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PREFACE 

More than thirty-five years ago I was introduced to the subject of this book 
by my friend and teacher Heinz Hopf through his lectures at the Technische 
Hochschule in Zürich. I had expected to take my degree there in applied 
mathematics and mechanics, but Heinz Hopf made such an impression on 
me, and created such an interest for the subject in me, that I wrote my thesis 
in differential geometry in the large on a topic suggested by him. My profes-
sional career afterwards turned in the main to fields concerned with mathe-
matics in relation to problems in mechanics and mathematical physics 
generally. However, differential geometry has continued to fascinate me 
and to cause my thoughts to return again and again to various problems in the 
large—particularly during the rather frequent occasions when I happened to 
be teaching a course on the subject. Unfortunately, my efforts in this direc-
tion have had rather meagre results, so that I feel myself to be an amateur in 
the field. However, I am an amateur in the etymological sense of that word, 
and hope that something of my love for differential geometry will be infec-
tious and will carry over to readers of my book. 

In the introduction which follows this preface I outline the contents of 
the book and indicate the ways in which it differs from others in its attitudes 
and in its selection of material. In brief, it is stated that the book is intended 
for students and readers with a minimum of mathematical training, but still 
has the intention to deal with much that is relatively new in the field, particu-
larly in differential geometry in the large. It also has as one of its purposes 
the introduction and use of three different notations : vector algebra and cal-
culus ; tensor calculus ; and the notation devised by Cartan, which employs 
invariant differential forms as elements in an algebra due to Grassman, com-
bined with an operation called exterior differentiation. 

It is now my pleasant duty to thank a number of my friends and 
colleagues for the help and advice they have given me. Louis Nirenberg and 
Eugene Isaacson used the manuscript in courses, read it in detail, and spent 
much time and effort in making specific corrections as well as suggestions of a 
general character. K. O. Friedrichs also made some use of the manuscript in 
a course, and I benefited from a number of discussions with him about a 
variety of matters of principle and logic which aroused his interest. H. Kar-

vii 



viii PREFACE 

cher gave me a number of valuable suggestions about some parts of Chapter 
VIII, which deals with problems in the large ; his help is acknowledged in 
that chapter at the appropriate places. 

I owe much to Miss Helen Samoraj, who typed the manuscript in several 
versions, uncovered many errors and mistakes, and prodded me from time to 
time to get on with the job. I wish also to thank Carl Bass for drawing the 
figures. 

In 1964 the Guggenheim Foundation gave me a Fellowship; during that 
time this book was finally organized and carried far toward completion in 
some of its major portions. 

Finally, I am very happy to acknowledge the help given to me by the 
Mathematics Branch of the Office of Naval Research. I do this with particu-
lar pleasure because I have felt for years that the Office of Naval Research has 
had a very remarkable and beneficial effect on the progress of science in this 
country. 

JAMES J. STOKER 
Professor of Mathematics 
Courant Institute of 
Mathematical Sciences 
New York University 



INTRODUCTION 

Differential geometry is a subject of basic importance for all mathematicians, 
regardless of their special interests, and it also furnishes essential ideas and 
tools needed by physicists and engineers. But important as these considera-
tions are, the value of the subject, for the author at least, arises rather from 
the great variety and beauty of the material itself, and for the close ties it has 
with important portions of algebra, topology, non-euclidean geometry, analy-
sis generally (in particular with the theory of partial differential equations), 
and in mechanics and the general theory of relativity. Beside all that it 
furnishes a great variety of fascinating unsolved problems of its own that are 
of a particularly challenging nature. 

In writing this book the author had in mind these different points of 
view, and the corresponding classes of potential readers with their various 
interests. The intention, therefore, is not to present a treatise for advanced 
students and specialists, but rather to present an introductory book which 
assumes no more at the outset than a knowledge of linear algebra and of the 
basic elements of analysis—in other words such preparation as an advanced 
undergraduate student of mathematics could be expected to have, and the 
kind of preparation to be expected in the early years of graduate study for the 
other classes of readers indicated above. It turns out, happily, that even 
quite recent and interesting advances in the subject can be dealt with on the 
basis of such relatively scanty foreknowledge. 

Since there are quite a number of books about differential geometry in 
print the author feels it his duty to say in what ways his book differs from 
others in its attitudes and its selection of material. A brief outline of the 
contents of the book, chapter by chapter, is therefore given here. 

Chapter I gives a brief summary of the basic facts and notations of vector 
algebra and calculus that are used in the book. 

Chapter II deals with the theory of regular curves in the plane. Most 
books, if they deal with plane curves at all, consider them as a special case of 
space curves. In this book a relatively long chapter is devoted to them be-
cause they are of great interest in their own right and their theory is not in all 
respects the same as it is for space curves. In addition, it is possible to 
present the theory of plane curves in such a way as to give the basic general 

ix 



X INTRODUCTION 

motivations once for all for the underlying concepts of differential geometry 
so that the concepts can be introduced without much motivation in the more 
complicated cases of space curves and surfaces. Included in Chapter II is a 
discussion of some problems in dififerential geometry in the large. Among 
them is a proof of the Jordan theorem for smooth plane curves having a 
uniquely determined tangent vector. This belongs in differential geometry, 
whereas the theorem for merely continuous curves properly belongs in topo-
logy. The author found no proof in the literature of the Jordan theorem 
including a proof of the fact that the interior domain is simply connected, for 
the simpler case of smooth curves, in spite of the fact that the theorem in this 
form is the most widely used—for example in the integration theory for analy-
tic functions of a complex variable, and in mechanics. 

Chapter III deals with the theory of twisted curves in three space. The 
concepts of arc length sy curvature *, and torsion r are introduced. The 
Frenet equations are derived, and on the basis of the existence and unique-
ness theorems for ordinary differential equations it is shown that the three 
invariants «, #e, and r form a complete set of invariants in the sense that any 
two curves for which these quantities are the same differ at most by a rigid 
motion. Important connections of this theory with the kinematics of rigid 
body motion, and of the motion of a particle under given forces, are discussed. 

Chapter IV deals with the basic elements of the theory of regular sur-
faces in three dimensional space. This revolves to a large extent around the 
two fundamental quadratic differential forms which serve to define the length 
of curves on the surface and the various curvatures that can be defined on it. 
Interesting special curves such as the asymptotic lines and lines of curvature, 
and their properties, are studied. The solution of many problems in differen-
tial geometry (and in other disciplines as well) can often be made very simple 
once an appropriate special system of curvilinear coordinates is introduced. 
The author thought it reasonable to justify such procedures in a number of 
important cases by an appeal to the existence and uniqueness theorems for 
ordinary differential equations. 

