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PREFACE

Many parts of classical geometry have developed into great in-
dependent theories. Linear algebra, topology, differential and alge-
braic geometry are the indispensable tools of the mathematician
of our time. It is frequently desirable to devise a course of geometric
nature which is distinct from these great lines of thought and which
can be presented to beginning graduate students or even to ad-
vanced undergraduates. The present book has grown out of lecture
notes for a course of this nature given at New York University
in 1955. This course centered around the foundations of affine geo-~
metry, the geometry of quadratic forms and the structure of the
general linear group. I felt it necessary to enlarge the content of
these notes by including projective and symplectic geometry and
also the structure of the symplectic and orthogonal groups. Lack
of space forced me to exclude unitary geometry and the quadratic
forms of characteristic 2.

I have to thank in the first place my wife who helped greatly
with the preparation of the manuscript and with the proofs. My
thanks go also to George Bachman who with the help of Bernard
Sohmer wrote the notes for the original course, to Larkin Joyner
who drew the figures, and to Susan Hahn for helping with the proof-
reading.

E. ArTIN



SUGGESTIONS FOR THE USE OF THIS BOOK

The most important point to keep in mind is the fact that Chapter
I should be used mainly as a reference chapter for the proofs of
certain isolated algebraic theorems. These proofs have been col-
lected so as not to interrupt the main line of thought in lster chapters.

An inexperienced reader should start right away with Chapter
II. He will be able to understand for quite a while, provided he
knows the definition of a field and the rudiments of group theory.
More knowledge will be required from §8 on and he may then work
his way through the first three paragraphs and the beginning of
§9 of Chapter I. This will enable him to read the rest of Chapter
I1 except for a few harder algebraic theorems which he should
skip in a first reading.

This skipping is another important point. It should be done when-
ever a proof seems too hard or whenever a theorem or a whole para-
graph does not appeal to the reader. In most cases he will be able
to go on and later on he may return to the parts which were skipped.

The rest of the book definitely presupposes a good knowledge
of §4 of Chapter I'. The content of this paragraph is of such a funda-
mental importance for most of modern mathematics that every
effort should be devoted to its mastery. In order to facilitate this,
the content of §4 is illustrated in §5 by the theory of linear equations
and §6 suggests an exercise on which the reader can test his under-
standing of the preceding paragraphs. If he can do this exercise
then he should be well equipped for the remainder of the book.

Chapter III gives the theory of quadratic and of skew symmetric
bilinear forms in a geometric language. For a first reading the sym-
plectic geometry may be disregarded.

Chapter IV is almost independent of the preceding chapters.
If the reader does not find the going too heavy he may start the
book with Chapter IV. But §4 of Chapter I will be needed.

Chapter V connects, so to speak, the ideas of Chapters III and

11t is sufficient to know it for finite dimensional spaces only.
vii



viii SUGGESTIONS FOR USE OF BOOK

and IV. The problems of Chapter IV are investigated for the groups
introduced in Chapter III.

Any one of these chapters contains too much material for an
advanced undergraduate course or seminar. I could make the fol-
lowing suggestions for the content of such courses.

1) The easier parts of Chapter II.

2) The linear algebra of the first five paragraphs of Chapter I
followed by selected topics from Chapter III, either on orthogonal
or on symplectic geometry.

3) The fundamental theorem of projective geometry, followed by
some parts of Chapter IV.

4) Chapter III, but with the following modification:

All that is needed from §4 of Chapter I is the statement:

If W* is the space orthogonal to a subspace W of a non-singular
space V then dim W + dim W* = dim V. This statement could
be obtained from the naive theory of linear equations and the in-
structor could supply a proof of it. Our statement implies then
W** = W and no further reference to §4 of Chapter I is needed.
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CHAPTER 1

Preliminary Notions

1. Notions of set theory

We begin with a list of the customary symbols:

ae S means a is an element of the set S.

SCT means S is a subset of T.

SNT means the intersection of the sets S and 7T'; should
it be empty we call the sets disjoint.

SUrT stands for the union of S and T'.

N; S;and \U; S; stand for intersection and union of a family of
indexed sets. Should 8; and S; be disjoint for ¢ % j we call \U, S; a
disjoint union of sets. Sets are sometimes defined by a symbol {---}
where the elements are enumerated between the parenthesis or by a
symbol {z]|A4} where A is a property required of z; this symbol is read:
“the set of all z with the property A’’. Thus, for example:

SNT = {zlze 8, ze T}.

