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PREFAC E 

Man y part s of classical geometr y have developed into grea t in-
dependen t theories . Linea r  algebra , topology, differentia l and alge-
brai c geometr y are the indispensabl e tools of the mathematicia n 
of our  time. It is frequentl y desirabl e to devise a course of geometri c 
natur e which is distinc t from these grea t lines of though t and which 
can be presente d to beginnin g graduat e student s or  even to ad-
vanced undergraduates . The presen t book has grown out of lectur e 
notes for  a course of this natur e given at New York Universit y 
in 1955. This course centere d aroun d the foundation s of affine geo-
metry , the geometr y of quadrati c forms and the structur e of the 
genera l linear  group . I felt it necessar y to enlarg e the conten t of 
these notes by includin g projectiv e and symplecti c geometr y and 
also the structur e of the symplecti c and orthogona l groups . Lack 
of space forced me to exclude unitar y geometr y and the quadrati c 
forms of characteristi c 2. 

I have to than k in the first  place my wife who helped greatl y 
with the preparatio n of the manuscrip t and with the proofs . My 
thank s go also to George Bachma n who with the help of Bernar d 
Sohmer  wrot e the notes for  the origina l course , to Larki n Joyner 
who drew the figures,  and to Susan Hah n for  helpin g with the proof-
reading . 
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SUGGESTION S FOR THE USE OF THI S BOOK 

The most importan t point to keep in mind is the fact tha t Chapte r 
I should be used mainl y as a referenc e chapte r  for  the proofs of 
certai n isolated algebrai c theorems . These proof s have been col-
lected so as not to interrup t the main line of though t in later  chapters . 

An inexperience d reade r  should star t righ t away with Chapte r 
II . He will be able to understan d for  quit e a while, provide d he 
knows the definition of a field and the rudiment s of group theory . 
More knowledge will be require d from §8 on and he may then work 
his way throug h the first  thre e paragraph s and the beginnin g of 
§9 of Chapte r  I. This will enabl e him to rea d the rest of Chapte r 
II except for  a few harde r  algebrai c theorem s which he should 
skip in a first  reading . 

This skippin g is anothe r  importan t point . It should be done when-
ever  a proof seems too har d or  whenever  a theore m or  a whole para -
grap h does not appea l to the reader . In most cases he will be able 
to go on and later  on he may retur n to the part s which were skipped . 

The rest of the book definitel y presuppose s a good knowledge 
of §4 of Chapte r  I1. The conten t of this paragrap h is of such a funda -
menta l importanc e for  most of moder n mathematic s tha t every 
effort should be devoted to its mastery . In orde r  to facilitat e this , 
the conten t of §4 is illustrate d in §5 by the theor y of linear  equation s 
and §6 suggests an exercise on which the reade r  can test his under -
standin g of the precedin g paragraphs . If he can do this exercise 
then he should be well equippe d for  the remainde r  of the book. 

Chapte r  II I gives the theor y of quadrati c and of skew symmetri c 
bilinear  forms in a geometri c language . For  a first  readin g the sym-
plectic geometr y may be disregarded . 

Chapte r  IV is almost independen t of the precedin g chapters . 
If the reade r  does not find  the going too heavy he may star t the 
book with Chapte r  IV. But §4 of Chapte r  I will be needed . 

Chapte r  V connects , so to speak , the ideas of Chapter s II I and 

*It is sufficient to know it for  finite  dimensiona l spaces only. 
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viii SUGGESTION S FOB USE OF BOOK 

and IV. The problems of Chapter IV are investigated for the groups 
introduced in Chapter III. 

Any one of these chapters contains too much material for an 
advanced undergraduate course or seminar. I could make the fol-
lowing suggestions for the content of such courses. 

1) The easier parts of Chapter II. 
2) The linear algebra of the first five paragraphs of Chapter I 

followed by selected topics from Chapter III, either on orthogonal 
or on symplectic geometry. 

3) The fundamental theorem of projective geometry, followed by 
some parts of Chapter IV. 

