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PREFACE 

After having taught the subject of integral equations for a number of years I 
concluded that most potential texts are either too abstract, too old-fashioned, 
or too specialized. The classical techniques yield rather precise information 
regarding solvability of equations and existence and distribution of eigen-
values, but often require rather tedious and wearisome analysis. The functional 
analytic techniques yield certain kinds of results quite expeditiously, but 
often do not lead to the quantitative results provided by the classical tech-
niques. The aim of this book is to compromise between these approaches 
to develop the most desirable features of each. The functional analytic 
approach can be developed in a Banach space setting, but to keep the 
treatment on a simpler level I have decided to restrict myself to Hubert 
spaces. 

Chapter 1 provides a heuristic discussion of integral equations based on 
finite difference approximations. It is assumed that the reader has some 
background in linear algebra, but the more specialized results of that subject 
that are needed later are developed here. There is also a discussion of the 
necessary background of Hubert space theory. 

Chapter 2 develops some elementary techniques, in particular the con-
traction mapping principle and its applications to integral equations. 

Chapter 3 develops the theory of compact operators, which is then used to 
discuss a broad class of integral equations. Another long section is devoted 
to ordinary differential operators and their study via compact integral 
operators. The Fredholm alternative is discussed fully. 

In Chapter 4 some applications of these techniques to boundary value 
problems in more than one dimension are discussed. 

Chapter 5 is devoted to a complete treatment of numerous transform 
techniques. The Fourier transform is developed and used to develop the 
Laplace, Mellin, and Hankel transforms. Subsequently, the projection 
method is discussed and applied to Wiener-Hopf problems and to certain 
mixed boundary value problems. Some of the ad hoc methods for these 
problems are more direct than the method presented here. It is my feeling, 
however, that it is most desirable to discuss these problems in the framework 
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of a unified and consistent theory. All too often the student is left with the 
idea that such problems are solved by tricks rather than within the framework 
of a consistent theory. 

Chapter 6 develops the classical Fredholm technique to obtain a number 
of results that the functional analytic techniques do not yield. Integral 
operators with positive kernels are also discussed. 

Chapter 7 is a distinct departure from the preceding chapters. Almost all 
the earlier chapters are devoted to linear integral equations. The theory of 
nonlinear equations is not nearly as well developed as the linear theory. 
Here the Sehauder fixed-point theorem is presented and applied to a number 
of nonlinear equations. A complete proof of the Sehauder theorem is given, 
based on the Brouwer fixed-point theorem. The latter is proved by analytic 
rather than topological methods. 

Without a doubt there are many topics that might well have been included 
with profit. Notable examples can be cited of such omissions. One of the 
most powerful and beautiful applications of the Fredholm alternative can 
be found in potential theory. Chapter 3 could well have been enriched by the 
inclusion of this topic. Because this topic is so tempting to an author, I 
decided to exclude it; it can be found in many other works on integral 
equations. Systems of integral equations, generalizations from Hubert to 
Banach spaces, more general Wiener-Hopf equations, all could have been 
presented. No book can pretend to be complete and exhaustive. Every 
author has to decide at what point he is willing to stop for economic and 
pedagogical reasons. Experience has shown that the following material 
can be covered in a one-year course. Hopefully, the mixture is such that 
both applied scientists and mathematicians, to whom I intended to address 
myself, will find this material useful and interesting for its own sake. 

HARRY HOCHSTADT 

Department of Mathematics, 
Polytechnic Institute of Brooklyn, New York 
January 1973 
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1 
GENERAL 
INTRODUCTION 

SUMMARY 

This chapter is devoted to a discussion of some of the broad classes of integral 
equations to be discussed in more detail in later chapters. By means of examples 
and finite difference approximations, some motivation will be given for the differ-
ences in theory and methodology underlying these classifications and their investi-
gation. 

The necessary background in linear algebra will be sketched and some aspects of 
Hubert space theory will be presented. Subsequently, we will view all integral 
operators to be discussed as operators acting on suitable Hubert spaces. 

1. INTRODUCTION 

The theory of integral equations has close contacts with many different areas 
of mathematics. Foremost among these are differential equations and operator 
theory. Many problems in the fields of ordinary and partial differential 
equations can be recast as integral equations. Many existence and uniqueness 
results can then be derived from the corresponding results from integral 
equations. 