Chapter V is concerned with two special classes of surfaces that are very 
interesting in their own right and that also serve to illustrate how the theory 
of Chapter IV can be used. These are the surfaces of revolution and the 
developable surfaces. The old-fashioned classification of the developables 
as cylinders, cones, or tangent surfaces of space curves is given up since this 
classification rules out many valid developables, i.e. many easily defined sur-
faces that are not composed entirely of parabolic points. Instead these sur-
faces are defined as those for which the Gaussian curvature is everywhere 
zero, and various properties of them in the large are treated on this basis. 

Chapter VI treats the fundamental partial differential equations of the 
theory of surfaces in three-space. These come about by expressing the first 
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derivatives of the two tangent vectors of the coordinate curves on the surface, 
and of its unit normal vector, as linear combination? of these vectors them-
selves. These equations are given the names of Gauss and Weingarten. 
They form an over-determined system, i.e. there are many more equations 
than there are dependent functions to be determined. Solutions thus exist 
only when certain compatibility conditions are satisfied, and these conditions 
are equations due to Gauss and to Codazzi and Mainardi. The equation due 
to Gauss embodies what is perhaps the most striking theorem in the whole 
subject : it says that the Gaussian curvature, defined originally for a surface 
in three-space, is really independent of the form of the surface in three-space 
so long as the lengths of all curves on the surface remain unchanged in any 
deformation of it. This theorem gave rise in Gauss's mind to the fruitful 
idea—later on developed in full generality by Riemann—of dealing with 
inner differential geometry, i.e. to geometrical questions that concern only 
geometry in the surface as evidenced by the nature of the length measure-
ments on it. In this kind of geometry all geometric notions arise from the 
functions which, as its coefficients, serve to define the first fundamental form ; 
much of the later portions of the book are concerned with such inner, or in-
trinsic, geometries. In Chapter VI it is shown that a surface exists and is 
uniquely determined within rigid motions once the coefficients of the two 
fundamental forms are given, and if these functions satisfy the compatability 
conditions; this is done by integration of the basic partial differential 
equations. The theorem follows from a basic theorem concerning over-
determined systems (a theorem proved in Appendix B). 

Chapter VII has as its purpose a treatment of inner differential geometry 
of surfaces, but it is done nevertheless by considering the surfaces to lie in 
three-space. In this way an intuitive geometric motivation for the concepts 
of the inner, or intrinsic, geometry of surfaces is made direct and simple. 
The concept chosen as basic for the whole chapter is the beautiful one due to 
Levi-Civita, of the parallel transport of a vector along a given curve on the 
surface. From this the notion of the geodetic curvature, denoted by tcgt of a 
given curve is derived, and the special curves called geodetic lines are defined 
as those for which K9 vanishes. All of these concepts, though derived for 
surfaces in three-space, are seen to belong to the intrinsic geometry of sur-
faces since they make use in the end only of quantities that are completely 
determined by the coefficients of the first fundamental form. Nevertheless 
it is quite interesting to know their relation to surfaces embedded in three-
space. The geodetic lines, though defined initially as those curves along 
which Kg = 0, can also be defined through studying curves of shortest length 
between pairs of points on a surface. This v important problem is treated 
partially in Chapter VII. It is shown that the condition K„ = 0 (which really 
is a second order ordinary differential equation) is in general only a necessary 
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condition in order that a geodetic line should be a curve of shortest length. 
On the other hand it is shown that a small enough neighborhood of any point 
p can always be found such that any point q of it can be joined to p by a 
uniquely determined geodetic line of shortest length, when compared with 
the length of any other curve joining p and q. Since the differential equation 
determining the geodesies is of second order it follows that a uniquely deter-
mined geodesic exists through a given point p in every direction. In fact, a 
certain neighborhood of p is covered simply by these arcs, which can be taken, 
together with their orthogonal trajectories, as a regular parameter system— 
in complete analogy with polar coordinates in the plane or spherical coordin-
ates on the sphere. This is one of those special coordinate systems referred 
to earlier that have the effect of simplifying the solutions of particular prob-
lems. One such problem concerns the surfaces of constant Gaussian curva-
ture Ky which are seen to furnish models for the three classical geometries, i.e. 
the Euclidean for K = 0, the elliptic geometry for K > 0, and the hyperbolic 
or Lobachefsky geometry for K < 0 when the straight lines are defined as 
geodesies in their whole extent. The Lobachefsky geometry is treated in 
some detail. The Gauss-Bonnet formula is derived (in the small) in this 
chapter. This formula relates the integral of the Gaussian curvature over a 
simply connected domain to the integral of the geodetic curvature over the 
boundary curve of the domain. A tool used to accomplish this is also de-
rived ; it is the beautiful result that the integral of the Gaussian curvature 
over a domain is equal to the angle change that results when a vector is 
transported parallel to itself around the boundary of the domain. 

