generally, lettingX ∼ DUnif(θ1, θ2) with p.d.f. fX (x; θ1, θ2) =
(θ2 − θ1 + 1)−1 I{θ1,θ1+1,...,θ2} (x),

E [X] = 1

2
(θ1 + θ2) and V(X) = 1

12
(θ2 − θ1) (θ2 − θ1 + 2) ,

which can be shown directly using the m.g.f., or by simple symmetry arguments. �

� Example 1.2 Let U ∼ Unif (0, 1). Then,

MU(t) = E
[
etU
] = ∫ 1

0
etu du = et − 1

t
, t �= 0,

which is finite in any neighbourhood of zero, and continuous at zero, as, via l’Hôpital’s
rule,

lim
t→0

et − 1

t
= lim

t→0

et

1
= 1 =

∫ 1

0
e0u du = MU(0).

The Taylor series expansion of MU(t) around zero is

et − 1

t
= 1

t

(
t + t2

2
+ t3

6
+ · · ·

)
= 1+ t

2
+ t2

6
+ · · · =

∞∑
j=0

1

j + 1

tj

j !

so that, from (1.3),

E
[
Ur
] = (r + 1)−1 , r = 1, 2, . . . . (1.6)

In particular,

E [U ] = 1

2
, E

[
U 2] = 1

3
, V (U) = 1

3
− 1

4
= 1

12
.

Of course, (1.6) could have been derived with much less work and in more gener-
ality, as

E
[
Ur
] = ∫ 1

0
ur du = (r + 1)−1 , r ∈ R>0.



1.1 The moment generating function 7

For X ∼ Unif (a, b), write X = U (b − a)+ a so that, from the binomial theorem
and (1.6),

E
[
Xr
] = r∑

j=0

(
r

j

)
ar−j (b − a)j

1

j + 1
= br+1 − ar+1

(b − a) (r + 1)
, (1.7)

where the last equality is given in (I.1.57). Alternatively, we can use the location–scale
relationship (1.5) with µ = a and σ = b − a to get

MX(t) = etb − eta

t (b − a)
, t �= 0, MX(0) = 1.

Then, with j = i − 1 and t �= 0,

MX(t) = 1

t (b − a)

( ∞∑
i=0

(tb)i

i!
−

∞∑
k=0

(ta)k

k!

)
=

∞∑
i=1

bi − ai

i! (b − a)
ti−1

=
∞∑
j=0

bj+1 − aj+1

(j + 1)! (b − a)
tj =

∞∑
j=0

bj+1 − aj+1

(j + 1) (b − a)

tj

j !
,

which, from (1.3), yields the result in (1.7). �

1.1.2 The cumulant generating function

The cumulant generating function (c.g.f.), is defined as

KX(t) = log MX(t) . (1.8)

The terms κi in the series expansion KX(t) =
∑∞

r=0 κr t
r/r! are referred to as the

cumulants of X, so that the ith derivative of KX(t) evaluated at t = 0 is κi , i.e.,

κi = K(i)
X (t)

∣∣∣
t=0

.

It is straightforward to show that

κ1 = µ, κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3µ2
2 (1.9)

(see Problem 1.1), with higher-order terms given in Stuart and Ord (1994, Section 3.14).

� Example 1.3 From Problem I.7.17, the m.g.f. of X ∼ N
(
µ, σ 2

)
is given by

MX(t) = exp

{
µt + 1

2
σ 2t2

}
, KX(t) = µt + 1

2
σ 2t2. (1.10)
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Thus,

K ′
X(t) = µ+ σ 2t, E [X] = K ′

X(0) = µ, K ′′
X(t) = σ 2, V (X) = K ′′

X(0) = σ 2,

and K(i)
X (t) = 0, i ≥ 3, so that µ3 = 0 and µ4 = κ4 + 3µ2

2 = 3σ 4, as also determined
directly in Example I.7.3. This also shows that X has skewness µ3/µ

3/2
2 = 0 and

kurtosis µ4/µ
2
2 = 3. �

� Example 1.4 For X ∼ Poi (λ),

MX(t) = E
[
etX
] = ∞∑

x=0

etxe−λλx

x!
= e−λ

∞∑
x=0

(
λet
)x

x!

= exp
(−λ+ λet

)
. (1.11)

As K(r)
X (t) = λet for r ≥ 1, it follows that E [X] = K ′

X(t)
∣∣
t=0 = λ and V (X) =

K ′′
X(t)
∣∣
t=0 = λ. This calculation should be compared with that in (I.4.34). Once the

m.g.f. is available, higher moments are easily obtained, in particular,

skew(X) = µ3/µ
3/2
2 = λ/λ3/2 = λ−1/2 → 0

and
kurt(X) = µ4/µ

2
2 =

(
κ4 + 3µ2

2

)
/µ2

2 =
(
λ+ 3λ2) /λ2 → 3,

as λ→∞. That is, as λ increases, the skewness and kurtosis of a Poisson random
variable tend towards the skewness and kurtosis of a normal random variable. �

� Example 1.5 For X ∼ Gam (a, b), the m.g.f. is, with y = x (b − t),

MX(t) = E
[
etX
]

= ba

� (a)

∫ ∞

0
xa−1e−x(b−t) dx = (b − t)−a ba

∫ ∞

0

1

� (a)
ya−1e−y dy

=
(

b

b − t

)a
, t < b.