Many problems of mathematical physics can be stated in the form of 
integral equations. Some of these will be discussed as examples and treated 
explicitly. To make a list of such applications would be almost impossible. 
Suffice it to say that there is almost no area of applied mathematics and 
mathematical physics where integral equations do not play a role. 

In many ways one can view the subject of integral equations as an extension 
of linear algebra and a precursor of modern functional analysis. Especially 
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2 GENERAL INTRODUCTION 

in dealing with linear integral equations the fundamental concepts of linear 
vector spaces, eigenvalues and eigenfunctions will play a significant role. 

There are a number of classifications of linear integral equations that 
distinguish different kinds of equations. The following are the most frequently 
studied. 

bK(x,y)4iy)dy=f(x), (1) f 
Ja 

φ(χ) - λ ί"κ(χ, y^(y) dy = f(x), (2) 
Ja 

α(χ)φ(χ) - λ \Κ(χ, y)<f>{y) dy = f(x). (3) 
Ja 

The above equations (l)-(3) are generally known as Fredholm equations 
of the first, second, and third kind, respectively. The interval (a, b) may in 
general be a finite interval or (— oo, b], [a, oo), or (— oo, oo), where a and b 
are finite. If a(x) does not vanish one can divide (3) by a{x) to reduce it to (2). 
The functions/(x), a(x), and K(x, y) are presumably known functions and 
the function φ(χ) is unknown. The parameter λ could be absorbed in the 
function K(x, y), but it is convenient to retain it in the equation. Its role will 
become clearer when the operators in question will be studied. The function 
K(x, y) is generally known as the kernel of the equation. 

A second class of equations are the Volterra equations of the first, second, 
and third kind, namely r 

Ja 

K{x,yrt(y)dy=f{x), (4) 

φ(χ) - λ \XK(x, y^y) dy = /(x) , (5) 
Ja 

α(χ)φ(χ) - λ Γκ(χ, ν)φ(ν) dy = f{x). (6) 
Ja 

One can view these as special cases of Fredholm equations. The latter reduce 
to the corresponding Volterra equations if K(x, y) = Oforj/ > x. Nevertheless 
Volterra equations have many interesting properties that do not emerge from 
the general theory of Fredholm equations so that a separate study is definitely 
warranted. 

Equations (l)-(6) have one thing in common; they are all linear equations. 
That is, the function φ enters the equations in a linear manner so that 

! 

b 

K(x, y)[c^{y) + c^2(y)] dy 

= ct K(x, 2/)<¿i(2/) dy + cA K(x, i/)<£2(2/) dy. 
Ja Ja 



2. EXAMPLES 3 

If the integral were replaced by the more general 

κ(χ, y, <f>(y)) dy f 
Ja one would call the equation nonlinear. Typical examples of such operators are 

Í 
\bK{x,y)<t>\y)dy, 

Ja 

K{x, y) sin φ{ν) dy. 

2. EXAMPLES 
Consider the Volterra equation 

Jo 
By differentiation, the above can be reduced to a first order differential 
equation 

φ'(χ)-λχφ{χ)=/'(χ), 
and from (7) we obtain the initial value 

φ(0)=/(0). 
One can solve this equation by standard methods of differential equations 
to obtain 

- I I « ) φ(χ) = f(x) + λ β"η*-">/(9) dy. (8) 
Jo 

One can easily check that (8) satisfies the differential equation as well as the 
integral equation (7). To derive the differential equation we required that 
both φ(χ) and f{x) had first derivatives. The differentiation was merely an 
artifice that enabled us to reduce the integral equation to a differential 
equation, whose solution was obtainable by relatively elementary methods. 