4) Chapter III, but with the following modification: 
All tha t is needed from §4 of Chapter I is the statement: 
If W* is the space orthogonal to a subspace W of a non-singular 

space V then dim W + dim W* = dim V. This statement could 
be obtained from the naive theory of linear equations and the in-
structor could supply a proof of it. Our statement implies then 
W** = W and no further reference to §4 of Chapter I is needed. 
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CHAPTER 1 

Preliminar y Notion s 

1. Notions of set theory 

We begin with a list of the customary symbols: 

a z S means a is an element of the set S. 
S C T means S is a subset of T. 
S C\ T means the intersection of the sets S and T; should 

it be empty we call the sets disjoint. 
S U T stands for the union of S and T. 
C\i S4 and \J4 Si stand for intersection and union of a family of 
indexed sets. Should S{ and S,- be disjoint for % ?£ j we call KJ{ S4 a 
disjoint union of sets. Sets are sometimes defined by a symbol {• • •} 
where the elements are enumerated between the parenthesis or by a 
symbol {x\ A} where A is a property required of x; this symbol is read: 
"the set of all z with the property A". Thus, for example: 

s n r = {x\xzS, xtT}. 
If / is a map of a non-empty set S into a set T, i.e., a function /(«) 

defined for all elements 8 z S with values in T, then we write either 

f : S-+T or  S-4 T. 

If S -4 T and T -A U we also write S-^T-Z+U. If szS then we 
can form g(f(s)) z U and thus obtain a map from S to U denoted by 
S **+ U. Notice that the associative law holds trivially for these 
"products" of maps. The order of the two factors gf comes from 
the notation /(s) for the image of the elements. Had we written («)/ 
instead oi /(s), it would have been natural to write fg instead of gf. 
Although we will stick (with rare exceptions) to the notation /(«) 
the reader should be able to do everything in the reversed notation. 
Sometimes it is even convenient to write sf instead of /($) and we 
should notice that in this notation (sfy = s'f. 

1 



2 GEOMETRI C ALGEBR A 

If S -4 T and S0 Q S then the set of all images of element s of S0 
is denote d by f(S0); it is called the image of S0 . This caab e done 
particularl y for  S itself. Then f(S) C T; should f(S) = T we call 
the map onto and say tha t / maps S onto T. 

Let T0 be a subset of T. The set of all s t S for  which f(s) t T0 is 
called the inverse image of T0 and is denote d by f ' 1 ^ ) . Notice 
tha t /_1(!To) may very well be empty , even if T0 is not empty . 
Remembe r  also tha t f~x is not a map . By f~x(t) for  a certai n t t T 
we mean the inverse image of the set [t\ with the one element /. It 
may happe n tha t f~x(t) never  contain s more tha n one element . 
Then we say tha t / is a one-to-one into map . If / is onto and one-to-
one into , then we say tha t / is one-to-on e onto, or  a "one-to-one  cor-
respondence"  In this case only can f~l be interprete d as a map 
T ^> S and is also one-to-on e onto. Notice tha t /"* / : S —> S and 
ff~l :T —>T and tha t both maps are identit y map s on S respectivel y 
T. 

If /i 7* t2 are element s of Ty then the sets f~l(tx) and f~l(t2) ar e 
disjoint . If s is a given element of S and /(s) = /, then a will be in 
S" l{t), which shows tha t S is the disjoin t union of all the sets /~x(/): 

s - uro). 
Some of the sets f~l(t) may be empty . Keep only the non-empt y 
ones and call Sf the set whose element s are these non-empt y sets 
f~l(t). Notice tha t the element s of Sf ar e sets and not element s of S. 
Sf is called a quotien t set and its element s are also called equivalenc e 
classes. Thus , st and s2 are in the same equivalenc e class if and only 
if f(sx) = f(s2). Any given element * lies in precisel y one equivalenc e 
class; if /(«) = t, then the equivalenc e class of s is f~x(t). 

We construc t now a map fY : S —* S, by mappin g each s t S onto 
its equivalenc e class. Thus , if f(s) = /, then ft(s) = f 1 ^ ) . This 
map is an onto map. 

Next we construc t a map f2: Sf —�  f(S) by mappin g the non-
empt y equivalenc e class f~l(t) onto the element / c f(S). If / c /(£), 
hence / = /(«), then t is the image of the equivalenc e class /~l(/) 
and of no other . This map f2 is therefor e one-to-on e and onto. If 
s t S and f(s) = /, then f^s)  = /~x(/) and the image of f1^)  under 
the map f2 is /. Therefore , f2fi(s) = /. 