From this,

E [X] = dMX(t)

dt

∣∣∣∣
t=0
= a

(
b

b − t

)a−1

b (b − t)−2

∣∣∣∣∣
t=0

= a

b

or, more easily, with KX(t) = a (ln b − ln (b − t)), (1.9) implies

κ1 = E [X] = dKX(t)

dt

∣∣∣∣
t=0
= a

b − t

∣∣∣∣
t=0
= a

b
(1.12)
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and

κ2 = µ2 = V (X) = dK2
X(t)

dt2

∣∣∣∣
t=0
= a

(b − t)2

∣∣∣∣
t=0

= a

b2
.

Similarly,

µ3 = 2a

b3
and κ4 = 6a

b4
,

i.e., µ4 = κ4 + 3µ2
2 = 3a (2+ a) /b4, so that the skewness and kurtosis are

µ3

µ
3/2
2

= 2a/b3(
a/b2

)3/2 = 2√
a

and
µ4

µ2
2

= 3a (2+ a) /b4(
a/b2

)2 = 3 (2+ a)

a
. (1.13)

These converge to 0 and 3, respectively, as a increases. �

� Example 1.6 From density (I.7.51), the m.g.f. of a location-zero, scale-one logistic
random variable is (with y = (1+ e−x

)−1
), for |t | < 1,

MX(t) = E
[
etX
] = ∫ ∞

−∞

(
e−x
)1−t (

1+ e−x
)−2

dx

=
∫ 1

0

(
1− y

y

)1−t
y2y−1 (1− y)−1 dy =

∫ 1

0
(1− y)−t yt dy

= B (1− t, 1+ t) = � (1− t) � (1+ t) .

If, in addition, t �= 0, the m.g.f. can also be expressed as

MX(t) = t� (t) � (1− t) = t
π

sinπt
, (1.14)

where the second identity is Euler’s reflection formula.2 �

For certain problems, the m.g.f. can be expressed recursively, as the next example
shows.

� Example 1.7 Let Nm ∼ Consec(m, p), i.e., Nm is the random number of Bernoulli
trials, each with success probability p, which need to be conducted until m successes
in a row occur. The mean of Nm was computed in Example I.8.13 and the variance

2 Andrews, Askey and Roy (1999, pp. 9–10) provide four different methods for proving Euler’s reflection
formula; see also Jones (2001, pp. 217–18), Havil (2003, p. 59), or Schiff (1999, p. 174). As an aside, from
(1.14) with t = 1/2, it follows that � (1/2) = √π .
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and m.g.f. in Problem I.8.13. In particular, from (I.8.52), with Mm(t) := MNm(t) and
q = 1 − p,

Mm(t) = petMm−1(t)

1 − qMm−1(t) et
. (1.15)

This can be recursively evaluated with M1(t) = pet /
(
1 − qet

)
for t �= − ln(1 − p),

from the geometric distribution. Example 1.20 below illustrates how to use (1.15) to
obtain the p.m.f. Problem 1.10 uses (1.15) to compute E [Nm]. �

Calculation of the m.g.f. can also be useful for determining the expected value of
particular functions of random variables, as illustrated next.

� Example 1.8 To determine E [ ln X] when X ∼ χ2
v , we could try to directly inte-

grate, i.e.,

E [ lnX] = 1

2v/2� (v/2)

∫ ∞

0
(ln x) xv/2−1e−x/2 dx, (1.16)

but this seems to lead nowhere. Note instead that the m.g.f. of Z = lnX is

MZ(t) = E
[
etZ
] = E

[
Xt
] = 1

2v/2� (v/2)

∫ ∞

0
xt+v/2−1e−x/2 dx

or, with y = x/2,

MZ(t) = 2t+v/2−1+1

2v/2� (v/2)

∫ ∞

0
yt+v/2−1e−y dy = 2t � (t + v/2)

� (v/2)
.

Then, with d2t /dt = 2t ln 2,

d

dt
MZ(t) = 1

� (v/2)

(
2t �′ (t + v/2) + 2t ln 2 � (t + v/2)

)
and

E [ ln X] = d

dt
MZ(t)

∣∣∣∣
t=0

= �′ (v/2)

� (v/2)
+ ln 2 = ψ (v/2) + ln 2.

Having seen the answer, the integral (1.16) is easy; differentiating � (ν/2) with
respect to ν/2, using (I.A.43), and setting y = 2x,

�′
(v

2

)
=
∫ ∞

0

d

d (v/2)
xv/2−1e−x dx =

∫ ∞

0
xv/2−1 (ln x) e−x dx

=
∫ ∞

0

(y

2

)v/2−1 (
ln

y

2

)
e−y/2 dy

2

= 1

2v/2

∫ ∞

0
yv/2−1 (ln y) e−y/2 dy − ln 2

2v/2

∫ ∞

0
yv/2−1e−y/2 dy

= � (v/2) E [ ln X] − (ln 2) � (v/2) ,

giving E [ ln X] = �′ (v/2) /� (v/2) + ln 2. �
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1.1.3 Uniqueness of the m.g.f.

Under certain conditions, the m.g.f. uniquely determines or characterizes the distri-
bution. To be more specific, we need the concept of equality in distribution: Let r.v.s
X and Y be defined on the (induced) probability space {R,B, Pr(·)}, where B is the
Borel σ -field generated by the collection of intervals (a, b], a, b ∈ R. Then X and Y

are said to be equal in distribution, written X
d= Y , if

Pr(X ∈ A) = Pr(Y ∈ A) ∀A ∈ B. (1.17)

The uniqueness result states that for r.v.s X and Y and some h > 0,

MX(t) = MY(t) ∀ |t | < h ⇒ X
d= Y. (1.18)

See Section 1.2.4 below for some insight into why this result is true. As a concrete
example, if the m.g.f. of an r.v. X is the same as, say, that of an exponential r.v., then
one can conclude that X is exponentially distributed.