As a second example we consider the Fredholm equation 

φ(χ) - λ xy(y - χ)φ(ν) dy = f(x). 
Jo 

(9) 

The expressions X$\y^(y)dy and —λ§\yφ{y)dy are unknown constants 
depending on ^(y) and we shall denote them by a and b. Then (9) can be 
rewritten in the form 

φ{χ) =f(x) + ax + bx*. (10) 

The fact that the solution of (9) has the simple character of (10) depends on 
the special nature of the kernel in (9). To determine a and b we note that by 



4 GENERAL INTRODUCTION 
multiplying (10) by λχ2 and integrating 

Similarly, 

λ Γχ2φ(χ) dx = λ \x2f(x) dx + λ- + λ- = α. 
Jo Jo 4 5 

λ \χφ(χ) dx = λ i xf(x) dx + λ- + λ- = - 6 . 
Jo Jo 3 4 

The latter are two linear algebraic equations in two unknowns a and b. These 
can be solved by standard methods, and inserting the solutions in (10) one 
finally obtains 

<Kx)=f(x) 

, Λ Γ1 *y{-(¿/5) + [1 + W4)]y - (A/3)»y - [1 - W4)l»}/(y) 
Jo 1 + (A2/240) 

The two examples (7) and (9) and the corresponding solutions (8) and 
(11) demonstrate one of the big differences between Volterra and Fredholm 
equations. The solution (8) exists for all finite values of λ, whereas (11) will 
fail to exist if its denominator 1 + (A2/240) vanishes. In that case (11) will 
in general fail to have a solution. If, however, 

;.2 
i + — = o 

240 
\x2f(x) dx = 0, I xf(x) dx = 0, 
Jo Jo 

(9) will have the solution 

<f>(x)=f(x) + -5cx-(l-^cx* (12) 

where c is completely arbitrary. 
We saw that (7) could be solved by reducing it to a differential equation. 

In fact, the first order differential equation 
φ'(χ)=/(χ,φ(χ)) φ(0) = φ0 (13) 

can be rewritten in the form of a nonlinear Volterra equation, by integrating 
(13). 

#*) = Φο + {"/(y, #10) dy. (14) 
Jo 

In fact, the proof of the existence and uniqueness of a solution for (13) is 
generally based on treating the integral equation (14). 

Fredholm equations also can be related to certain types of differential 
equations. Consider the boundary value problem 

φ"(ζ) + λφ{χ)=/(χ) φ(0) = 0 φ(\) = 0. (15) 
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A double integration of (15) shows that 

<KX) = Ci + c2x + (* - y)[f(y) - ¿<A(y)] dy. 
Jo 

From φ(0) = 0 we conclude that Cj = 0. From ^(1) = 0 we see that 

c2=-í\i-y)[f(y)-H(y)]dy. 
Jo 

Use of these values of ct and c2 allows us to rewrite problem (15) in the form 

# * ) - λ ί\(χ, y)<Ky) dy=- [K{x, y)f(y) dy (16) 
Jo Jo 

where 
*(*, y) = 2/(1 - x\ y < χ 

= *0 - y), y> x-
Equation (16) is equivalent to (15) and incorporates the boundary conditions 
as well. 

Volterra equations of the first kind are in some ways more difficult than 
equations of the second kind. For example, the apparently simple equation 

¡XyfKy)dy=f(x) (17) 
Jo 

has the solution 

φ(χ) = J-±-'. (18) 
x 

But this solution can make sense only if/(ic) satisfies certain regularity 
conditions. From (17) we see that / (0 ) = 0. Furthermore f(x) must be 
differentiable for (18) to make sense. In (7) we used the differentiability of 
f(x) merely as an artifice that could be dispensed with in (8). In (18) the 
differentiability is vital. 

3. FINITE DIFFERENCE APPROXIMATIONS 

Finding explicit solutions of integral equations is in general just as difficult 
as finding solutions of differential equations. Only in exceptional cases can 
such solutions be found. Generally, various approximate and numerical 
methods have to be used. Finite difference approximations are not only of 
great practical utility, but also provide certain insight into the nature of 
integral equations. 

In the equation 

φ(χ) - λ Γκ(χ, y)fty) dy = /(*) (19) 
Jo 
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we shall replace the integral by a suitable sum: 

φ(χ) - λ i - K (χ, -) φ (-) = f{x). (20) 
¿=ιη V nl \nl 

For large n and a continuous kernel K(x, y) and continuous φ(χ) the sum in 
(20) represents a close approximation to the integral in (19). If, furthermore, 
we evaluate (20) only at n discrete points 

#)-Aii,(i,i)#)-/(i), 
\nl ¡=in \n nl \nl \nl 

7 = 1,2, • , w , (21) 

we have replaced the integral equation (19) by the algebraic system (21). 
We shall rewrite (21) in matrix form 

(/ - ΛΖ.)Φ = F (22) 

where the general term in the matrix L is (\ln)K(j¡n, i/n), and Φ is a vector 
with components <£(//«) and /"has components/(//n). 