Chapter VIII is probably the chapter that makes the book most different 
from others because it deals with a considerable variety of the fascinating 
theorems of differential geometry in the large, especially for two-dimensional 
manifolds. For this purpose an introduction to the concept of a manifold in 
n dimensions is given intrinsically. This leads to the special case of a Rie-
mannian manifold. Since most of the material of the chapter is then 
specialized to two-dimensional manifolds—in fact in large part to the compact 
two-dimensional manifolds—it was thought reasonable to interpolate a brief 
description of the facts from topology about them that are needed later on. 
Except for the last two sections of the chapter the theorems in the large are 
all concerned with inner differential geometry, thus indicating that this kind 
of geometry is very rich in content. Once abstract surfaces or manifolds 
have been given a metric it is possible to consider them in a natural way as 
metric spaces by defining a distance function in them, and to introduce the 
concept of completeness. This means, roughly speaking, that the manifold 
contains no boundary points at finite distance from any given point ; thus 
this condition is a restriction only for open, or non-compact, manifolds. The 
theorem of Hopf and Rinow, which establishes the equivalence of four differ-
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ent characterizations of completeness, is proved as a by-product of the proof 
of one of the most important single theorems in differential geometry in the 
large, i.e. the theorem that a curve of shortest length exists joining any pair 
of points on a complete manifold, and that this curve is a geodetic line. A 
section is devoted to angle comparison theorems, of rather recent date, for 
geodetic triangles on surfaces. Geodetically convex domains are studied ; in 
particular it is shown that sufficiently small geodetic circles and geodetic tri-
angles are geodetically convex. The Gauss-Bonnet formula is used to prove 
the beautiful theorem that the integral of the Gaussian curvature over the 
area of a two-dimensional compact surface is not only an isometric invariant, 
but is also a topological invariant with a value fixed by the Euler character-
istic. Vector fields on surfaces are considered and an index is assigned to 
their isolated singularities, i.e. to points where the field vector is the zero 
vector. This makes it possible to prove a theorem due to Poincaré, with the 
aid of the theorem on the change of angle resulting by parallel transport of a 
vector around a simple closed curve, that determines the sum of the indices 
in question on a compact surface in terms of its Euler characteristic. The 
theorem on the existence of shortest arcs as geodesies referred to earlier was a 
nonconstructive existence theorem. It is of great interest to approach this 
problem more directly as a two-point boundary value problem for the second 
order ordinary differential equation that characterizes geodetic lines. This 
leads to Jacobi's theory of the second variation and to a sufficient condition, 
based on the notion of a conjugate point, for the existence of the shortest join 
when the comparison curves are restricted to a neighborhood of a geodesic 
joining two points. This theory in turn makes it possible to prove the 
generalization of a famous theorem of Bonnet given by Hopf and Rinow, i.e. 
that a complete two-dimensional surface with Gaussian curvature above a 
certain positive bound is of necessity compact, because it has a diameter that 
can be estimated in terms of the bound on the curvature, and consequently is 
readily seen to be topologically a sphere. (Bonnet assumed the surface to be 
topologically a sphere lying in three-space, and then gave a bound for its 
diameter in terms of the bound on the Gaussian curvature.) The theorem of 
Synge is next dealt with ; this theorem states that a compact manifold with an 
even number of dimensions and with positive Gaussian curvature is simply 
connected. The consideration of problems in intrinsic geometry in the large 
ends with a discussion of covering surfaces of complete two-dimensional sur-
faces with nonpositive Gaussian curvature—they are obtained by expanding 
geodetic polar coordinates over the surface. The final two sections of the 
chapter are concerned with complete surfaces lying in three-dimensional 
space. The first of these deals with Hilbert's famous theorem on the non-
existence in three-space of a complete regular surface with constant negative 
Gaussian curvature. Two proofs of the theorem are given. One of them is 
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a version of Hubert's original proof, but it makes use of the covering surface 
just mentioned above ; the other is a version of a proof due to Holmgren. 
The final section treats a generalization of a theorem due to Hadamard. 
This theorem states that a compact surface in three-space with positive 
Gaussian curvature is the full boundary of a convex body, or, in other words 
it is an ovaloid. Thus local convexity of the surface combined with its 
assumed closure guarantees that no double points or self-intersections can 
occur—in contrast with what can occur for locally convex closed curves in the 
plane. The theorem is generalized to the case of complete surfaces in three-
space, with the result that the open, that is, noncompact, surfaces are the full 
boundary of an unbounded convex body. 

Chapter IX treats the elements of Riemannian geometry on the basis of 
a systematic, though brief, introduction to tensor calculus. The point of 
view of Cartan is taken in doing this. Some applications to problems in the 
large are made, e.g. the extensions of the theorem of Hopf and Rinow, and of 
Synge's theorem, to n-dimensional manifolds are treated. Although it might 
be thought to fall out of the scope of a book on differential geometry to treat 
the general theory of relativity, the author nevertheless thought it good to do 
that. The reason is simply that this application of Riemannian geometry is 
so striking and beautiful, and it lends itself to a not too lengthy treatment, 
on a somewhat intuitive basis, even when the special theory of relativity and 
the relativistic dynamics of particle motion are first explained. 

Chapter X has two purposes in view. One of them is to introduce still 
another notation to those already used. It is a notation due to Cartan which 
applies an algebra introduced by Grassman, and which employs an alternat-
ing product, to elements that are invariant differential forms. (They are 
invariant by virtue of the fact that their coefficients are the components of 
alternating covariant tensors.) In addition, an operation called exterior 
differentiation is introduced. This leads to the construction of new invariant 
differential forms, of higher degree, from any given one. It turns out that 
this notation is particularly effective in dealing with compatibility conditions 
and in converting volume integrals into surface integrals with the use of 
Green's theorem—both of which are basic operations in differential geometry. 
The notation is then applied here to vector differential forms in order to for-
mulate the geometry of two-dimensional surfaces in three-space. The 
compactness of the notation is rather remarkable. In particular, the deriva-
tion of such a basic theorem as that of the isometric invariance of the Gaus-
sian curvature, is very elegant. Minimal surfaces are treated here. 
However, most of the applications treated in this chapter are concerned with 
differential geometry in the large. These include various characterizations 
of the sphere (Ghern's theorem), and three classic theorems concerning the 
uniqueness within motions of closed convex surfaces in three-space. The 
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three theorems prove the uniqueness of the surface when (1) the line element 
is prescribed, or (2) the sum of the principal radii of curvature is prescribed as 
a function of the direction of the surface normal (ChristofFers theorem), or (3) 
the same as (2) but the Gaussian curvature is prescribed (Minkowski's 
theorem). These problems are all solved with the aid of an appropriately 
chosen invariant scalar differential form which results by taking a scalar 
triple product of three vector differential forms that involve vectors from 
both of two examples of the surfaces satisfying the given conditions. 

A number of problems are formulated at the end of the chapters. The 
author tried to invent some new problems to serve as exercises ; it is hoped 
that they will be found interesting and instructive without being too difficult. 

The book has two appendices. Appendix A summarizes the main facts 
and formulas needed from linear algebra in a form suitable for ready reference 
in the book, together with brief discussions of geometry in affine, Euclidean, 
and Minkowskian spaces. Appendix 6 gives brief formulations, without 
proofs, of the basic existence and uniqueness theorems for ordinary differen-
tial equations, and a proof of the existence and uniqueness theorems—of such 
vital importance in differential geometry—for the solutions of over-deter-
mined systems of partial differential equations when appropriate compatibil-
ity conditions are satisfied. 