Finall y we construc t a very trivia l map / 8 : f(S) —�  T by settin g 
/a (0 ?= /for  j e /(S). This map should not be called identit y since 
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it is a map of a subset into a possibly bigger  set T. A map of this 
kind is called an injectio n and is of cours e one-to-on e into. For 
/(«) =* t we had fjx{%) — t and thu s /3/2/1W == *• We have 
S'-^S f'-*+ f(S) ^  T, so tha t / 8 / 2 / i : S -* T. We see tha t our  origina l 
map / is factore d into thre e maps 

/ = MA � 
To repeat : fx is onto, / a is a one-to-on e correspondenc e and J t is 

one-to-on e into . We will call this the canonica l factorin g of the map / . 
The word "canonical,"  or  also "natural"  is applie d in a rathe r  loose 
sense to any mathematica l constructio n which is uniqu e in as much 
as no free choices of object s are used in it. 

As an example , let G and H be groups , and / : G —» H a homo-
morphis m of G into H, i.e., a map for  which f(xy) = f(x)f(y) holds 
for  all x, y z G. Settin g x = y = 1 (unit of G) we obtai n /( l) = 1 
(uni t in H). Puttin g y = x" 1, we obtai n next fix' 1) = (/(*))"* . We 
will now describ e the canonica l factorin g of / and must to this effect 
first  find  the quotien t set Gf . The element s x and y are in the same 
equivalenc e class if and only if f(x) = f(y) or  f(xy~l) — 1 or  also 
/(y-1^ ) — 1; denotin g by K the invers e image of 1 this means tha t 
both xy~l z K and y~lx z K (or  x t Ky and x z yK). The two cosets yK 
and Ky ar e therefor e the same and the element s x which are equiva -
lent to y form the coset yK. If we tak e y alread y in K, hence y in 
the equivalenc e class of 1 we obtai n yK = K, so tha t X is a group . 
The equalit y of left and righ t cosets implies tha t K is an invarian t 
subgrou p and our  quotien t set merely the factor  group G/K. The 
map fx associate s with each x z G the coset xK as image: J x{x) * xK. 
The poin t now is tha t fx is a homomorphis m (onto) . Indee d fx(xy) = 
xyK - xyK-K - x-Ky-K = xK-yK = /i(*)/»fo). 

Thi s map is called the canonical  homomorphis m of a group onto 
its factor  group . 

The map / , maps xK onto f(x) : f*(xK) — /(«). Since ft(xK • yi£) -
f9(xy-K) — /(xy) = f(x)f(y) = /2(x20/2(yK) it is a homomorphism . 
Since it is a one-to-on e correspondenc e it is an isomorphis m and 
yields the statemen t tha t the factor  group G/K is isomorphi c to the 
image grou p f(G). The invarian t subgrou p K of (? is called the kerne l 
of the map / . 

The map / , is jus t an injectio n and therefor e an isomorphis m 
into H. 
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2. Theorems  on vector spaces 

We shall assume that the reader is familiar with the notion and 
the most elementary properties of a vector space but shall repeat 
its definition and discuss some aspects with which he may not 
have come into contact. 

DEFINITION 1.1. A right vector space V over a field k (k need 
not be a commutative field) is an additive group together with a 
composition Aa of an element A t V and an element a tk such that 
Aa t V and such that the following rules hold: 

1) (A +  B)a = Aa +  Ba, 2) A(a +  b) = Aa + Ab} 

3) (Aa)b = A{ab), 4) A-l = A, 
where A, B z V, a,bzk and where 1 is the unit element of k. 

In case of a left vector space the composition is written aA and 
similar laws are supposed to hold. 

Let V be a right vector space over k and S an arbitrary subset of V. 
By a linear combination of elements of S one means a finite sum 
Axai +  A202 +  • • • + Arar of elements A< of S. It is easy to see that 
the set (S) of all linear combinations of elements of S forms a subspace 
of V and that (S) is the smallest subspace of V which contains S. 
If S is the empty set we mean by (S) the smallest subspace of V 
which contains S and, since 0 is in any subspace, the space (S) 
consists of the zero vector alone. This subspace is also denoted by 0. 

We call (&) the space generated (or spanned) by S and say that 
8 is a system of generators of (S). 

A subset S is called independent if a linear combination 
Axat +  A202 + • • • + Arar of distinct elements of S is the zero 
vector only in the case when all a{ = 0. The empty set is therefore 
independent. 