To solve (22) we invert the matrix and find 

Φ = (/ - XL)~lF. (23) 

The above inverse will exist for all λ, with the exception of at most n values. 
These are the roots of the characteristic determinantal equation 

|/ - %L\ = 0. (24) 
In (23) as in (11) we see that there may be special values of λ for which no 
solution exists. Such values are commonly known as eigenvalues. Every 
finite algebraic system (21) necessarily has eigenvalues, even though the 
integral equation (19) need not have eigenvalues. This is a subtle point that 
we shall bypass for the time being. 

For the case where (19) is a Volterra equation K(x, y) = 0 for y > x. In 
that case (21) can be rewritten as 

\n! <=i n \n nl \n! \n! 
7 = 1,2,. (25) 

In this case L in (22) is in fact a triangular matrix with all diagonal elements 
equal to zero: 

0 · · · 0 0> 

L = 

0 

0 

0 

0 

ln.n-l 0 j 

(26) 
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Inspection of (26) shows that L is a nilpotent matrix and in particular 
Ln = 0. This fact enables us to find the inverse of / — XL for all X. A simple 
calculation shows that 

(/ - XL)(I + XL + X2L* + ■ ■ ■ + A"-1/."-1) = / (27) 

so that (23) can be replaced by 

Φ = (/ + XL + X2L* + ■■■ + A"-1/.—1)*·. (28) 

As in (8), (28) is another heuristic demonstration that Volterra equations 
of the second kind will have unique solutions for all X. 

Equations of the first kind are in general more complicated. If we study 
the finite difference analog of a Fredholm equation of the first kind we are 
led to a system of the type 

L<t> = F. (29) 

Now if \L\ Φ 0, L has an inverse and (29) has a unique solution. If \L\ — 0, 
(29) may or may not have a solution. But even if a solution exists it will not 
be unique. 

For the case where (29) represents a Volterra equation, L is nilpotent, as 
in (26) and necessarily \L\ — 0, so that the above remarks apply. 

4. THE FREDHOLM ALTERNATIVE 

The Fredholm alternative is a fundamental tool in reaching decisions re-
garding the solvability of certain types of integral equations. In this section 
the analogous theory for finite dimensional spaces will be sketched. Let X 
be a finite dimensional inner product space of dimension n over the field of 
complex numbers and L an operator on X that is represented by an n X n 
matrix. With L we can associate the adjoint matrix L*, which is sometimes 
referred to as the hermitean transpose of L. 

Let (φ, ψ) denote the inner product defined on X, where φ and ψ are 
arbitrary vectors in X. L and L* are related by the expression 

{¡4, ψ) = (φ, Z » . 

The above can in fact be used as the defining relationship for L*. 
By N(L) we denote the nullspace of L, that is 

N(L) ={φ\Lφ = 0}. 

It is easy to verify that N(L) is indeed a subspace of X. By v{L) we shall 
denote the dimension of N(L). By R(L) we shall denote the range of L, so that 

R(L) = {φ\φ = Ly> for some ψ e X} 
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Again we can see that R(L) is a subspace and its dimension is denoted by 
p{L). 

LEMMA 1. v(L) + p(L) < n = dim X. 

PROOF. Let <f>u φ2, . ■ . , φη be a basis for X such that φ1, φ2,... , φ, 
is a basis for N(L). Then for any φ e X we have 

n 

Φ = Σ *.·& 
1 = 1 

for a suitable set of scalars α,. It follows that 
n 

Lφ= Σ »¡L ,̂. 
i=v+l 

since L<£, = 0 for 1 ^ / < v(L). Since Lφ is a general element in R(L) and 
since it is a linear combination of at most n — v(L) linearly independent 
vectors we see that 

p(L) < n - v(L) 

thereby proving the lemma. | 
It may be remarked that the above inequality is in fact an equality. This 

will be proved shortly. 
If R is a subspace of A'we note the set of all vectors in X that are orthogonal 

to R by Rx. 7JX can be shown to be a subspace of X and is called the orthog-
onal complement of R. 