This outline of the contents of the book should support the earlier state-
ment concerning the author's intentions, i.e. to write (1) a thorough but 
elementary treatment of differential geometry for young students, that (2) 
includes a treatment of a rather large number of problems of differential 
geometry in the large, and that (3) makes a point of introducing and using 
three different notations employing vectors, then tensors, and finally invari-
ant differential forms. In addition, it is hoped that all of these things can be 
done successfully on the basis of a minimum of preparation in other mathe-
matical disciplines. 
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CHAPTER I 

Operations with Vectors 

1 The Vector Notation 

This chapter presents briefly the principal rules for operating with vec-
tors, and a collection of those formulas which are useful in differential 
geometry. No attempt at completeness nor at an axiomatic treatment of 
vector algebra, is made—for that, the student should consult the books about 
linear algebra (e.g., the book of Gelfand [G.2]), however, a summary of those 
parts of linear algebra that are most relevant to differential geometry is in-
cluded as Appendix A of this book. In any case, only vector algebra and the 
elements of vector calculus are needed in the first eight chapters. Later on 
in Chapter IX the tensor calculus, and in Chapter X the notation based on in-
variant forms and their exterior derivatives, will be introduced and applied. 

Vectors are denoted by Latin letters in bold-faced type, usually as capi-
tal letters, except for the case of unit coordinate vectors, which will be de-
noted by small letters. The rectangular components of a given vector, 
which are, of course, scalars, will be represented by the corresponding small 
letter with a subscript: 

(1.1) X = ( Z „ Ä 2 , 4 

It is often convenient to work with the representation in terms of compon-
ents; in general, as (1.1) indicates, the coordinate axes will be denoted by 
xlt x2, z3, as in Fig. 1.1, and they will be chosen so as to form a right-handed 
coordinate system. The components of the vector are also the coordinates 
of its end point, the initial point being the origin. By the length |X|, or 
magnitude, of a vector we mean the length of the straight-line segment from 
the origin to the point with the coordinates xlt x2, x3; thus we have 

(1.2) |X| = Vx* + x\ + x\ 

as the definition for the magnitude of X. 

1 
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( X | . X 2 , X 3 ) 

■ ^ x 2 

X| 

Fig. 1.1 A vector and its component*. 

2. Addition of Vectors 

The characteristic property of vectors that distinguishes them from 
scalars is embodied in the law of addition, which is the familiar parallelogram 
law, as indicated in Fig. 1.2. We write 

(1.3) Z = X + Y = Y + X. 

The order in which the vectors are added is immaterial. Also, the ordinary 
plus sign is used to denote vector addition. It should be stated explicitly 
that vectors can be added in general only when they are attached to the same point. 
(In the kinematics and mechanics of rigid bodies certain special types of vec-
tors are not thus restricted, but that is a very exceptional state of 
affairs.) 

Fig. 1,2 Addition of vectors. 

In a sum of several vectors parentheses may be introduced or taken away 
at will : 

(1.4) X + (Y + Z) = (X + Y) + Z = X + Y + Z. 

In terms of the representation using components, the rule (1.3) reads 
(1.5) Z « (*i + yi, x2 + y29 x3 + y3) = (y1 + xu y2 + *a, y3 + *3)-
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3. Multiplication by Scalars 

Various different sorts of products occur in vector algebra. Consider 
first the product aXof a scalar and a vector ; this means geometrically that 
the length, or magnitude, of X is multiplied by a, but the direction is either 
left unaltered (if a > 0) or reversed (if a < 0). If a = 0, the result is the 
vector zero, which is, however, not printed in bold-faced type since no confu-
sion will result in this exceptional case. In terms of the components of X the 
product aX is given by 

(1.6) aX = (axlt ax2> aXz)-

In this notation the fact that aX is opposite in direction to X for a negative 
is clear. It is also clear that a difference of two vectors is to be interpreted 
as the sum of X and of — 1 times Y, or, as it is also put as the sum of X and of 
the vector obtained by reversing the direction of Y. 

The following rules hold for the product of a scalar and a vector : 

(a + ß)X = aX + ßX, a(X + Y) = aX 4- aY 
(1.7) 

a(ßX) = (aß)X = aßX 

4. Representation of a Vector by Means of Linearly Independent Vectors 

An important fact about vectors in the three-dimensional Euclidean 
space is that any vector V can be expressed in one, and only one, way as a 
linear combination of any three vectors X, Y, Z which do not lie in the same 
plane; that is, uniquely determined scalars a, ß, y exist under these circum-
stances such that 

(1.8) V = aX + ßY + yZ. 

Three vectors X, Y, Z that are not at all in the same plane are said to be 
linearly independent. 

In two dimensions, that is, in the plane, any vector can be expressed as 
a linear combination of any two others which are not in the same straight 
line ; again it is said that the vector is expressed as a linear combination of 
linearly independent vectors. 

5. Scalar Product 

Another kind of product, called a scalar product, involves the multiplica-
tion of two vectors, but in such a manner as to yield a scalar quantity. The 
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notation for this product is X-Y ; it is in fact sometimes called the dot product 
of the vectors. It is defined as follows : 

(1.9) XY = |X| |Y| cos 0, 

in which 6 is the angle, 0 < 6 < TT, between the two vectors, as shown in Fig. 
1.3. It is the product of the lengths of the two vectors and the cosine of the 

o 

Fig. 1.3 The scalar product. 

angle between them. It is also the product of the length of either one of the 
vectors and the length of the projection of the other vector on it. The fol-
lowing rules for operating with this product hold : 

X-Y = YX, 
(1.10) X-(Y + Z) = X-Y + X-Z, 

(«X)-Y = a(X-Y) = aX-Y. 

The special case in which 

(1.11) X-Y = 0 

is quite important ; this equation holds not only if X or Y is zero but also if 
neither X nor Y is the zero vector but the two are orthogonal. We observe 
also that 

(1.12) X-X = |X|2. 

The scalar product of a vector with itself thus gives the square of the magni-
tude of the vector. Sometimes X-X = X2 is written if there is no danger of 
ambiguity. 

Consider an orthogonal right-handed coordinate system with vectors 
Uj, u2, u3 along the coordinate axes, with \ux\ = 1 (i.e., these are so-called 
unit vectors). Any vector can be represented in the form [cf. (1.8)] 

X = z1u1 -r- x2u2 + S3U3. 