If S is independent and (S) = V then S is called a basis of V. 
This means that every vector of V is a linear combination of distinct 
elements of S and that such an expression is unique up to trivial 
terms A-0. 

If T is independent and L is any system of generators of V then 
T can be "completed" to a basis of V by elements of L. This means 
that there exists a subset L0 of L which is disjoint from T such that 
the set T U L0 is a basis of V. The reader certainly knows this 
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statement , at least when V is finite  dimensional . The proof for  the 
infinit e dimensiona l case necessitate s a transfinit e axiom such as 
Zorn' s lemma but a reade r  who is not familia r  with it may restric t 
all the following consideration s to the finite  dimensiona l case. 

If V has as basis a finite  set S, then the numbe r  n of element s of S 
(n — 0 if S is empty ) depend s only on V and is called the dimensio n 
of V. We writ e n = dim V. This numbe r  n is then the maxima l 
numbe r  of independen t element s of V and any independen t set T 
with n element s is a basis of 7. If U is a subspac e of V, then dim U < 
dim V and the equa l sign holds only for  U = V. 

The fact tha t V does not have such a finite  basis is denote d by 
writin g dim V = « . A prope r  subspac e U of V may then still have 
the dimension ». (One could introduc e a more refined definitio n of 
dim 7, namely the cardinalit y of a basis . We shall not use it, however , 
and warn the reade r  tha t certai n statement s we are going to make 
would not be tru e with this refined definitio n of dimension. ) 

The simplest example of an n-dimensiona l space is the set of all 
n-tuple s of element s of k with the following definition s for  sum and 
product : 

(si , x2 , • • • , aO + (yx , y2 , • • • , yn) = (xx + yx , • • • , xn + yn), 

(xi , x2 , • • • , xja = (xxa, x2a, • • • , xna). 

If U and W are subspace s of V (an arbitrar y space), then the space 
spanne d by U W W is denoted by U + W. Since a linear  combinatio n 
of element s of U is again an element of U we see tha t U + W con-
sists of all vector s of the form A + B wher e A c U and B t W. The 
two spaces U and W may be of such a natur e tha t an element U + W 
is uniquely  expressed in the form A + B with A c U, B t W. One 
sees tha t this is the case if and only if U C\ W = 0. We say then 
tha t the sum U + W is direct and use the symbol U 0 W. Thu s 
one can writ e U 0 W for  17 + W if and only if U C\ W = 0. 

If Ui, Ua, Uz are subspace s and if we can writ e (Ux 0 U2) 0 U2, 
then an expression Ax + A3 + Az with At- c Ui is uniqu e and thu s 
one can also writ e Ux 0 (U2 0 Us). We may therefor e leave out 
the parenthesis : Ux 0 U2 0 Ut . An intersectio n of subspace s is 
always a subspace . 

Let U now be a subspac e of V. We remembe r  tha t V was an additiv e 
group . This allows us to consider  the additiv e factor  grou p V/U 
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whose element s ar e the cosets A + U. (A + U for  an arbitrar y but 
fixed A t V mean s the set of all vector s of the form A + B, B t U.) 
Equalit y Ax + U = A2 + U of two cosets mean s Ax — Aa * U, 
additio n is explaine d by (Ax + U) + (A2 + U) « (Ax + A2) + U. 
We also have the canonica l map 

<p: V->V/V 
which map s A tV onto the coset A + U containin g A. The map (p 
is an additiv e homomorphis m of V onto V/U. We mak e V/U into 
a vector  space by defining the composition of an element A + U of 
V/U and an element a t k by: 

(A + U)-« = Aa+ U. 
One has first  to show tha t this composition is well defined , i.e., 

does not depen d on the particula r  element A of the coset A + U. 
But if A + U - B + U, then A - Bt J7,henc e (A - B)at U which 
shows Aa + U = Ba + U. Tha t the forma l laws of Definition 1.1 
are satisfied is prett y obvious. For  the canonica l map <p we have 

<p(Aa) = Aa+U = (A + U)-a - <p(A)-<* 
in additio n to the fact tha t <p is an additiv e homomorphism . This 
suggests 

DEFINITIO N 1.2. Let V and W be two righ t vector  spaces (W 
not necessaril y a subspac e of V) over  fc. A map / : V —* W is called 
a homomorphis m of 7 into IF if 

1) / ( A + * ) « / ( A ) + /(B), A e F and B e F , 
2) f(Aa) « /(A).a , A e V and a e *. 
Should / be a one-to-on e correspondence , we call / an isomorphis m 

of V onto W and we denot e the mere existence of such an isomorphis m 
by V c* W (read : "V isomorphi c to W"). 