LEMMA 2. v(L) + p(L*) = n. 

PROOF. By R(L*)X we denote the orthogonal complement of R(L*). We 
shall first prove that N(L) c R(L*)x. Let φ e N(L) so that 

0 = (Z.<¿, ψ) = (φ, L*tp) for all ψ. 

It follows that φ is orthogonal to all L*xp so that 

φ e R(L*)L. 
Since φ is an arbitrary element of N(L) we see that 

N(L) c ÄfJL*)1. 
We now prove the reverse inclusion. Let φ e R(L*)X so that 

From the above we see that necessarily <£ e N(L) so that 

«(L*)1 e N(L). 
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We can conclude that N(L) = Ä(L*)±. From this we conclude that N(L) 
and R(L*) form complementary subspaces of X so that 

X = N(L) ® R(L*). 

That is, every element of X can be uniquely decomposed into an element 
in N(L) and an element of R(L*). It follows that 

v(L) + p(L*) = n. ■ 

LEMMA 3. v(L) = v(L*). 

PROOF. On a finite dimensional space the double adjoint L** = L. By 
lemmas 1 and 2 we have 

v(L*) <,n- P(L*) = v(L). 
Now we see that 

v(L) = v(L**) < v(L*) < v(L) 

so that v(L) = v(L*). ■ 

COROLLARY. v(L) + p(L) = n. 

PROOF. By lemmas 2 and 3 

n = v{L*) + p(L) = v(L) + p(L). | 

The above shows that the inequality in lemma 1 is in fact an equality. How-
ever, N(L) and R(L) are not, in general, complementary subspaces as are 
N(L) and R(L*). In the case where L is selfadjoint so that L = L* they will 
be, of course. 

THEOREM 1. The Fredholm Alternative. The equation 

*4=f (30) 

has a unique solution for all / , if and only if v(L) = 0. If v(L) > 0 the 
above equation has solutions only for those/ , that are orthogonal to the 
nullspace N(L*). 

PROOF. If v(L) = 0 we see from the above corollary that p(L) = n so that 
the range R(L) is the entire space. In that case,/necessarily belongs to R(L) 
and can be represented by L<¡> for some φ. If there were two such solutions 
φ1 and φ2, then L(^ t — φ2) = 0. But since v(L) = 0, we see that φι = φ2. 

If v(L) > 0, then by lemma 2, (30) has a solution only for those/ε R(L) = 
NX(L*). Therefore solutions exist only for those/orthogonal to N(L*). | 
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5. HADAMARD'S INEQUALITY 

A familiar result from analytic geometry yields the volume of a parallelepiped 
in terms of a determinant. Let (alt a2, a3), {bu b2, b3), (cu c2, c3) denote the 
three vectors defining three edges of such a parallelepiped. Then the absolute 
value of the determinant 

«i a2
 a3 

b1 b2 b3 

c1 c2 c3 

furnishes the volume V of this parallelepiped. A simple upper estimate for 
such a volume is given by the following inequality: 

V < V(ax2 + a2
2 + a&ibf + V + b*)(Cl* + c2

2 + c3
2). (31) 

Equality is attained if the three edges are mutually perpendicular. Under 
all other conditions (31) is a strict inequality. 

THEOREM 2. Hadamard's Inequality. Let L be a matrix with the general 
element /,·,. An upper estimate for its determinant is given by 

w2<niiy2· (32) 
Equation (32) is a generalization of (31) in two ways. First of all it is a 

statement that applies to an n dimensional space. Here our geometric intuition 
no longer suffices. Secondly, we allow the terms /„ to be complex numbers 
whereas in (31) we dealt only with real numbers. In order to prove (32) we 
require some preliminary results. 

THEOREM 3. On the Arithmetic-Geometric Mean. Let c/„ d2,...,dn be 
a set of n non-negative numbers. Then 

1 Σ ^ , > Π ^ / η · (33) 
n i=i i=i 

PROOF. LET A denote the arithmetic mean (1/n) £"=i d¡. If all d( are 
equal the above inequality reduces to an equality. More generally, let dM and 
dm denote the greatest and smallest of the d( respectively. Define a and b by 

dM = A + a, dm = A — b. 