In this case the scalars xt are at once seen to be the components of X. Take 
also another vector Y expressed in the same form : 

Y = y1ul + y2u2 + y3u3. 
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The scalar product of the two vectors can be expressed in terms of the com-
ponents xt and y{ simply by using the rules given in (1.10); the result is 

(1.13) X-Y = x1y1 + X&2 + x3y3t 

since 

(i.i4) »,«, = *„ = {?; ]ti 
these last being relations which hold for any system of mutually orthogonal 
unit vectors. The convenient and much used symbol 8ij9 called the Kroneck-
er delta, is introduced in (1.14). A special case furnishes the well-known 
relation for the square of the magnitude of a vector : 

(1.15) XX = |X|2 = x\ + x\ + xl 

6. Vector Product 

Another type of product involving two vectors will be much used. It is 
a product which yields a new vector, and not a scalar, in contrast with the 
above defined scalar product. The vector product of X and Y is a vector Z 
defined as follows (cf. Fig. 1.4) : 

(1.16) X x Y = Z = (|X| |Y| sin 0)u, 

in which u is a unit vector perpendicular to both X and Y and so taken that 
the vectors X, Y, u, in that order, form a right-handed system. It is import-
ant to observe that X x Y = — Y x X , i.e., the vector product is not com-
mutative. Note also that the vector X x (Y x Z) is not in general the 

X 
Fig. 1.4 The vector product. 

same as the vector (X x Y) x Z, since the first is in the plane of Y and Z, the 
second in the plane of X and Y. The following rules involving this product 
can be established with no great difficulty: 

n 1 7 . X x (Y + Z) = X x Y + X x Z, 
[ ' ' («X x Y) = a(X X Y) = aX x Y. 

Note that X x Y furnishes the area, with a certain orientation, of the paral-
lelogram determined by X and Y. In speaking, this product is read "X cross 
Y," and, indeed, it is often referred to as the cross product. 
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As with the scalar product, the special case 
(1.18) X x Y = 0, 
in which the vector product vanishes, is important. It occurs, clearly, if 
either X or Y is the zero vector, hut also if X and Y fall in the same straight 
line, that is, if X and Y are linearly dependent. In particular, it is always 
true that 
(1.19) X x X = 0, 
a formula which comes into play rather often. 

The vector product of two vectors X and Y, when each is represented as 
a linear combination of a set ut of orthogonal unit vectors forming a right-
handed system, is readily calculated. The rules in (1.17) can be used to ob-
tain this product in the form 
(1.20) X x Y = u1(x2y3 - x&2) + n2(x3y1 - xxyz) + uz(x1y2 - x&J, 
when it is observed that ut x ut = 0 and that ut x u, = ± uk, the sign de-
pending upon whether or notj follows i in the order 1—2 — 3 — 1. A use-
ful way to remember the formula (1.20) is to put it in the form 

(1.21) X x Y = 

which, if developed as though it were an ordinary determinant, leads to (1.20). 
The vector product, unlike the scalar product, is not invariant under all 

orthogonal transformations of the coordinates, but rather is seen to change 
sign if the orientation of the coordinate axes is changed. 

7. Scalar Triple Product 

Finally, it is useful to introduce and discuss a special type of product in-
volving three vectors that is defined by the formula (X x Y)*Z. That is, the 
scalar product of Z is taken with the vector product of X and Y ; it is called 
the mixed product, or scalar triple product. As can be read from Fig. 1.5, it 
represents the volume (with a definite sign) of the parallelepiped, with the 
three vectors determining its edges. The sign of the product is positive if 
X, Y, Z, in that order, form a right-handed system of vectors; otherwise the 
sign is negative. 

The following formulas hold: 

(1.22) (X x Y)-Z = (Y x Z)-X « (Z x X)-Y, 
but 

(Y x X)-Z = - (X x Y)-Z. 

« 1 

* 1 

Vi 

« 2 

x2 

V2 

« 3 

* 3 

y3 
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From the second expression in the first line and the fact that X*V = V*X it is 
clear that X*(Y x Z) = (X x Y)\Z, so that dot and cross may be inter-
changed. In fact, there can be no ambiguity in omitting the parentheses 
altogether, since the vector product is defined only for two vectors. Thus 
X-Y x Z must mean X-(Y x Z). 

XxY 

Fig. 1.5 The scalar triple product as a volume. 

A useful fact can now be stated : three vectors are linearly independent 
(and thus span the space) if, and only if, their scalar triple product does not 
vanish. Or, phrased differently, a necessary and sufficient condition that 
three vectors should lie in a plane, and thus be linearly dependent, is that the 
scalar triple product of them should vanish. These and other statements 
about the scalar triple product can be verified by expressing the three vectors 
in terms of a system of orthogonal unit coordinate vectors. It is found 
easily that the triple product is given by the following determinant, the ele-
ments of which are the components of the vectors in a right-handed coordin-
ate system : 

(1.23) X-Y x Z Vi y% y 3 

8. Invariance Under Orthogonal Transformations 

A large part of this book is concerned with the geometry of curves and 
surfaces which are located in the Euclidean plane or in Euclidean three-space. 
It is clear that a property of a curve or surface which is entitled to be called a 
geometrical property must be independent of the special choice of a coordin-
ate system in the space; or, expressed in a different way, such a property 
should be an invariant under orthogonal linear transformations of the co-
ordinates. The vector notation is well suited for the detection of such 
properties, since a vector by definition is such an invariant. The scalar 
product defined above is also an invariant under orthogonal transformations, 
as one could easily check by a calculation, but which is also obvious from its 
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geometrical interpretation. The vector product is an invariant only under 
those orthogonal transformations which preserve the orientation of the axes ; 
it changes sign if the orientation is changed. These facts are again easily 
verified by a calculation, and they are also obvious from the geometrical in-
terpretation of the vector product. The scalar triple product also is an in-
variant only if the orientation of the coordinate axis is preserved. In 
general the geometrical properties of curves and surfaces will be defined in 
terms of vectors, together with the various products of them ; thus the in-
variant character of these properties will be evident. 

I t might be added that the course pursued in this book eventually leads, 
in a quite natural way, through the study of the inner geometry of surfaces, 
to the consideration of geometrical properties that are invariant with respect 
to more general transformations. At that time the introduction of a more 
general notation than the vector notation—the tensor, notation, for example 
—becomes a necessity. 