Notice tha t such a homomorphis m is certainl y a homomorphis m 
of the additiv e group . The notion of kerne l U of / is therefor e alread y 
defined , U - T l(0), the set of all A t V for  which /(A) - 0. If 
AtU then /(Aa) - f(A)-a = 0 so tha t Aa e £7. This shows tha t 
U is not only a subgrou p but even a subspac e of V. 

Let U be an arbitrar y subspac e of V and <p:V—*V/U the canonica l 
map . Then it is clear  tha t <p is a homomorphis m of V onto F/17. 
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The zero element of V/U is the image of 0, hence U itself. The kerne l 
consists of all A t V for  which 

<p(A) = A + U =U. 
It is therefor e the given subspac e U. One should mentio n the special 
case U = 0. Each coset A + U is now the set with the single element 
A and may be identifie d with A. Strictl y speakin g we have only a 
canonica l isomorphis m V/0 £^  V bu t we shall writ e V/0 = V. 

Let us retur n to any homomorphis m / : V —* W and let U be the 
kerne l of V. Since / is a homomorphis m of the additiv e group s we 
have alread y the canonica l splittin g 

V!±>V/U^f(V)'-*W 
where fx(A)**A + U is the canonica l map V —> V/U, where 
/a(A + U) = f(A) and , therefore , 

/,((A + U)a) - /a(Aa + C7) - /(Aa) - /(A)o = /,(A + I7)a 
and where fs is the injection . All thre e maps ar e consequentl y homo-
morphism s between the vector  spaces, and f2 is an isomorphis m 
onto. We have, therefore , 

THEORE M 1.1. To a given homomorphism  f :V —* W with kernel 
U we can  construct  a canonical  isomorphism f2 mapping  V/U onto 
the image space f(V). 

Suppose now tha t U and W ar e given subspace s of V. Let <p be 
the canonica l map V •*�  V/U. The restrictio n yp of <p to the given 
subspac e W is a canonicall y constructe d homomorphis m W ~*+V/U. 
Wha t is i/(W)t It consists of all cosets A + U with A c TT. The 
union of these cosets form s the space W + U, the cosets A + U 
are , therefore , the stratificatio n of W + 17 by cosets of the subspac e 
17 of W + U. This shows $(W) = (Z7 + TF)/*7. Wha t is the kerne l 
of ^? For  all element s A tW we have ^(A) = *>(A). But ?̂ has, in 
V, the kerne l U so tha t ̂  has U A TT as kernel . To ^  we can construc t 
the canonica l map $2 which exhibit s the isomorphis m of W/(U H TT) 
with the image (U + W)/U. Since everythin g was canonica l we have 

THEORE M 1.2. IfUandW are  subspaces  of V then  {U + W)/U 
and  W/(U A W) are  canonically  isomorphic. 

In the special case V *= 170 TFwe find  tha t V/U&ndW/(Uri W) 
� » W/0 ^  W are  canonicall y isomorphic . Suppos e now tha t 
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only the subspac e U of V is given. Does ther e exist a subspac e W 
such tha t V = U 0 IP? Such a subspac e shall be called supple -
mentar y to U. Let S be a basis of U and complet e S to a basis S\J  T 
of 7 where S and T are disjoint . Put W = <T>, then U +W = V 
and obviously 7 = {/ 0 PP. This constructio n involves choices and 
is far  from being canonical . 

THEORE M 1.3. To every subspace  U of V one can  find (in a non-
canonical  way) supplementary  spaces W for which V = U 0 W. 
Each  of these supplementary subspaces  W is, however, canonically  iso-
morphic  to the space V/U. If V = U 0 Wx = U 0 W2 then  Wt is 
canonically  isomorphic  to W2. 

If / : V —�  W is an isomorphis m into then the image f(S) of a 
basis of V will at least be independent . One conclude s the inequalit y 
dim V < dim W. Should / be also onto then equalit y holds. 