We now replace dM by A and dm by A + a — b. This substitution has 
evidently no effect on the arithmetic mean. But in view of the fact that 

dMdm = A(A +a- b)-ab<A(A +a-b) 
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this substitution will increase the geometric mean J J L i d},n. If a substitu-
tion of the above type is performed repeatedly, and each time the greatest 
of the di is replaced by A, we see that after at most n — 1 steps all dt have 
been replaced by A. Each such step leaves the arithmetic mean unchanged, 
but increases the geometric mean. After n — 1 steps all d{ have been replaced 
by A so that the geometric mean and arithmetic mean are equal. It follows 
that in general (33) must be a strict inequality, unless all di are equal. | 

A n n x n matrix L is said to be positive, if (L<£, φ) > 0, for all vectors 
φ in the inner product space X. For such matrices the following theorem 
yields an estimate that will enable us to prove the Hadamard inequality. 

THEOREM 4. Let L be a selfadjoint, positive matrix. Then 

\L\<f[ /,,. (34) 

PROOF. The positivity of L implies that (Ζ.Φ, Φ) > 0 for all Φ. If \L\ = 0 
(34) is trivial. If \L\ ^ 0, (Ζ,Φ, Φ) > 0 for all Φ JÍ 0. Now let Φ, be the /th 
canonical unit vector, namely Φ, = (<5,,·, 6U, . . . , <5m). Here 6U denotes the 
Kronecker δ defined by 

(5l7 = 0 i V y 
= 1 / = / 

Then 
(Ζ.Φ., Φ,) = /„ > 0. _ 

Let D denote the diagonal matrix with diagonal terms l/\/ln, l /v4 2 . · · · > 
Then we consider the matrix T = DLD. First of all T is selfadjoint 

since 
T* = D*L*D* = DLD = T. 

It is also positive, since 

(ΓΦ, Φ) = (£Ζ.Ζ>Φ, Φ) = (¿Ζ>Φ, ΰφ) > 0. 
It is also evident that the diagonal terms of T are all equal to 1. We also 
see that 

|T| = |D|2 |L | = | L | n f . (35) 

We shall show that \T\ <, 1, so that (35) yields the desired result (34). 
To establish the fact that | T\ < 1, we denote the eigenvalues of T by λ{. 

It follows that 
n 

trace T = n = 2 A,-. 

i = l 

¿=1 
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We now have, by theorem 3 

i n |~ n ~ l l / n 

« i= i Li-i J 

so that \T\ ^ 1, which implies (34). ■ 

PROOF OF HADAMARD'S INEQUALITY. Let L be a general matrix. 
Then LL* is clearly selfadjoint and positive, since 

(ΖΧ*Φ, Φ) = (¿*Φ, ¿*Φ) = ||£*Φ||2 > 0. 

The general term of LL* is 2*=i hkhk a nd an application of (34) to LL* yields 

l̂ *| = |L|2^niiy2. ■ 
COROLLARY. Let L = (/„) and |/„| <, I. Then 

\L\ < lnnnn. 
PROOF. Use of (34) shows that 

\L\2 <,flnl2= ηΨη. 
» = 1 

Taking square roots yields the result. | 

6. HILBERT SPACES 
So far we have not really addressed ourselves to the question of what we 
mean by a solution of an integral equation. Basically, of course, a solution 
of any equation must reduce the equation to an identity. But often one may 
impose additional restrictions on the solution, such as demanding that it 
should belong to a particular class of functions. For these purposes it will 
prove to be convenient to work in so-called Hubert spaces. 

DEFINITION. A linear space over a field F (in our work F will invariably be 
the field of complex numbers) is a collection X of elements with two defined 
operations. The first of these is addition of elements in X and the second 
multiplication of elements in X by scalars in F. In addition we stipulate the 
following conditions: 

1. X forms a commutative group under the additive operation. That 
is, if/, g, A,. . . belong to X, then 

(a) the operation is closed so that/ + g belongs to X for all/and g in X. 
(b) the operation is associative: ( / + g) + h = / + (g + h). 
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(c) there exists an identity 0 for which/+ 0 = / f o r all/in X. 
(d) for every/there exists an inverse element denoted by (—/) such that 

/ + ( - / ) = 0. 
(e) the operation is commutative 

f+g = g+f for all/, g in X. 
2. Multiplication by scalars is closed. That is, 
(a) 1 - / = / for all/in X, 
(b) a/is in X for all/in X and « in F. (c) for all α, β in F and/in X 

x(ßf) = (*ß)f. 
3. The following distributive laws hold: 
(a) a ( / + g) = a/ + <x.g for all a in F a n d / g in X. 
(b) (a + /3)/= a / + /3/for all a, /S in Fand/ in X. 