A similar notion applies to sequences of r.v.s, for which we need the concept of
convergence in distribution, For a sequence of r.v.s Xn, n = 1, 2, . . ., we say that Xn

converges in distribution to X, written Xn
d→ X, if FXn(x)→ FX(x) as n→∞, for

all points x such that FX(x) is continuous. Section 4.3.4 provides much more detail.
It is important to note that if FX is continuous, then it need not be the case that the
FXn are continuous.

If Xn converges in distribution to a random variable which is, say, normally dis-

tributed, we will write Xn
d→ N (·, ·), where the mean and variance of the specified nor-

mal distribution are constants, and do not depend on n. Observe that Xn
d→ N

(
µ, σ 2

)
implies that, for n sufficiently large, the distribution of Xn can be adequately approx-

imated by that of a N
(
µ, σ 2

)
random variable. We will denote this by writing Xn

app∼
N
(
µ, σ 2

)
. This notation also allows the right-hand-side (r.h.s.) variable to depend on

n; for example, we will write Sn
app∼ N (n, n) to indicate that, as n increases, the dis-

tribution of Sn can be adequately approximated by a N (n, n) random variable. In this

case, we cannot write Sn
d→ N (n, n), but it is true that n−1/2(Sn − n)

d→ N (0, 1).
We are now ready to state the convergence result for m.g.f.s. Let Xn be a sequence

of r.v.s such that the corresponding m.g.f.s MXn(t) exist for |t | < h, for some h > 0,
and all n ∈ N. If X is a random variable whose m.g.f. MX(t) exists for |t | ≤ h1 < h

for some h1 > 0 and MXn(t)→ MX(t) as n→∞ for |t | < h1, then Xn
d→ X. This

convergence result also applies to the c.g.f. (1.8).

� Example 1.9
(a) Let Xn, n = 1, 2, . . . , be a sequence of r.v.s such that Xn ∼ Bin (n, pn), with
pn = λ/n, for some constant value λ ∈ R>0, so that MXn(t) =

(
pnet + 1− pn

)n
(see

Problem 1.4), or

MXn(t) =
(
λ

n
et + 1− λ

n

)n
=
(

1+ λ

n

(
et − 1

))n
.
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For all h > 0 and |t | < h, limn→∞MXn(t) = exp
{
λ
(
et − 1

)} = MP(t), where P ∼
Poi (λ). That is, Xn

d→ Poi (λ). Informally speaking, the binomial distribution with
increasing n and decreasing p, such that np is a constant, approaches a Poisson distri-
bution. This was also shown in Chapter I.4 by using the p.m.f. of a binomial random
variable.
(b) Let Pλ ∼ Poi (λ), λ ∈ R>0, and Yλ = (Pλ − λ) /

√
λ. From (1.5),

MYλ(t) = exp
{
λ
(
et/
√
λ − 1

)
− t
√
λ
}
.

Writing

et/
√
λ = 1+ t

λ1/2
+ t2

2λ
+ t3

3!λ3/2
+ · · · ,

we see that

lim
λ→∞

[
λ
(
et/
√
λ − 1

)
− t
√
λ

]
= t2

2
,

or limλ→∞ MYλ(t) = exp
(
t2/2

)
, which is the m.g.f. of a standard normal random vari-

able. That is, Yλ
d→ N (0, 1) as λ→∞. This should not be too surprising in light of

the skewness and kurtosis results of Example 1.4.
(c) Let Pλ ∼ Poi (λ) with λ ∈ N, and Yλ = (Pλ − λ) /

√
λ. Then

p1,λ := e−λλλ

λ!
= Pr (Pλ = λ) = Pr (λ− 1 < Pλ ≤ λ) = Pr

(−1√
λ
< Yλ ≤ 0

)
.

From the result in part (b) above, the limiting distribution of Yλ is standard normal,
motivating the conjecture that

Pr

(−1√
λ
< Yλ ≤ 0

)
≈ �(0)−�

(−λ−1/2) =: p2,λ, (1.19)

where ≈ means that, as λ→∞, the ratio of the two sides approaches unity. To infor-
mally verify (1.19), Figure 1.1 plots the relative percentage error (RPE), 100(p2,λ −
p1,λ)/p1,λ, on a log scale, as a function of λ.

The mean value theorem (Section I.A.2.2.2) implies the existence of an xλ ∈(−λ−1/2, 0
)

such that

�(0)−�
(−λ−1/2

)
0− (−λ−1/2

) = �′ (xλ) = φ (xλ) .

Clearly, xλ ∈
(−λ−1/2, 0

)→ 0 as λ→∞, so that

�(0)−�
(−λ−1/2) = λ−1/2

√
2π

exp

{
−1

2
x2
λ

}
≈ λ−1/2

√
2π

.
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Figure 1.1 The relative percentage error of (1.19) as a function of λ

Combining these results yields

e−λλλ

λ!
≈ λ−1/2

√
2π

,

or, rearranging, λ! ≈ √2πλλ+1/2e−λ. We understand this to mean that, for large λ, λ!
can be accurately approximated by the r.h.s. quantity, which is Stirling’s approximation.