In our  constructio n of W we also saw tha t dim V = dim U + 
dim W and since W~V/U one obtain s 

dim V = dim U + dim V/U 
hence also, whenever  V = U 0 W, tha t 

dim V = dim U + dim W. 

Let now Ux C U2 C Uz be subspace s of V. Find subspace s W2 
and TT3 such tha t 

u2 =  ux®w2} u* =  u2@ wz 
and , therefore , 

tfa= ^i0(TTa0TTa). 

We have dim U2/Ux - dim IF, , dim t78/tf2 - dim Wz and 
dim E/,/17! = dim(TT 2 0 Wz) = dim W2 + dim TF3. Thu s we have 
proved : if Ux C U2 C *78 , then 

(1.1) dim tfs/E/i  - dim U2/Ux + dim Uz/U2 . 

Let now E7"  and W be two given subspace s of V. Use (1.1) for 
Ux - 0, tfa - tf, tf 3 - J7 + TF. We obtai n 

dim(C7 + W) - dim tf + dim(J 7 + JP)/E 7 
- dim tf + dim TT/(t f H W). 
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If we add on both sides dim(*7 H W) and use dim W/(U H W) + 
dim(C7 C\ W) = dim W we get 

dim(J 7 + W) + dim(C7 H TF) = dim £7 + dim W. 

Next we use (1.1) for  ^  = U r\W, Ut *- W, U9 = V: 

dim V/(U n TT) = dim TF/(C/ H W) + dim 7/TP 

= dim (U + W)/U + dim V/W. 

If we add dim V/(U + W) and use 

dim V/(U + TF) + dim (U + W)/U = dim V/U 

we obtai n 

dim V/(U + W) + dim 7/(C7 H IF) = dim V/U + dim F/TT. 

If the dimensio n of V is finite  all subspace s of V have finite  dimen-
sion. If, however , dim V = «>, then our  interes t will be concentrate d 
on two types of subspace s U. Those whose dimensio n is finite  and , 
on the other  hand , those which are extremel y large , namely those 
which have a finite  dimensiona l supplement . For  spaces of the second 
type dim U = » but dim V/U is finite;  dim U tells us very little 
abou t U, but dim V/U gives us the amoun t by which U differs from 
the whole space V. We give, therefore , to dim V/U a, forma l statu s by 

DEFINITIO N 1.3. The dimension of the space V/U is called the 
codimensio n of U: 

codim U = dim V/U. 

The variou s result s we have obtaine d ar e expressed in 

THEORE M 1.4. The following rules  hold between dimensions  and 
codimensions  of subspaces: 

(1.2) dim U + codim U - dim V, 
(1.3) dun(U +W)+ dim(U H W) - dim U + dim W, 
(1.4) codim(£7 + W) + codim([7 H W) = codim U + codim W. 

These rule s ar e of little value unless the term s on one side are 
finite  (then those on the other  side ar e also) since an « could not 
be transpose d to the other  side by subtraction . 
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Spaces of dimensio n one ar e called lines, of dimension two plane s 
and spaces of codimensio n one are called hyperplanes . 

3. More detailed structure  of homomorphisms 

Let 7 and 7'  be righ t vector  spaces over  a field k and denot e by 
Hom(7 , 7' ) the set of all homomorphism s of 7 into 7' . We shall 
mak e Hom(7 , 7' ) into an abelia n additiv e group by defining an 
addition : 

If / and g ar e z Hom(7 , 7') , let / + g be the map which sends 
the vector  X zV onto th e vector  f(X) + g(X) of 7' ; in other  words , 

(/ + g)(X) - f(X) + g(X). 
Tha t / + g is a homomorphis m and tha t the additio n is associativ e 

and commutativ e is easily checked . The map which sends every 
vector  X z 7 onto the 0 vector  of 7'  is obviously the 0 element of 
Hom(7 , 7' ) and shal l also be denote d by 0. If / c Hom(7 , 70 , 
then the map —/ which sends X onto — (J(X)) is a homomorphis m 
and indeed / + (—/) = 0. The group propert y is established . 

In special situation s it is possible to give more structur e to 
Hom(7 , V) and we ar e going to investigat e some of the possibilities . 

a) V - 7. 