EXAMPLE 1. Consider the set of all vectors of the form / = 
(ql3 a2, . . . , an,...) where all a( are complex numbers, and only a finite 
number of a¡ do not vanish. If g = (6,, ¿>2, . . . , bn,. ..) is a second such 
vector we define 

a / = (aaj, aa2, . . . , αα„, . . .) 
where a is any complex number, and 

f+g = (al + b1,as + b2,...,an + bn, ...). 
It is a simple matter to verify that the above set of vectors forms a linear 
space. 

EXAMPLE 2. Consider the set of all continuous functions/(a;) defined on 
the closed interval [0, 1], that take complex values. We denote this set by 
C[0, 1]. For any complex scalars (af)(x) = a •/(a;) in C[0, 1] if f(x) is in 
C[0, 1]. Addition is defined pointwise, that is 

f+g=f(*) + g(*y 
Again, one can verify that these form a linear space. 

The linear spaces do not have enough structure to be useful in the area of 
integral equations. But the inner product spaces prove to be much more 
useful. 

DEFINITION. A linear space X is said to be an inner product space if an 
inner product is defined on it. Such an inner product assigns to every pair 
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/ and g in X a complex number denoted by (f,g). By definition, such an 
inner product has the following properties: 

i- (f,g) = (gJ) 
2. (xf+ßg,h) = *{f,h) + ß(g,h) 
3. ( / , / ) > 0 and (/,/") = 0 if and only i f / = 0. 
N.B. ( / , / ) is real, since by property 1 ( / , / ) = (J\f~). We let ( / , / ) * = 

11/11 and call it the norm of / 

THEOREM 5. Cauchy-Schwarz Inequality. Let / and g belong to an 
inner product space. Then 

\(f,g)\<\\f\\\\g\\ (35) 
Equality is achieved if and only i f /and g are linearly dependent; that is for 
suitable scalars a and ß, <xf + ßg = 0. 

PROOF. We assume t h a t / j¿ 0, because if/ = 0, (35) is trivially true. Let 

a Ϊ irr M « K/> g)l *~" (/, g) = l(/> g)\ e , α = ——— 

so that 
( « / _ gy a / _ g) ||y||t = \\cf-gV l l /P ^ 0. 

Using the properties of inner products we can expand the left side of this 
inequality to obtain 

[|a|* ¡l/IP - aL(J,g) - a(f,g) + WgV] WfV > 0. 

So far no use has been made of the particular value of a. If that value is 
inserted in the above inequality, we obtain 

llsll2ll/l!2-l(/,g)l2>o 
which is equivalent to (35). To complete the proof we note that i f / and g 
are linearly independent 

l | a / - g | | > 0 

so that we get a strict inequality. Equality will occur if g — a/for a suitable 

THEOREM 6. The norm | |/ | | has the following three properties: 

1. 11/11 > 0 and | |/ | | = 0 if and only i f / = 0 
2. ||a/|| = |a| | | / | | 
3- \\f+g\\ < 11/11 + \\g\\ 
The last property is known as the triangle inequality. 



6. HILBERT SPACES 15 

PROOF. Equations (1) and (2) are immediate consequences of the definition 
of an inner product. To prove (3) we use the Cauchy-Schwarz inequality in 

11/+ *ll2 = (/"+ g.f + g) = U/H1 + (/.*) + (/*) + W2 

^ ll/ll2 + 2 |(/,*)| + ||*||2 < ll/ll2 + 2 11/11 ||;|| + Hg»· 
< [ll/ll + ll*ll]2· 

By taking square roots the re,sult follows. One can also see that (3) reduces 
to an equality only if/and g are linearly dependent. | 
EXAMPLE 3. Consider the linear space X of Example 1. Let 

(/,g) = SeA· 
It is easy to verify that the above forms an inner product. Convergence is 
really no problem, since only a finite number of terms in the above sum do 
not vanish. 