�

� Example 1.10
(a) Let b > 0 be a fixed value and, for any a > 0, let Xa ∼ Gam (a, b) and Ya
= (Xa − a/b) /

√
a/b2. Then, for t < a1/2,

MYa(t) = e−t
√
aMXa

(
b√
a
t

)
= e−t

√
a

(
1

1− a−1/2t

)a
,

or KYa(t) = −t
√
a − a log

(
1− a−1/2t

)
. From (I.A.114),

log (1+ x) =
∞∑
i=1

(−1)i+1 x
i

i
,

so that

log
(
1− a−1/2t

) = − t

a1/2
− t2

2a
− t3

3a3/2
− · · ·

and lima→∞KYa(t) = t2/2. Thus, as a→∞, Ya
d→ N (0, 1), or, for large a, Xa

app∼
N
(
a/b, a/b2

)
. Again, recall the skewness and kurtosis results of Example 1.5.
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(b) Now let Sn ∼ Gam (n, 1) for n ∈ N, so that, for large n, Sn
app∼ N (n, n). The def-

inition of convergence in distribution, and the continuity of the c.d.f. of Sn and that
of its limiting distribution, informally suggest the limiting behaviour of the p.d.f. of
Sn, i.e.,

fSn (s) =
1

� (n)
sn−1 exp (−s) ≈ 1√

2πn
exp

(
− (s − n)2

2n2

)
.

Choosing s = n leads to � (n+ 1) = n! ≈ √2π (n+ 1)n+1/2 exp (−n− 1). From
(I.A.46), limn→∞ (1+ λ/n)n = eλ, so

(n+ 1)n+1/2 = nn+1/2
(

1+ 1

n

)n+1/2

≈ nn+1/2e,

and substituting this into the previous expression for n! yields Stirling’s approximation
n! ≈ √2π nn+1/2 e−n. �

1.1.4 Vector m.g.f.

Analogous to the univariate case, the (joint) m.g.f. of the vector X = (X1, . . . , Xn) is
defined as

MX(t) = E [et′X], t = (t1, . . . , tn) ,

and exists if the expectation is finite on an open rectangle of 0 in Rn, i.e., if there is
a ε > 0 such that E[et′X] is finite for all t such that |ti | < ε for i = 1, . . . , n.

As in the univariate case, if the joint m.g.f. exists, then it characterizes the distri-
bution of X and, thus, all the marginals as well. In particular,

MX((0, . . . , 0, ti , 0, . . . , 0)) = E
[
etiXi

] = MXi
(ti) , i = 1, . . . , n.

Generalizing (1.4) and assuming the validity of exchanging derivative and integral,

∂kMX(t)

∂t
k1
1 ∂t

k2
2 · · · ∂tknn

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
x
k1
1 x

k2
2 · · · xknn exp {t1x1 + t2x2 + · · · + tnxn} fX (x) dx,

so that the integer product moments of X, E
[∏n

i=1 X
ki
i

]
for ki ∈ N, are given by

∂kMX(t)

∂t
k1
1 ∂t

k2
2 · · · ∂tknn

∣∣∣∣∣
t=0

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
x
k1
1 x

k2
2 · · · xknn fX (x) dx1 dx2 · · · dxn (1.20)
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for k =∑n
i=1 ki and such that ki = 0 means that the derivative with respect to ti is

not taken. For example, if X and Y are r.v.s with m.g.f. MX,Y(t1, t2), then

E [XY ] = ∂2MX,Y(t1, t2)

∂t1∂t2

∣∣∣∣
t1=t2=0

and

E
[
X2] = ∂2MX,Y(t1, t2)

∂t21

∣∣∣∣
t1=t2=0

= ∂2MX,Y(t1, 0)

∂t21

∣∣∣∣
t1=0

.

� Example 1.11 (Example I.8.12 cont.) Let fX,Y (x, y) = e−yI(0,∞) (x) I(x,∞) (y) be
the joint density of r.v.s X and Y . The m.g.f. is

MX,Y(t1, t2) =
∫ ∞

0

∫ ∞

x

exp {t1x + t2y − y} dy dx (1.21)

=
∫ ∞

0

1

1− t2
exp {x (t1 + t2 − 1)} dx

= 1

(1− t1 − t2) (1− t2)
, t1 + t2 < 1, t2 < 1, (1.22)

so that MX,Y(t1, 0) = (1− t1)
−1, t1 < 1, and MX,Y(0, t2) = (1− t2)

−2, t2 < 1. From
Example 1.5, this implies that X ∼ Exp (1) and Y ∼ Gam (2, 1). Also,

∂MX,Y(t1, 0)

∂t1

∣∣∣∣
t1=0

= (1− t1)
−2
∣∣
t1=0 = 1,

∂MX,Y(0, t2)

∂t2

∣∣∣∣
t2=0

= 2 (1− t2)
−3
∣∣
t2=0 = 2,

and

∂2MX,Y(t1, t2)

∂t1∂t2
= 3t2 + t1 − 3

(t1 + t2 − 1)3 (t2 − 1)2
,

∂2MX,Y(t1, t2)

∂t1∂t2

∣∣∣∣
t1=t2=0

= 3,

so that E [X] = 1, E [Y ] = 2 and Cov (X, Y ) = E [XY ]− E [X] E [Y ] = 1. �

The following result is due to Sawa (1972, p. 658), , and he used it for evaluating
the moments of an estimator arising in an important class of econometric models; see
also Sawa (1978). Let X1 and X2 be r.v.s such that Pr(X1 > 0) = 1, with joint m.g.f.
MX1,X2(t1, t2) which exists for t1 < ε and |t2| < ε, for ε > 0. Then, if it exists, the
kth-order moment, k ∈ N, of X2/X1 is given by

E

[(
X2

X1

)k]
= 1

� (k)

∫ 0

−∞
(−t1)k−1

[
∂k

∂ tk2
MX1,X2(t1, t2)

]
t2=0

dt1. (1.23)
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To informally verify this, assume we may reverse the order of the expectation with
either the derivative or integral with respect to t1 and t2, so that the r.h.s. of (1.23) is

1

� (k)

∫ 0

−∞
(−t1)k−1

[
∂k

∂ tk2
E
[
et1X1et2X2

]]
t2=0

dt1

= 1

� (k)
E

[ ∂k

∂ tk2
et2X2

]
t2=0

∫ 0

−∞
(−t1)k−1 et1X1 dt1


= 1

� (k)
E

[
Xk

2

∫ ∞

0
uk−1e−uX1 du

]
= E

[(
X2

X1

)k]
.