If f is a map of a non-empty set S into a set T, i.e., a function f(s)
defined for all elements s ¢ S with values in T, then we write either

f:8—>T or SLT.

If S4 T and T -5 U we also write S 5 T % U. If s ¢ S then we
can form g(f(s)) e U and thus obtain a map from S to U denoted by
S % U. Notice that the associative law holds trivially for these
“products” of maps. The order of the two factors gf comes from
the notation f(s) for the image of the elements. Had we written (s)f
instead of f(8), it would have been natural to write fg instead of gf.
Although we will stick (with rare exceptions) to the notation f(s)
the reader should be able to do everything in the reversed notation.
Sometimes it is even convenient to write s’ instead of f(s) and we
should notice that in this notation (s)* = s*’.

1



2 GEOMETRIC ALGEBRA

If S5 T and S, C S then the set of all images of elements of S,
is denoted by f(S,); it is called the image of S, . This can be done
particularly for S itself. Then f(S) C T; should f(S) = T we call
the map onfo and say that f maps S onto 7.

Let T, be a subset of T. The set of all s ¢ S for which f(s) ¢ T, is
called the inverse image of T, and is denoted by f~'(7T,). Notice
that f~'(T,) may very well be empty, even if T, is not empty.
Remember also that f™* is nof a map. By f7'(f) for a certain £ ¢ T
we mean the inverse image of the set {¢} with the one element 2. It
may happen that f™'(f) never contains more than one element.
Then we say that f is a one-to-one info map. If f is onto and one-to-
one into, then we say that f is one-to-one onto, or a ‘‘one-to-one cor-
respondence.” In this case only can f™' be interpreted as a map
T S S and is also one-to-one onto. Notice that f™'f : S — S and
ff~' : T — T and that both maps are identity maps on S respectively
T.

If ¢, ¢ ¢, are elements of T, then the sets f~'(£,) and f~'(¢,) are
disjoint. If s is a given element of S and f(s) = ¢, then s will be in
f7(¢), which shows that S is the disjoint union of all the sets f'(#):

§=\Us"o.

te?T

Some of the sets f~'(f) may be empty. Keep only the non-empty
ones and call S; the set whose elements are these non-empty sets
7 (#). Notice that the elements of S, are ses and not elements of S.
S, 18 called a quotient set and its elements are also called equivalence
classes. Thus, s, and s, are in the same equivalence class if and only
if f(s,) = f(s.). Any given element s lies in precisely one equivalence
class; if f(s) = ¢, then the equivalence class of s is f~(¢).

We construct now a map f, : § — S, by mapping each s ¢ S onto
its equivalence class. Thus, if f(s) = ¢, then f,(s) = f~'(f). This
map is an onto map.

Next we construct a map f,: 8, — f(S) by mapping the non-
empty equivalence class f™'(¢) onto the element ¢ & f(S). If ¢ ¢ £(S),
hence ¢ = f(s), then ¢ is the image of the equivalence class f*(f)
and of no other. This map f, is therefore one-to-one and onto. If
se Sand f(s) = ¢, then f,(8) = f~'(!) and the image of f~(¢) under
the map f, is . Therefore, f.f.(s) = ¢.

Finally we construct a very trivial map f, : f(8) — T by setting
fa(t) = tfor ¢t ¢ f(S). This map should not be called identity since
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it is a map of a subset into a possibly bigger set T. A map of this
kind is called an injection and is of course one-to-one into. For
f(8) =t we had f,f,(s) = ¢t and thus f,f.f,(s) = t. We have
S S, L2 7(S) £ T, so that f5f.f, : S — T'. We see that our original
map f is factored into three maps

f=Ffifafy .

To repeat: f, is onto, f, is & one-to-one correspondence and f, is
one-to-one into. We will call this the canonical factoring of the map f.
The word ““canonical,”’ or also “natural,’”’ is applied in a rather loose
sense to any mathematical construction which is unique in as much
as no free choices of objects are used in it.