EXAMPLE 4. Consider the linear space of Example 2. One can define an 
inner product on this space by 

f, g) = Π 
Jo 

(/,g) = \f{x)g{x)dx. Jo 

DEFINITION. Let H be an inner product space and {/„} a Cauchy sequence 
in H. Such a sequence has the property that for every e > 0 we can find an 
N(e) such that 

I I A - / J I < * for n,m> N(€). In other words 
lim | | / n - / J | = 0 . 

n,m-* oo 
H is said to be a Hubert space if every Cauchy sequence converges to an 
element in H. 

It is easy to see that if such a Cauchy sequence converges it must converge 
to a unique element. Suppose 

lim fnt = g 
nt-»oo 

lim /m» = h 
mt-Όθ 

that is, we have two subsequences of {/„} such that each converges to a 
different element. Then 

II* - All = A* - / „» + / . , -Uk + / « , - Λ« 
Ú II* - A J Í + IIA - / „ J l + ΙΙΛ,, - A||. 
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For nk and mk sufficiently large we have 

\\g-f„J\ <« 
\\fnk -fmk\\ < « 
ll/mt - A||< e 

so that 
I I* - All < 3e. 

Since g and A are independent of nk and mk and c is arbitrary, we see that 
necessarily 

\\g - A|| = 0 
so that g = h. 

In general an inner product space need not be a Hubert space. For ex-
ample, the space treated in Example 3 is not a Hubert space. To see this we 
consider the following Cauchy sequence {/„} where 

'•-(••i-i ;■**■··)· 
For n > m we have 

ll/„-/JI= Σ f, 
and it follows that 

Km 11/»-/J| =0. 
n.m-»oo 

Nevertheless, the sequence does not converge to an element in the space. 
Clearly, in a purely formal manner, 

lim/„ = ( l , l , i ) (36) 
«-♦oo 

and none of the components of the above vanish. Since in the space in 
question only a finite number of components were allowed not to vanish 
(36) is not in the space. 

We can, however, enlarge this space by adding to it all limits of 
Cauchy sequences. For example, we consider the space H consisting 
of all / = {au a2, a3,. . .) such that 2«°=i lflJ2 < °°· Clearly, if /„ = 
(an a2, . . . , a„, 0, 0, . . .) is an element of the space X in Example 3 then 

Hm/„= / . 
n-»oo 

Also, the set {/„} forms a Cauchy sequence, since 

l l / n - / J I = r Σ l « / | for n>m 
and 

Km 11 / . - / J l = 0 . 
n,m-»oo 
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In this fashion we see that X can be completed to a Hubert space H. 
A standard theorem in functional analysis guarantees that every inner 

product space A'can be completed to form a Hubert space H. Such a Hubert 
space H is said to be the completion of X. 

We now turn to the space C[0, 1] of Example 4. Here again we can verify 
that we are not dealing with a Hubert space. Consider the sequence of 
functions defined by 

/„(*) = 1 , 0 < x < i 

1 +n = 1 - 2n(x - J), * < x ζ 
In 

Π 

L« + 
Π 

m\ 

= 0, l-±l < x < 1 
In - -

n = 1,2, 3 , . . . . 

Clearly, each fn(x) is continuous and a simple calculation shows that 

ll/„-/JI< 
The upper estimate on the right is excessively large, but it does show that 
the sequence is a Cauchy sequence. Nevertheless 

l i m / n ( x ) = l , 0<x<\. 
n~* oo 

= 0, \<x<\. 

Clearly/„(x) has a limit, but the limiting function is not in the space C[0, 1]. 
The limit function is no longer continuous. 

In accordance with the general theorem this space has a completion 
denoted by Z.2[0, 1]. It consists of all functions f(x) for which we can find 
Cauchy sequences in C[0, 1], {/„(*)} such that 

lim Γ 
n-»oo i/o 

l/(*)-/n(*)l2</z = o. 

Such functions will not be continuous in general and in fact will not even 
be integrable in the Riemann sense. To define their integrals over any interval 
in [0, 1], say [a, b]\ we can, however, proceed as follows. By definition 

f(x) dx = lim f„(x) dx. 
Ja n-»oo Ja 