By working with MX2,X1(t2, t1) instead of MX1,X2(t1, t2), an expression for
E[(X1/X2)

k] immediately results, though in terms of the more natural MX1,X2(t1, t2),
we get the following. Similar to (1.23), letX1 and X2 be r.v.s such that Pr(X2 > 0) = 1,
with joint m.g.f. MX1,X2(t1, t2) which exists for |t1| < ε and t2 > −ε, for ε > 0. Then
the kth-order moment, k ∈ N, of X1/X2 is given by

E

[(
X1

X2

)k]
= 1

� (k)

∫ ∞

0
tk−1
2

[
∂k

∂ tk1
MX1,X2(t1,−t2)

]
t1=0

dt2, (1.24)

if it exists. To confirm this, the r.h.s. of (1.24) is (indulging in complete lack of rigour),

1

� (k)

∫ ∞

0
tk−1
2

[
∂k

∂ tk1
E
[
et1X1e−t2X2

]]
t1=0

dt2

= 1

� (k)
E

[ ∂k

∂ tk1
et1X1

]
t1=0

∫ ∞

0
tk−1
2 e−t2X2 dt2

 = E

[(
X1

X2

)k]
.

Remark: A rigorous derivation of (1.23) and (1.24) is more subtle than it might appear.
A flaw in Sawa’s derivation is noted by Mehta and Swamy (1978), who provide
a more rigorous derivation of this result. However, even the latter authors did not
correctly characterize Sawa’s error, as pointed out by Meng (2005), who provides the
(so far) definitive conditions and derivation of the result for the more general case of
E[Xk

1/X
b
2], k ∈ N, b ∈ R>0, and also references to related results and applications.3

Meng also provides several interesting examples of the utility of working with the joint
m.g.f., including relationships to earlier work by R. A. Fisher. An important use of
(1.24) arises in the study of ratios of quadratic forms.

The inequality

E

[(
X2

X1

)k]
≥ E

[
Xk

2

]
E
[
Xk

1

] (1.25)

is shown in Mullen (1967). �

3 Lange (2003, p. 39) also provides an expression for E[Xk
1/X

b
2 ].
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� Example 1.12 (Example 1.11 cont.) From (1.22) and (1.24),

E

[
X

Y

]
=
∫ ∞

0

[
∂

∂ t1

1

(1− t1 + t2) (1+ t2)

]
t1=0

dt2 =
∫ ∞

0
(1+ t2)

−3 dt2 = 1

2

and

E

[(
X

Y

)2
]
= 2

∫ ∞

0
t2 (1+ t2)

−4 dt2 = 1

3
,

so that V (X/Y ) = 1/12. This is confirmed another way in Problem 2.6. �

1.2 Characteristic functions

Similar to the m.g.f., the characteristic function (c.f.) of r.v. X is defined as E
[
eitX
]
,

where i2 = −1, and is usually denoted as ϕX (t). The c.f. is fundamental to probability
theory and of much greater importance than the m.g.f. Its widespread use in intro-
ductory expositions of probability theory, however, is hampered because its involves
notions from complex analysis, with which not all students are familiar. This is reme-
died to some extent via Section 1.2.1, which provides enough material for the reader
to understand the rest of the chapter. More detailed treatments of c.f.s can be found
in textbooks on advanced probability theory such as Wilks (1963), Billingsley (1995),
Shiryaev (1996), Fristedt and Gray (1997), Gut (2005), or the book by Lukacs (1970),
which is dedicated to the topic.

While it may not be too shocking that complex analysis arises in the theoretical
underpinnings of probability theory, it might come as a surprise that it greatly assists
numerical aspects by giving rise to expressions for real quantities which would other-
wise not have been at all obvious. This, in fact, is true in general in mathematics (see
the quote by Jacques Hadamard at the beginning of this chapter).

1.2.1 Complex numbers

Should I refuse a good dinner simply because I do not understand the process of
digestion? (Oliver Heaviside)

The imaginary unit i is defined to be a number having the property that

i2 = −1. (1.26)

One can use i in calculations as one does any ordinary real number such as 1,−1
or
√

2, so expressions such as 1+ i, i5 or 3− 5i can be interpreted naively. We define
the set of all complex numbers to be C := {a + bi | a, b ∈ R}. If z = a + bi, then
Re(z) := a and Im(z) := b are the real and imaginary parts of z.
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The set of complex numbers is closed under addition and multiplication, i.e., sums
and products of complex numbers are also complex numbers. In particular,

(a + bi)+ (c + di) = (a + c)+ (b + d)i

(a + bi) · (c + di) = (ac − bd)+ (bc + ad)i.