An element of Hom(7 , 7) map s 7 into 7; one also calls it an 
endomorphis m of 7. If / , g z Hom(7 , 7), then it is possible to com-
bine them to a map gf: V -47-^7aswedidin§l:^/(X ) � �  g(f(X)). 
One sees immediatel y tha t gf is also a homomorphis m of 7 —» 7. 

Since 

(<fc + 9*)fVQ - gJ(X) + 9tf(X) - (gj + fc/)(X) 
and 

<K/t + MX) - g(fi(X) + MX)) - gU(X) + gf*(X) 

- (fffi + fff*)X> 
we see tha t both distributiv e laws hold; Hom(7 , 7) now becomes 
a ring . This ring has a uni t element , namel y the identit y map . 

The maps / which ar e a one-to-on e correspondenc e lead to an 
invers e map /" * which is also in Hom(7 , 7). These map s / form 
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therefor e a group under  multiplication . All of Chapte r  IV is devoted 
to the stud y of this group if dim V is finite. 

Let us now investigat e some elementar y propertie s of Hom(F , V) 
if dim V = n is finite.  Let / t Hom(V, V) and let U be the kerne l 
of / . Then V/U c* f(V) so tha t the dimensio n of the image f(V) 
is n — dim U. This shows tha t / is an onto map if and only if dim 
[7 = 0, i.e., if and only if / is an isomorphis m into . 

Let At , A9 , • • • , An be a basis of V and set f(A4) = B< . If 
X = AiXx + A&2 + • • • + Anxn t V then 

(1.5) f(X) = BlXl + B&* + • • • + B^ . 

Conversel y choose any n vector s B<e7 and define a map / by (1.5). 
One sees easily tha t / t Hom(V, TO and tha t f(A4) — B4 . Conse-
quentl y / is completel y determine d by the images 2?< of the basis 
element s A{ and the B< can be any system of n vector s of V. If we 
expres s each B< by the basis A9, 

n 

f(At) » Bi = £ 4 ,a„ , j = 1, 2, • • • , n, 
r - l 

then we see tha t / is describe d by an n-by-n matri x (a<,) wher e i is 
the index of the rows and j the index of the columns . 

Let g t Hom(V, V) be given by the matri x (b4i) which mean s tha t 
n 

r—1 

if + g)U,) = E .̂(a „ + M 
r - l 

(/<7)(̂ ) = fit, A.,b„) = £ /(A,)&„ 
\ r - l / r - l 

- Z ( Z il^Jtr / 
r - l \ * - l / 

, - 1 \ r - l / 

Then 

and 
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We see tha t / + g is describe d by the matri x (ati + bif) and fg 
by (£*-i «< A/) . This is the reason for  defining additio n and multi -
plicatio n of matrice s by 

(an)  + (M = (aif + b{i), 

Under  this definitio n of additio n and multiplicatio n the corre -
spondenc e / —�  (an)  becomes an isomorphis m between Hom(V, V) 
and the ring of all n-by-n matrices . 

This isomorphis m is far  from canonica l since it depend s on the 
choice of the basis A{ for  V. 

Let g be anothe r  element of Hom(F , V)f but suppos e tha t g is 
onerto-one . Let (6^) be the matri x associate d with the element 
gfg' 1 of Hom(F , V). The meanin g of the matri x (&<,) is tha t 

gffKAi) - t, AJ>,< • 
» - l 

If we appl y g~l to this equatio n it becomes 

r - 1 

Since g~l is any one-to-on e onto map of Jr  the vector s g~l(A9) are 
anothe r  basis of V, and g can be chosen in such a way tha t g~l(A,) 
is any given basis of V. Looking at the equatio n from this point of 
view we see tha t the matri x (b{i) is the one which would describ e / 
if we had chosen flf" x(A,) as basis of V. Therefore : 

The matri x describin g / in term s of the new basis is the same as 
the one describin g gfg' 1 in term s of the old basis A, . In thi s state -
ment g was the map which carrie s the "ne w basis' '  g' l(Av) into the 
old one, 

g(g-\A9)) - A. . 

This g is, therefore , a fixed map once the new basis is given. Suppose 
now tha t / —�  A, g —> D are the description s of / and g in term s of 
the origina l basis . Then gfg' 1 —�  DAD'1. The attitud e should be 
tha t g is fixed, determine d by the old and the new basis , and tha t / 
range s over  Hom(F , V). We can stat e 