When dealing with curves and surfaces in Euclidean space it is natural to 
speak of invariance with respect to rigid motions, and this will sometimes be 
done. This notion of invariance is conceptually different from that of in-
variance with respect to transformations of coordinates in the space. By a 
rigid motion is meant a change of position of an object in the space that pre-
serves the distance between each pair of its points. However, as is well 
known (see, for example, Appendix A for a discussion of various matters of 
this kind), such a motion can be described in Euclidean geometry by a map-
ping of the whole space on itself that preserves distances, and this in turn is 
achieved by an appropriate orthogonal transformation. Thus, in the end, 
the two conceptually different notions of invariance both refer to invariance 
with respect to orthogonal transformations : in the one case with respect to a 
linear transformation of the whole space into itself, in the other to a trans-
formation of the coordinate system of the space regarded as fixed. 

9. Vector Calculus 

The vectors dealt with in differential geometry will depend in general 
upon one or more real scalar parameters. This means simply that the com-
ponents xx of the vectors are functions of the parameters. For example, the 
end point of the vector 

X(0 = (x1(t),x2(0,x3(0) 
will in general fill out a segment of a curve in three-dimensional space when 
the parameter t varies, as indicated in Fig. 1.6; evidently this is nothing but 
a short-hand notation which gives the equations of the curve segment in the 
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parametric form x{ = a:4(< ), * = 1, 2, 3. The vector function X(t ) is said to 
be continuous in a < t < ß if the functions xt(t ) are defined and continuous 
over the interval. The vector X(t ) is said to be differentiable if that is true of 
the coordinates xf(t ), and the derivative of it is defined by the expression 

(1.24) dX(t) 
dt = X{i) = (-dt'-dt'lïr 

or, in terms of a ursystem of orthogonal unit coordinate vectors, by 

(1.25) X'(t) = x'^ -h x'2u2 + 4u 3 . 

Fig. 1.6 Space curve given by a vector X(t). 

Later on it will become clear why this definition for the derivative of a vector 
with respect to a scalar parameter is reasonable and appropriate. Here it 
perhaps suffices to notice that the vector X'(f ) is in the direction which it is 
customary to define as the direction of the tangent to the curve represented 
byX(f). ' 

It is easy to verify that the following rules for differentiation of the 
various products hold : 

dt (a(t)X(t)) = aX + aX', 

(1.26) 
J (X-Y) = X'-Y + X-Y', 

7 J ( X x Y ) = X ' x Y + X x Y ' ) at 

J (X-Y) x Z - X'-Y x Z + X-Y' x Z + X-Y x Z'. 

One caution should be given: the order of the factors must be strictly ob-
served whenever the vector product is involved. 
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Integration of a vector with respect to a parameter over the range 
a < t < ß is defined, as might be expected, as follows : 

ß ß ß $ 

(1.27) f X(t) di = ux jxx(t)di + u2 fx2(0 d* + u3 (x3(t) dt. 
a a a a 

Also, if the upper limit is variable so that the process of integration yields a 
vector Y(t) given by 

t 

(1.28) Y(0 = Jx(T)dT, 
a 

it follows immediately from (1.27) that 

(1.29) ^ = ¥'(*) = X(l). 

In other words the analog of the so-called fundamental theorem of the calcu-
lus holds for vectors once the above definitions are given for the derivative 
and the definite integral. 

It is frequently useful to employ an analog of the mean value theorem 
for differentiable scalar functions to a vector function X(t). Consider, for 
example, the difference X(tx) — X(J0), which is given, from (1.5), in terms of 
the components of X(t) by 

X(*2) - X(«o) = (*i(«i) - x1(t0)fx2(tl) - x2(t0),x3(tx) - x3(t0)) 
= W(fi). *&<&). *&<&)) - f t - « . 

The second line is a consequence of the mean value theorem which says that 
xi(*i) — xi(to) — x'i(£iM\ ~" *o) f°r some value f, between t0 and tx. It is 
often convenient to write this expression in the form 

(1.30) X(tx) - X(*o) = X'-(*i - *o), 

with X' a vector having the property 

(1.31) lira X' = X'(*0), 

which holds since the three quantities £, all lie between t0 and tx and the 
derivatives x\(t) are assumed to be continuous. Thus while there is no mean 
value theorem for vector functions in the same sense as there is for scalar 
functions of a real variable, the application of that theorem to the compon-
ents separately leads formally to the relations (1.30) and (1.31) and they can 
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be used in analysis, as will be seen, in much the same fashion as the corres-
ponding formulas are used for scalar functions. The earmark of this pro-
cedure in what follows in this book is the star over a derivative of a vector 
function. 

PROBLEMS 

1. In the equations X-Y = a , X x Y = Z i sY uniquely determined if X 
and a or X and Z are given ? (Impossibility of defining an inverse of these 
multiplications. ) 

2. Give a proof of the rule for differentiating X(t)*Y{t). 
3. It is given that X(t) is differentiable and that \X{t)\ = 1. Show that 

X(t) is orthogonal to X'(t). 
4. Prove that X(t) = A cos t + B sin t represents an ellipse. (A and B 

are linearly independent constant vectors.) 
5. If X = axUi + a2u2 + a3u3 is a unit vector, show that the constants 

a, are the direction cosines of the line containing X which is directed in the 
same sense as X. 

6. Verify the identity of Lagrange : 

(X x Y)-(U x V) = 
X U YU 

X-V YV 

7. It is given that X{t) is differentiable. Show that 

x'(W = *. mzm 
t-*t0

 l — 'o 

by using (1.24). 



CHAPTER II 

Plane Curves 

1. Introduction 

From one point of view this chapter could be regarded as unnecessary, 
since the theory of twisted curves in three-dimensional space is treated in the 
next chapter, and that theory could be specialized for the case of plane curves. 
However, there are a number of good reasons for dealing with plane curves 
separately, quite aside from their specific interest for their own sake. To 
begin with, plane curves are the simplest objects dealt with in differential 
geometry, but for all that their study reveals something of the general atti-
tudes and points of view that prevail in differential geometry, even in surface 
theory. Thus some quite simple developments regarding plane curves fore-
shadow a good many things to be taken up later in which the circumstances 
are more complicated. In addition, there are some specific differences in 
principle worth pointing out with respect to the possible methods of treating 
plane curves as contrasted with those for space curves. 