As a special case, note that i3 = −i and i4 = 1. Therefore we have i = i5 = i9 = . . . .
For each complex number z = a + bi, its complex conjugate is defined as z =

a − bi. The product z · z = (a + bi)(a − bi) = a2 − b2i2 = a2 + b2 is always a non-
negative real number. The sum is

z+ z = (a + bi)+ (a − bi) = 2a = 2 Re(z). (1.27)

The absolute value of z, or its (complex) modulus, is defined to be

|z| = |a + bi| = √zz =
√
a2 + b2. (1.28)

Simple calculations show that

|z1z2| = |z1||z2|, |z1 + z2| ≤ |z1| + |z2|, z1z2 = z1 z2, z1, z2 ∈ C. (1.29)

A sequence zn of complex numbers is said to converge to some complex number z ∈ C
iff the sequences Re zn and Im zn converge to Re z and Im z, respectively. Hence, the
series

∑∞
n=1 zn converges if the series

∑∞
n=1 Re zn and

∑∞
n=1 Im zn converge separately.

As in R, define the exponential function by

exp(z) =
∞∑
k=0

zk

k!
, z ∈ C.

It can be shown that, as in R, exp(z1 + z2) = exp(z1) exp(z2) for every z1, z2 ∈ C.
The definitions of the fundamental trigonometric functions in (I.A.28), i.e.,

cos(z) =
∞∑
k=0

(−1)k
z2k

(2k)!
and sin(z) =

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,

also hold for complex numbers. In particular, if z takes the form z = it , where t ∈ R,
then exp(z) can be expressed as

exp(it) =
∞∑
k=0

(it)k

k!
=

∞∑
k=0

iktk

k!
=

∞∑
k=0

(−1)k
t2k

(2k)!
+ i

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!
, (1.30)

i.e., from (I.A.28),

exp(it) = cos(t)+ i sin(t). (1.31)

This relation is of fundamental importance, and is known as the Euler formula.4

4 Named after the prolific Leonhard Euler (1707–1783), though (as often with naming conventions) it was
actually discovered and published years before, in 1714, by Roger Cotes (1682–1716).
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It easily follows from (1.31) that

sin z = eiz − e−iz

2i
and cos z = eiz + e−iz

2
. (1.32)

Also, from (1.31) using t = π , we have cosπ + i sinπ = −1, or eiπ + 1 = 0, which
is a simple but famous equation because it contains five of the most important quantities
in mathematics. Similarly, exp(2πi) = 1, so that, for z ∈ C,

exp(z + 2πi) = exp(z) exp(2πi) = exp(z),

and one says that exp is a 2πi-cyclic function. Lastly, with z = a + ib ∈ C, (1.31)
gives

exp(z) = exp(a − bi) = exp(a) exp(−bi) = exp(a)
[
cos(−b)+ i sin(−b)]

= exp(a)
[
cos(b)− i sin(b)

] = exp(a) exp(ib) = exp(a + ib) = exp(z).

As a shorthand for cos(t)+ i sin(t), one sometimes sees cis(t) := cos(t)+ i sin(t),
i.e., cis(t) = exp(it).

A complex-valued function can also be integrated: the Riemann integral of a complex-
valued function is the sum of the Riemann integrals of its real and imaginary parts.

� Example 1.13 For s ∈ R \ 0, we know that
∫

est dt = s−1est , but what if s ∈ C? Let
s = x + iy, and use (1.31) and the integral results in Example I.A.24 to write∫

e(x+iy)t dt =
∫

ext cos (yt) dt + i

∫
ext sin (yt) dt

= ext

x2 + y2
(x cos (yt)+ y sin (yt))+ i

ext

x2 + y2
(x sin (yt)− y cos (yt)) .

This, however, is the same as s−1est , as can be seen by writing

est

s
= ext (cos (yt)+ i sin (yt))

x + iy

x − iy

x − iy
,

with (x + iy) (x − iy) = x2 + y2 and multiplying out the numerator. Thus,∫
est dt = s−1est , s ∈ C \ 0, (1.33)

a result which will be used below. �

A geometric approach to the complex numbers represents them as vectors in the
plane, with the real term on the horizontal axis and the imaginary term on the vertical
axis. Thus, the sum of two complex numbers can be interpreted as the sum of two
vectors, and the modulus of z ∈ C is the length from 0 to z in the complex plane,
recalling Pythagoras’ theorem. The unit circle is the circle in the complex plane of
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radius 1 centred at 0, and includes all complex numbers of absolute value 1, i.e., such
that |z| = 1; see Figure 1.2(a). If t ∈ R, then the number exp(it) is contained in the
unit circle, because

| exp(it)| =
√

cos2(t)+ sin2(t) = 1, t ∈ R. (1.34)

For example, if z = a + bi ∈ C, a, b ∈ R, then (1.31) implies

exp(z) = exp(a + bi) = exp(a) exp(bi) = exp(a)
[
cos(b)+ i sin(b)

]
,

and from (1.34),

| exp(z)| = | exp(a)|| exp(bi)| = exp(a) = exp(Re(z)). (1.35)

q

cos(q)

i sin(q)

1

i

z

i

z
7
0=1

z
7
1

z
7
2

z
7
3

z
7
4

z
7
5

z
7
6

q = 2p/7

(a) (b)

Figure 1.2 (a) Geometric representation of complex number z = cos(θ)+ i sin(θ) in the complex
plane. (b) Plot of powers of zn = exp(2πi/n) for n = 7, demonstrating that

∑n−1
j=0 z

j
n = 0

From the depiction of z as a vector in the complex plane, polar coordinates can also
be used to represent z when z �= 0. Let r = |z| = √a2 + b2 and define the (complex)
argument, or phase angle, of z, denoted arg(z), to be the angle, say θ (in radians, mea-
sured counterclockwise from the positive real axis, modulo 2π), such that a = r cos (θ)
and b = r sin (θ), i.e., for a �= 0, arg(z) := arctan (b/a). This is shown in Figure 1.2(a)
for r = 1. From (1.31),

z = a + bi = r cos (θ)+ ir sin (θ) = r cis(θ) = reiθ ,

and, as r = |z| and θ = arg(z), we can write

Re (z) = a = |z| cos (arg z) and Im (z) = b = |z| sin (arg z) . (1.36)

Now observe that, if zj = rj exp(iθj ) = rj cis(θj ), then

z1z2 = r1r2 exp (i (θ1 + θ2)) = r1r2 cis (θ1 + θ2) , (1.37)
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so that

arg(z1z2 · · · zn) = arg(z1)+ arg(z2)+ · · · + arg(zn) and arg zn = n arg(z).