As an example, let G and H be groups, and f : G — H a homo-
morphism of G into H, i.e., a map for which f(zy) = f(z)f(y) holds
for all z, y £ G. Setting z = y = 1 (unit of G) we obtain f(1) = 1
(unit in H). Putting y = z~*, we obtain next f(z™*) = (f(z))™*. We
will now describe the canonical factoring of f and must to this effect
first find the quotient set G, . The elements z and y are in the same
equivalence class if and only if f(z) = f(y) or f(zy~*) = 1 or also
fy™*z) = 1; denoting by K the inverse image of 1 this means that
both zy e K and y 'z ¢ K (or z ¢ Ky and z ¢ yK). The two cosets yK
and Ky are therefore the same and the elements z which are equiva-
lent to y form the coset yK. If we take y already in K, hence y in
the equivalence class of 1 we obtain yK = K, so that K is a group.
The equality of left and right cosets implies that K is an invariant
subgroup and our quotient set merely the factor group G/K. The
map f, associates with each z ¢ G the coset zK as image: f,(z) = zK.
The point now is that f, is a homomorphism (onto). Indeed f,(zy) =
zyK = zyK-K = z-Ky-K = zK-yK = fi(z)f:(y).

This map is called the canonical homomorphism of a group onto
its factor group.

The map f, maps zK onto f(z) : f,(zK) = f(z).Since f,(zK .yK) =
Ja(zy-K) = f(zy) = f(2)f(y) = 1:(zK)f:(yK) it is a homomorphism.
Since it is a one-to-one correspondence it is an isomorphism and
yields the statement that the factor group G/K is isomorphic to the
image group f(@). The invariant subgroup K of G is called the kernel
of the map f.

The map f, is just an injection and therefore an isomorphism
into H.
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2. Theorems on vector spaces

We shall assume that the reader is familiar with the notion and
the most elementary properties of a vector space but shall repeat
its definition and discuss some aspects with which he may not
have come into contact.

DerFiniTioN 1.1. A right vector space V over a field k¥ (& need
not be a commutative field) is an additive group together with a
composition Aa of an element A £ V and an element a ¢ k such that
Aa ¢ V and such that the following rules hold:

1) (A + B)a = Aa + Ba, 2) A(a + b) = Aa + Ab,
3) (Aa)b = A(ad), 4) A-1= A4,

where A, Bt V, a, b ek and where 1 is the unit element of k.

In case of a left vector space the composition is written a4 and
similar laws are supposed to hold.

Let V be a right vector space over k and S an arbitrary subset of V.
By a linear combination of elements of S one means a finite sum
Aja, + 4,0, + --- + A,a, of elements A, of S. It is easy to see that
the set (S) of all linear combinations of elements of S forms a subspace
of V and that (S) is the smallest subspace of ¥V which contains S.
If S is the empty set we mean by (S) the smallest subspace of V
which contains S and, since 0 is in any subspace, the space (S)
consists of the zero vector alone. This subspace is also denoted by 0.

We call (S) the space generated (or spanned) by S and say that
8 is a system of generators of (S).

A subset S is called independent if a linear combination
A,a, + 4.0, + --- 4+ A,a, of distinet elements of S is the zero
vector only in the case when all a; = 0. The empty set is therefore
independent.

If S is independent and (S) = V then S is called a basis of V.
This means that every vector of V is a linear combination of distinct
elements of S and that such an expression is unique up to trivial
terms A -0.

If T is independent and L is any system of generators of V then
T can be “completed” to a basis of V by elements of L. This means
that there exists a subset L, of L which is disjoint from T such that
the set T \U L, is a basis of V. The reader certainly knows this
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statement, at least when V is finite dimensional. The proof for the
infinite dimensional case necessitates a transfinite axiom such as
Zorn’s lemma but a reader who is not familiar with it may restrict
all the following considerations to the finite dimensional case.

If V has as basis a finite set S, then the number n of elements of S
(n = 0if Sis empty) depends only on V and is called the dimension
of V. We write n = dim V. This number n is then the maximal
number of independent elements of V' and any independent set T
with n elements is a basis of V. If U is a subspace of V, then dim U <
dim V and the equal sign holds only for U = V.

The fact that V does not have such a finite basis is denoted by
writing dim ¥V = o, A proper subspace U of ¥V may then still have
the dimension «. (One could introduce a more refined definition of
dim V, namely the cardinality of a basis. We shall not use it, however,
and warn the reader that certain statements we are going to make
would not be true with this refined definition of dimension.)

The simplest example of an n-dimensional space is the set of all
n-~tuples of elements of & with the following definitions for sum and
product:

@, 2, ,2) W%, ) =@+, o, 2+ YW,
@ ,22, -+, z)a = (T8, 7,0, -+ - , T,0).

If U and W are subspaces of V (an arbitrary space), then the space
spanned by U \J W is denoted by U + W. Since a linear combination
of elements of U is again an element of U we see that U + W con-
sists of all vectors of the form A 4 B where A ¢ U and B ¢ W. The
two spaces U and W may be of such a nature that an element U 4+ W
is untquely expressed in the form A + B with A ¢ U, B ¢ W. One
sees that this is the case if and only if U N\ W = 0. We say then
that the sum U + W is direct and use the symbol U @ W. Thus
one can write U@ W for U + Wif and only if UN W = 0.

If U,, U,, U, are subspaces and if we can write (U, @ U,) D U,,
then an expression 4; + A, + A; with A; ¢ U, is unique and thus
one can also write U, @ (U, @ U,). We may therefore leave out
the parenthesis: U, @ U, @ U, . An intersection of subspaces is
always a subspace.

Let U now be a subspace of V. We remember that V was an additive
group. This allows us to consider the additive factor group V/U
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whose elements are the cosets A + U. (4 + U for an arbitrary but
Jfized A ¢ V means the set of all vectors of the form A + B, Be U.)
Equality A, + U = A, + U of two cosets means 4, — A, ¢ U,
addition is explained by (4, + U) + (4. + U) = (A, + 4,) + U.
We also have the canonical map

e: VoV/U

which maps A ¢ V onto the coset A + U containing A. The map ¢
is an additive homomorphism of V onto V/U. We make V/U into
a vector space by defining the compasition of an element 4 4+ U of
V/U and an element a & k by:

(A4 U)a= Aa+ U.

One has first to show that this composition is well defined, i.e.,
does not depend on the particular element A of the coset 4 4 U.
ButifA + U= B+ U,thenA — Be U, hence (A — B)ae U which
shows Aa + U = Ba + U. That the formal laws of Definition 1.1
are satisfied is pretty obvious. For the canonical map ¢ we have

da) = Aa+ U = (A + U)a = ¢(4):a

in addition to the fact that ¢ is an additive homomorphism. This
suggests

DrerFiniTioN 1.2. Let V and W be two right vector spaces (W
not necessarily & subspace of V) over k. A map f: V — W is called
a homomorphism of V into W if

1) f(A+B)=f(A)+f(B), AeV and BeV,
P) f(4a) = f(4)-a, AeV and aek.

Should f be a one-to-one correspondence, we call f an isomorphism
of V onto W and we denote the mere existence of such an isomorphism
by V o> W (read: “V isomorphic to W”’).

Notice that such a homomorphism is certainly & homomorphism
of the additive group. The notion of kernel U of f is therefore already
defined, U = f7*(0), the set of all A ¢ V for which f(4) = 0. If
A ¢ U then f(Aa) = f(A)-a = 0 so that Aa ¢ U. This shows that
U is not only a subgroup but even a subspace of V.

Let U be an arbitrary subspace of Vand ¢ : V — V/U the canonical
map. Then it is clear that ¢ is a homomorphism of V onto V/U.
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The zero element of V/U is the image of 0, hence U itself. The kernel
consists of all A ¢ ¥ for which

() =A+U="U.

It is therefore the given subspace U. One should mention the special
case U = 0. Each coset A + U is now the set with the single element
A and may be identified with A. Strictly speaking we have only a
canonical isomorphism V/0 ~ V but we shall write V/0 = V.

Let us return to any homomorphism f : V — W and let U be the
kernel of V. Since f is a homomorphism of the additive groups we
have already the canonical splitting

Vi VUL J(V) W

where f,(4) = 4 + U is the canonical map V — V/U, where
fi(A + U) = f(A) and, therefore,

f((A + Do) = fy(4a + U) = f(4a) = f(A)a = fi(4 + U)a

and where f, is the injection. All three maps are consequently homo-
morphisms between the vector spaces, and f, is an isomorphism
onto. We have, therefore,

TreorEM 1.1. To a given homomorphism f : V — W with kernel
U we can construct a canonical isomorphism f, mapping V/U onto
the tmage space (V).

Suppose now that U and W are given subspaces of V. Let ¢ be
the canonical map V & V/U. The restriction ¢ of ¢ to the given
subspace W is a canonically constructed homomorphism W -% V/U.
What is ¢(W)? It consists of all cosets A + U with A ¢ W. The
union of these cosets forms the space W + U, the cosets A + U
are, therefore, the stratification of W + U by cosets of the subspace
U of W + U. This shows (W) = (U 4+ W)/U. What is the kernel
of y? For all elements 4 ¢ W we have y(4) = ¢(A). But ¢ has, in
V, the kernel U so that ¢ has U M\ W as kernel. To ¢ we can construct
the canonical map ¥, which exhibits the isomorphism of W/(U M W)
with the image (U + W)/U. Since everything was canonical we have

TaeoreM 1.2. If U and W are subspaces of V then (U + W)/U
and W/(U N W) are canonically isomorphic.

In the special case V = U@ W we find that V/U and W/(U N W)
= W/0 = W are canonically isomorphic. Suppose now that
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only the subspace U of V is given. Does there exist a subspace W
such that V = U @ W? Such a subspace shall be called supple-
mentary to U. Let S be a basis of U and complete S toa basis S\U T
of V where S and T are disjoint. Put W = (T), then U + W = V
and obviously V = U @ W. This construction involves choices and
is far from being canonical.

TaEOREM 1.3. To every subspace U of V one can find (in a non-
canonical way) supplemeniary spaces W for which V. = U @ W.
Each of these supplementary subspaces W 1is, however, canonically iso-
morphic to the space V/U. If V = U@ W, = U D W, then W, 1s
canontcally isomorphic lo W, .

If f:V — W is an isomorphism tnfo then the image f(S) of a
basis of V will at least be independent. One concludes the inequality
dim V < dim W. Should f be also onto then equality holds.

In our construction of W we also saw that dim V = dim U +
dim W and since W ~ V/U one obtains

dim V = dim U + dim V/U
hence also, whenever V = U @ W, that
dim V = dim U + dim W.

Let now U, C U, C U, be subspaces of V. Find subspaces W,
and W, such that

U2=U1®Wz; U,=U,@W;
and, therefore,
Ux = Ul @ (Wz @ Wg).

We have d.im U’/Ul = dim Wz ’ dim U;/Ug = dim Wa and
dim U,/U, = dim(W, @ W,) = dim W, + dim W, . Thus we have
proved: if U, C U, C U, , then

(1.1) dim U,/U, = dim U,/U, + dim U,/U, .

Let now U and W be two given subspaces of V. Use (1.1) for
U, =0,U,=U U; = U+ W. We obtain

dim(U + W) = dim U + dim(U + W)/U
= dim U 4 dim W/(U N\ W).
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If we add on both sides dim(U N W) and use dim W/ (UN W) +
dim(U N W) = dim W we get

dim(U + W) + dim(U N\ W) = dim U + dim W.
Next weuse (1.))for U, = UNW, U, =W, U; = V:

dim V/(U N\ W) = dim W/(U N\ W) + dim V/W

= dim (U + W)/U + dim V/W.

If we add dim V/(U + W) and use

dim V/(U + W) + dim (U + W)/U = dim V/U
we obtain
dim V/(U 4+ W) + dim V/(U N W) = dim V/U + dim V/W.

If the dimension of V is finite all subspaces of V have finite dimen-
sion. If, however, dim V = o, then our interest will be concentrated
on two types of subspaces U. Those whose dimension is finite and,
on the other hand, those which are extremely large, namely those
which have a finite dimensional supplement. For spaces of the second
type dim U = « but dim V/U is finite; dim U tells us very little
about U, but dim V/U gives us the amount by which U differs from
the whole space V. We give, therefore, to dim V /U a formal status by

DerinitioN 1.3. The dimension of the space V/U is called the
codimension of U:

codim U = dim V/U.
The various results we have obtained are expressed in

TaHEOREM 1.4. The following rules hold between dimensions and
codimensions of subspaces:

(1.2) dim U + codim U = dim V,
(1.3)  dim(U + W) + dim(U N\ W) = dim U + dim W,
(1.4) codim(U + W) + codim(U N W) = codim U + codim W.

These rules are of little value unless the terms on one side are
finite (then those on the other side are also) since an « could not
be transposed to the other side by subtraction.
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Spaces of dimension one are called lines, of dimension two planes
and spaces of codimension one are called hyperplanes.

3. More detailed structure of homomorphisms

Let V and V' be right vector spaces over a field k and denote by
Hom(V, V') the set of all homomorphisms of V into V’. We shall
make Hom(V, V') into an abelian additive group by defining an
addition:

If f and g are e Hom(V, V'), let f + g be the map which sends
the vector X ¢ V onto the vector f(X) 4+ g(X) of V’; in other words,

(f + (X)) = f(X) + ¢(X).

That f + g is a homomorphism and that the addition is associative
and commutative is easily checked. The map which sends every
vector X ¢ V onto the O vector of V'’ is obviously the O element of
Hom(V, V) and shall also be denoted by 0. If f ¢ Hom(V, V),
then the map — f which sends X onto — (f(X)) is & homomorphism
and indeed f 4 (—f) = 0. The group property is established.

In special situations it is possible to give more structure to
Hom(V, V') and we are going to investigate some of the possibilities.

a) V'=1V.

An element of Hom(V, V) maps V into V; one also calls it an
endomorphism of V. If f, g ¢ Hom(V, V), then it is possible to com-
bine them toa map gf: V -5V -5 V aswe did in §1: gf(X) = g(f(X)).
One sees immediately that gf is also a homomorphism of V — V.

Since

(0 + g2 X) = 9:S(X) + 0f(X) = (g:.f + NEX)

and

gy + f)X) = g(fi(X) + (X)) = gfu(X) + gf«(X)
= (yfl + 0]':)X,

we see that both distributive laws hold; Hom(V, V) now becomes

a ring. This ring bas a unit element, namely the identity map.
The maps f which are a one-to-one correspondence lead to an

inverse map f~' which is also in Hom(V, V). These maps f form
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therefore a group under multiplication. All of Chapter IV is devoted
to the study of this group if dim V is finite.

Let us now investigate some elementary properties of Hom(V, V)
if dim V = n is finite. Let f ¢ Hom(V, V) and let U be the kernel
of f. Then V/U ~ f(V) so that the dimension of the image f(V)
is n — dim U. This shows that f is an onto map if and only if dim
U = 0, ie, if and only if f is an isomorphism into.

Tet A, , 4,, ---, A, be a basis of V and set f(4;) = B, . If
X =Agz, + Az, + --- + A,2,¢ V then

(1.5 f(X) = Byzy + Bszs + -+ + Buza .

Conversely choose any n vectors B; ¢ V and define a map f by (1.5).
One sees easily that f «¢ Hom(V, V) and that f(4;) = B; . Conse-
quently f is completely determined by the images B; of the basis
elements A, and the B; can be any system of n vectors of V. If we
express each B; by the basis 4, ,

f(A[)=B,'= ;A'a'“ j=1’2,o-.,n’
then we see that f is described by an n-by-n matrix (a;;) where ¢ is

the index of the rows and j the index of the columns.
Let g e Hom(V, V) be given by the matrix (b,;) which means that

9(11:) = 'Z:; A.b-i .
Then
( + A = >: Aa.; + b))

and

G = 13 454) = 3 f(4,

=1 r=1

- £(Sam o

- a(Fan)

a=1
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We see that f + g is described by the matrix (a;; + b.;) and fg
by (Z:-, a;,b,;). This is the reason for defining addition and multi-
plication of matrices by

(a:;) + (b)) = (aiy + bsp),
(@) -(bsy) = (g ac-b.i)-

Under this definition of addition and multiplication the corre-
spondence f — (a;;) becomes an isomorphism between Hom(V, V)
and the ring of all n-by-n matrices.

This isomorphism is far from canonical since it depends on the
choice of the basis 4; for V.

Let g be another element of Hom(V, V), but suppose that g is
one-to-one. Let (b;;) be the matrix associated with the element
gfg " of Hom(V, V). The meaning of the matrix (b;;) is that

9fg7'(4;) = Z; 4.b,; .
If we apply ¢~ to this equation it becomes

JGHAD = 3 074 b

Since g~* is any one-to-one onto map of " the vectors g~*(4,) are
another basis of V, and g can be chosen in such a way that g~*(4,)
is any given basis of V. Looking at the equation from this point of
view we see that the matrix (b;,) is the one which would describe f
if we had chosen g™*(4,) as basis of V. Therefore:

The matrix describing f in terms of the new basis is the same as
the one describing gfg™" in terms of the old basis A, . In this state-
ment g was the map which carries the “new basis” g *(4,) into the
old one,

gg7'(4.) = A4, .

This g is, therefore, a fixed map once the new basis is given. Suppose
now that f — A, g — D are the descriptions of f and g in terms of
the original basis. Then gfg~" — DAD™. The attitude should be
that g is fixed, determined by the old and the new basis, and that f
ranges over Hom(V, V). We can state