2. Regular Curves 

Experience has shown that it is useful and reasonable to deal in differen-
tial geometry (and in other disciplines as well, such as the theory of analytic 
functions of a complex variable) with a class of plane curves called regvlar 
curves. A regular curve is defined as the locus of points (cf. Fig. 2.1) traced 
out by the end point of a vector X(t) in an a^a^-plane: 

(2.1) X(0 = (*x(0,*2(0). «<t<ß, 
and such that X(t ) satisfies the following conditions : 

(a) X(t) has continuous second derivatives in the interval a < t < ß9 
and 

(b) X', the derivative of X(/), is nowhere zero. 

12 
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These conditions merit some discussion. First of all, it might be noted 
in connection with the condition (a) that for a good deal of the discussion to 
follow it would be sufficient to require the existence of a continuous first 
derivative. In general in this book the existence of a certain finite number 
of derivatives of the functions employed will be assumed, but the minimum 
number of derivatives needed from case to case will not always be stated. 
On the other hand, it is not desirable to require the functions to be analytic, 
as is commonly done in the older literature. It is necessary to operate care-
fully with the tools of analysis, but it is nevertheless geometry rather than 
analysis that is the subject of this book. 

| / X ( t ) 
k i - X | 

Fig. 2.1 Plane curve defined by a vector. 

The condition (b) is more trenchant than condition (a), and it is import-
ant to understand why such a condition (which at first sight might seem un-
necessarily restrictive) should be imposed. The purpose of the condition— 
as is also the purpose of analogous conditions for curves and surfaces in 
three-dimensional space—is to ensure thai the mapping of the ^interval into the 
xltx2-plane is topological in the small. By a topological mapping of one ob-
ject on another is meant here, as in general in mathematics, that the mapping 
sets up a one-to-one point correspondence that is continuous in both direc-
tions. In Fig. 2.1 the curve shown is not the topological image of a f-inter-
val, since it has a double point, and hence it is not in one-to-one correspond-
ence with that interval. However, in the small (that is, in a sufficiently 
small neighborhood of any point) the mapping is one-to-one if the curve is 
regular, as is now to be shown. Consider two points X(f0), X(^) with 
a < t0,t1 < ß and write 

Xfa) - X(t0) = (x^h) - X i ( * o W i ) - *2('o)) 

= (*'i(fi),*i(£2))-(*i - W , 

the second line being a result of the mean value theorem; i.e., 

*i(to) - *,('i) = *«'(£)(<i - toi to < it < tx. 
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In accordance with some remarks made at the end of the previous chapter, 
the above equation is put in the form 

X(ix) - X(«0) - {tx - f0JX', 
with limtl _» to X' = X'(t0). Since X'(t ) ^ 0 anywhere, and this derivative 
is continuous, it is clear that X(^) ^ X(J0) for tx near to t0 but not equal to it, 

since X' is not the zero vector. In other words, any pair t0, tx of distinct 
points of the ^-interval with \tx — t0\ sufficiently small corresponds always to 
a pair of distinct points in the xl9x2-plane. The mapping is therefore locally 
one-to-one. As a rule in this book, as was stated in the introduction, interest 
is focused, at least initially, on properties of curves and surfaces in the small, 
and consequently a double point such as P in Fig. 2.1 is regarded as two dis-
tinct points, each of which lies on a different curve segment. 

3. Change of Parameters 

It is often convenient to shift from one parameter representation of a 
curve to another. Quite generally, many important results in differential 
geometry can often be made direct and easy to achieve once a special para-
metric representation has been tactfully chosen. 

In the present case, if X(t), a < t < ß, represents a regular curve, the 
introduction of a new parameter T, y < r < 5, is brought about by mapping 
the {-interval in a one-to-one way on a r-interval by a suitable function 
t = 0(T). The locus in the plane is of course assumed not to be changed ; 
i.e., X(t) and X(̂ r(r)) = X(T) are assumed to yield the same point for the 
corresponding values of t and T. A suitable function t = ifß(r) is obtained if 
it is assumed that 

(2.2) *'(T> # 0, 
and in this case the curve will be a regular curve with T as parameter if 0(T) 
has a continuous second derivative. This follows because the condition (2.2) 
means that t is a monotonie function of r ; hence the ^-interval and the r-inter-
val are in one-to-one correspondence. Thus the inverse function T = <f>(t ) 
exists and <f>(t ) would, like «/»(* ), have a continuous second derivative ; hence 
X(0(T)) has a continuous second derivative and is such that 

(2 3) dX ^dXd*p 
dr dip dr 

is not the zero vector since dX/d*p s dXjdt # 0 holds because the curve was 
assumed to be regular with t as parameter. (It is convenient on occasion to 
use the term regular parameter in such cases.) Thus the conditions required 
of X(r) in order that it should represent a regular curve are satisfied. 

In particular, it is always possible to introduce as a local parameter one 
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or the other of the coordinates xlf x2, for the following reasons. Since 
X'(t) ^ 0 holds, it follows that xi(*0) and x'2(t0) cannot both be zero. Suppose 
that xKto) ^ 0. In that case t = t(xx) is defined as a function of xx in a cer-
tain neighborhood of the value X^Q) of xu hence that 

X(xx) = (x1,x2(x1)) 

is a valid representation of the curve with xx as parameter. The curve can 
then be represented in the more usual way, which dispenses with vectors and 
defines the curve points by giving one coordinate as a function of the other : 

(2.4) x2 = x2(xx). 

This also provides, incidentally, another way of seeing that the condition 
X!(t) ^ 0 ensures that the mapping into the x^avplane iß one-to-one in the 
small : the desired mapping is achieved by a one-to-one orthogonal projection 
on the x^axis. 

It is worth pointing out that while the condition (b) is an appropriate 
sufficient condition for regularity of a curve, it may be violated in spite of the 
fact that the curve itself has no points that could reasonably be called singu-
lar from the geometric point of view. For example, the straight line defined 
by 

X( l ) - (M) , 
is a regular curve in the sense of the above definition for — oo < t < oo. 
The vector 

X(*) = (*3,*3) 

clearly yields the same locus of points for — oo < t < oo, but the condition 
X'(t) ^ 0 is violated for t — 0. Evidently, this comes about merely because 
of an inappropriate choice of the parameter representation. On the other 
hand, the curve given by 

X(*) = (*2,*3) 
has what should properly be called a singularity for t = 0 (for reasons that 
will be pointed out later) in the form of a cusp (cf. Fig. 2.2), which is not due 
simply to a bad choice of parameter representation. This is a type of ques-

Fig. 2.2 The. curve X = (t2.t3). 
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tion which is considered only in passing in this book. I t might be added tha t 
such questions, including the classification of types of singularities, can be 
handled in a rather simple and complete way if the curve is assumed to be 
analytic (see Pogorelov [P. 5]). 

4. Invariance Under Changes of Parameter 

I t is clear t ha t a regular curve as defined above is a geometrical object 
which is invariant under transformations of the coordinate axes (for reasons 
discussed in the preceding chapter). In addition, in differential geometry it 
is usually regarded as necessary t ha t a geometrical object should be invariant 
under parameter transformations as well. Here, i t is made a matter of 
definition tha t two curves X(t) and X(T) are regarded as the same if T = </>(t) 
is a transformation of the sort discussed above. However, such an at t i tude, 
which means tha t the plane curves are invariants in this sense under para-
meter transformations, would be quite inappropriate in mechanics, for 
example, since motions of a particle along a given curve in the time t are not 
the same if the curve points are traversed at a different rate, although the 
shape of the trajectory remains the same : different forces are, in fact, required 
if the motions are different, and hence the two "mechanical objects" consist-
ing of a fixed trajectory and a particle traversing it in different ways are 
different. Thus it is interesting and important to point out from time to 
time whether a given ent i ty is, or is not, invariant under parameter trans-
formations. 

5. Tangent Lines and Tangent Vectors of a Curve 

A tangent line a t a point P0 of a regular curve is commonly defined as a 
straight line a t the point t h a t has as its direction the limiting direction of 
chords obtained by joining P0 t o points P of the curve near to it and then 
allowing P to approach P0. Such chords are evidently line segments joining 
the end points of vectors X(*0) and X(t), with t0 and t parameter values corres-
ponding to P 0 and P. The difference quotient [X(t) — X(t0)]l(t — t0), for 
t ^ f0, is evidently a vector in a line through the origin tha t is parallel to the 
chord joining P0 and P (see Fig. 2.3). I t is assumed tha t X(t) is a regular 
curve ; consequently the derivative X'(t ) exists and is given by limt_eo [X(t ) — 
X(t0)]/(t — tQ). I t follows t h a t the vector X'(t) lies in a line parallel to the 
limiting direction of the chords under consideration. The tangent line at 
point P0 is now defined as the straight line through P0 parallel to the direction 
fixed by the derivative X'(tQ) of X(t ). Since X'(* ) ^ 0 holds for regular curves, 
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Fig. 2.3 Tangent, vector of a curve. 

this definition yields a uniquely determined line: in fact, one of the main 
reasons for imposing the condition X'(t) # 0 was to achieve that. 

The tangent line is a regular curve given by the vector equation 

(2.5) T(r) = X(*0) 4- rX'(*0), -oo < r < oo, 

in which (cf. Fig. 2.4) the point of tangency is the point fixed by t = t0, and r 
is the parameter on the tangent line. [Problem 1 at the end of the chapter 
requires a proof that T(r) represents a regular curve.] 

* t ' 

• 

/ / / 
('.N^ 

/ / " ^ v t j t o f r ' O ) 
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X(t0) 

Fig. 2.4 Tangent line of a curve. 

In the differential geometry of curves it is advantageous to define tan-
gent vectors localized at the points of the curves. The derivative X'(t) could 
be, and by some writers is, defined as a tangent vector, but this definition 
would have the disadvantage of placing all of the tangent vectors at the ori-
gin rather than at the appropriate points on the curve. A reasonable way 
out is to use the possibility afforded by Euclidean geometry (but which is not 
available in other geometries to be studied later in this book) of moving 
vectors parallel to themselves. Thus the tangent vector at a point X(f0) of 
the curve is defined as the vector obtained by translating X'(t0) parallel to itself 
to this point. It is then still denoted by X'(t0). It would also be possible to 
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proceed in another way to achieve the same end result by first translating the 
origin of the coordinate system in the plane to a point on the curve and then 
taking the derivative X'(t). It is clear, and in any case easy to show, that 
both procedures would lead to the same tangent vector.1 

It is to be noted that the tangent vector X'(t) is invariant under co-
ordinate transformations but not under parameter transformations, since 
dX/dr = (dX/dt)(dt/dr). However, the notion of a tangent line is seen to be 
independent of the choice of a parameter representation of X(t). 

6. Orientation of a Curve 

The choice of a particular parameter representation fixes a direction of 
travel along the curve, which in turn has a relation to the tangent vector de-
fined above. To study this matter, the vector Y(t) is defined as follows: 

(2.6) Y(0 = X(t) - X(<0) = ( < - t0)X', 

with X' a vector that tends to the derivative X'(t0) ast->t0 (again a deriva-
tive with a * is used). The vector Y is parallel to the secant P0Pt as shown 
in Fig. 2.3. Hence, if \t — t0\ is small enough, Y{t) has nearly the direction 
of the tangent vector X'(J0) if (t — t0) is positive and nearly the opposite 
direction if. (t — tQ) is negative. In other words, X'(t0) points into that half-
plane bounded by a lint normal to X'(t0) in which the curve points lie for t > t0, 
i.e., for increasing values of t. It is thus reasonable to say that the direction 
of the tangent vector fixes the direction of travel along the curve when the 
parameter values increase. If the parameter transformation from t into — t 
is made, it is clear that the direction of X'(t) is reversed; in fact, that is the 
case for any transformation r = r(t) if r is negative, as can be seen from 
(2.3). The orientation of a curve is thus not in general an invariant property 
with respect to all parameter transformations, but only for those that satisfy 
the inequality dt/dr > 0. 

One of the reasons for calling the point t = 0 of the curve X(t ) = (t2, r3), 
— oo<t<oo (see Fig. 2.2) a singular point can now be given. Since t 
changes sign on passing through t = 0, an abrupt reversal in the direction of 
travel takes place, although t changes in a monotonie way. A still better 
reason, perhaps, for calling the point a singularity is that the limiting direc-
tion of chords could be any direction if the chords were to be drawn through 

1 Some stress is put on this matter because it is often a sore point in mechanics, and much 
confusion can arise there because of a failure to recognize that it is only very exception-
ally that vectors can be moved along their lines, and still less parallel to themselves, 
while continuing to represent a given physical entity correctly. 