The following two examples illustrate very simple results which are used below in
Example 1.25.

� Example 1.14 Let z = 1− ik for some k ∈ R. Set z = reiθ so that r = √1+ k2 and
θ = arctan (−k/1) = − arctan (k). Then, with zm = rmeiθm, |zm| = rm = (1+ k2

)m/2
and arg (zm) = θm = −m arctan (k). �

� Example 1.15 Let z = exp {ia/ (1− ib)} for a, b ∈ R. As

ia

1− ib
= − ab

1+ b2
+ i

a

1+ b2
,

we can write

reiθ = z = exp

(
− ab

1+ b2
+ i

a

1+ b2

)
= exp

(
− ab

1+ b2

)
exp

(
i

a

1+ b2

)
,

for

r = exp

(
− ab

1+ b2

)
and θ = a

1+ b2
modulo 2π.

�

The next example derives a simple but highly useful result which we will require
when working with the discrete Fourier transform.

� Example 1.16 Recall that the length of the unit circle is 2π , and let θ be the phase
angle of the complex number z measured in radians (the arc length of the piece of
the unit circle from 1+ 0i to z in Figure 1.2(a)). Then the quantity zn := exp(2πi/n),
n ∈ N, plotted as a vector, will ‘carve out’ an nth of the unit circle, and, from (1.37), n
equal pieces of the unit circle are obtained by plotting z0

n, z
1
n, . . . , z

n−1
n . This is shown

in Figure 1.2(b) for n = 7. When seen as vectors emanating from the centre, it is
clear that their sum is zero, i.e., for any n ∈ N,

∑n−1
j=0 z

j
n = 0. More generally, for k ∈

{1, . . . , n− 1}, ∑n−1
j=0

(
zkn
)j = 0, and clearly,

∑n−1
j=0

(
z0
n

)j = n. Because znn = 1 = z−nn ,
this can be written as

n−1∑
j=0

(
zkn
)j = { n, if k ∈ nZ := {0, n,−n, 2n,−2n, . . .},

0, if k ∈ Z \ nZ.
(1.38)

The first part of (1.38) is trivial. For the second part, let k ∈ Z \ nZ and
b :=∑n−1

j=0(z
k
n)
j . Note that (zkn)

n = (znn)
k = 1. It follows that

zknb =
n−1∑
j=0

(zkn)
j+1 =

n−1∑
i=1

(zkn)
i + (zkn)

n =
n−1∑
i=0

(zkn)
i = b.

As zkn �= 1 it follows that b = 0. See also Problem 1.23. �
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1.2.2 Laplace transforms

The Laplace transform of a real or complex function g of a real variable is denoted
by L {g}, and defined by

G(s) := L {g} (s) :=
∫ ∞

0
g (t) e−st dt, (1.39)

for all real or complex numbers s, if the integral exists (see below). From the form of
(1.39), there is clearly a relationship between the Laplace transform and the moment
generating function, and indeed, the m.g.f. is sometimes referred to as a two-sided
Laplace transform. We study it here instead of in Section 1.1 above because we allow
s to be complex. The Laplace transform is also related to the Fourier transform, which
is discussed below in Section 1.3 and Problem 1.19.

1.2.2.1 Existence of the Laplace transform

The integral (1.39) exists for Re(s) > α if g is continuous on [0,∞) and g has expo-
nential order α, i.e., ∃α ∈ R, ∃M > 0, ∃ t0 ≥ 0 such that |g(t)| ≤ Meαt for t ≥ t0.5

To see this, let g be of exponential order α and (piecewise) continuous. Then (as g is
bounded on all subintervals on R≥0), ∃M > 0 such that |g (t)| ≤ Meαt for t ≥ 0, and,
with s = x + iy,∫ u

0

∣∣g (t) e−st ∣∣ dt ≤ M

∫ u

0

∣∣e−(s−α)t ∣∣ dt = M

∫ u

0

∣∣e−(x−α)t ∣∣ dt = M

∫ u

0
e−(x−α)t dt,

where the second to last equality follows from (1.35), i.e.,∣∣e−steαt ∣∣ = ∣∣e−xt ∣∣ ∣∣e−iyt ∣∣ ∣∣eαt ∣∣ = ∣∣e−xt ∣∣ ∣∣eαt ∣∣ .
As x = Re (s) > α,

lim
u→∞M

∫ u

0
e−(x−α)t dt = M lim

u→∞
1− e−(x−α)u

x − α
= M

x − α
<∞, (1.40)

showing that, under the stated conditions on g and s, the integral defining L{g}(s)
converges absolutely, and thus exists.

1.2.2.2 Inverse Laplace transform

If G is a function defined on some part of the real line or the complex plane, and there
exists a function g such that L{g}(s) = G(s) then, rather informally, this function g

is referred to as the inverse Laplace transform of G, denoted by L−1 {G}. Such an
inverse Laplace transform need not exist, and if it exists, it will not be unique. If g
is a function of a real variable such that L{g} = G and h is another function which
is almost everywhere identical to g but differs on a finite set (or, more generally, on
a set of measure zero), then, from properties of the Riemann (or Lebesgue) integral,

5 Continuity of g on [0,∞) can be weakened to piecewise continuity on [0,∞). This means that limt↓0 g(t)

exists, and g is continuous on every finite interval (0, b), except at a finite number of points in (0, b) at which g
has a jump discontinuity, i.e., g has a jump discontinuity at x if the limits limt↑x g(t) and limt↓x g(t) are finite,
but differ. Notice that a piecewise continuous function is bounded on every bounded subinterval of [0,∞).
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their Laplace transforms are identical, i.e., L{g} = G = L{h}. So both g and h could
be regarded as versions of L−1{G}. If, however, functions g and h are continuous on
[0,∞), such that L {g} = G = L {h}, then it can be proven that g = h, so in this case,
there is a distinct choice of L−1 {G}. See Beerends et al. (2003, p. 304) for a more
rigorous discussion.

The linearity property of the Riemann integral implies the linearity property of
Laplace transforms, i.e., for constants c1 and c2, and two functions g1 (t) and g2 (t)

with Laplace transforms L {g1} and L {g2}, respectively,

L {c1g1 + c2g2} = c1L {g1} + c2L {g2} . (1.41)

Also, by applying L−1 to both sides of (1.41),

c1g1 (t)+ c2g2 (t) = L−1 {L {c1g1 + c2g2}} = L−1 {c1L {g1} + c2L {g2}} ,
we see that L−1 is also a linear operator. Problem 1.17 proves a variety of further
results involving Laplace transforms.

� Example 1.17 Let g : [0,∞)→ C, t �→ eit . Then its Laplace transform at s ∈ C
with Re(s) > 0 is, from (1.33),

L{g}(s) =
∫ ∞

0
eite−st dt =

∫ ∞

0
et(i−s)dt = et(i−s)

i − s

∣∣∣∣∞
0
= 1

i − s

(
lim
t→∞ e−t(s−i) − 1

)
= 1

s − i
= s + i

(s + i) (s − i)
= s

s2 + 1
+ i

1

s2 + 1
.

Now, (1.31) and (1.41) imply L {g} = L {cos} + iL {sin} or∫ ∞

0
cos (t) e−st dt = s

s2 + 1
,

∫ ∞

0
sin (t) e−st dt = 1

s2 + 1
. (1.42)

Relations (1.42) are derived directly in Example I.A.24. See Example 1.22 for their
use. �

1.2.3 Basic properties of characteristic functions

For the c.f. of r.v. X, using (1.31) and the notation defined in (I.4.31),

ϕX (t) =
∫ ∞

−∞
eitx dFX (x)

=
∫ ∞

−∞
cos (tx) dFX (x)+ i

∫ ∞

−∞
sin (tx) dFX (x)

= E [cos (tX)]+ i E [sin (tX)] .

As

cos (−θ) = cos (θ) and sin (−θ) = − sin (θ) , (1.43)

it follows that

ϕX (−t) = ϕX (t) , (1.44)
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where ϕX is the complex conjugate of ϕX. Also, from (1.27) and (1.44),

ϕX (t)+ ϕX (−t) = 2 Re(ϕX (t)). (1.45)

Contrary to the m.g.f., the c.f. will always exist: from (1.34),

|ϕX (t)| =
∣∣∣∣∫ ∞

−∞
eitx dFX (x)

∣∣∣∣ ≤ ∫ ∞

−∞

∣∣eitx
∣∣ dFX (x) =

∫ ∞

−∞
dFX (x) = 1. (1.46)

Remark: A set of necessary and sufficient conditions for a function to be a c.f. is
given by Bochner’s theorem: A complex-valued function ϕ of a real variable t is a
characteristic function iff (i) ϕ(0) = 1, (ii) ϕ is continuous, and (iii) for any positive
integer n, real values t1, . . . , tn, and complex values ξ1, . . . , ξn, the sum

S =
n∑

j=1

n∑
k=1

ϕ(tj − tk)ξj ξ k ≥ 0, (1.47)

i.e., S is real and nonnegative. (The latter two conditions are equivalent to stating that
f is a nonnegative definite function.) Note that, if ϕX is the c.f. of r.v. X, then, from
(1.28) and (1.29),

S = E

 n∑
j=1

n∑
k=1

[
exp
(
i(tj − tk)X

)]
ξj ξk

 = E

[∣∣∣∑n

j=1
eitjXξj

∣∣∣2] ≥ 0,

which shows that if ϕ is a c.f., then it satisfies (1.47). See also Fristedt and Gray (1997,
p. 227). The proof of the converse is more advanced; for it, and alternative criteria, see
Lukacs (1970, Section 4.2) and Berger (1993, pp. 58–59), and the references therein.

�

The uniqueness theorem, first proven in Lévy (1925), states that, for r.v.s X and Y ,

ϕX = ϕY ⇔ X
d= Y. (1.48)

Proofs can be found in Lukacs (1970, Section 3.1) or Gut (2005, p. 160 and 250).

� Example 1.18 Recall the probability integral transform at the end of Section I.7.3.
If X is a continuous random variable with c.d.f. FX, the c.f. of Y = FX (X) is

φY (s) = E
[
eisFX(X)

] = ∫ ∞

−∞
eisFX(t)fX (t) dt

so that, with u = FX (t) and du = fX (t) dt ,

φY (s) =
∫ 1

0
eisu du = eis − 1

is
,

which is the c.f. of a uniform random variable, implying Y ∼ Unif (0, 1). �


