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PREFACE 

Why this Book was Written 

The course known as Advanced Calculus (or Introductory Analysis) stands at the 
summit of the requirements for senior mathematics majors. An important objective 
of this course is to prepare the student for a critical challenge that he or she will face 
in the first year of graduate study: the course called Analysis I, Lebesgue Measure 
and Integration, or Introductory Functional Analysis. 

We live in an era of rapid change on a global scale. And the author and his de
partment have been testing ways to improve the preparation of mathematics majors 
for the challenges they will face. During the past quarter century the United States 
has emerged as the destination of choice for graduate study in mathematics. The 
influx of well-prepared, talented students from around the world brings considerable 
benefit to American graduate programs. The international students usually arrive 
better prepared for graduate study in mathematics-in particular better prepared in 
analysis-than their typical U.S. counterparts. There are many reasons for this, in
cluding (a) school systems abroad that are oriented toward teaching only the brightest 
students, and (b) the self-selection that is part of a student taking the step of travel 
abroad to study in a foreign culture. 

The presence of strongly prepared international students in the classroom raises the 
level at which courses are taught. Thus it is appropriate at the present time, in the early 
years of the new millennium, for college and university mathematics departments to 
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reconsider their advanced calculus courses with an eye toward preparing graduates 
for the international environment in American graduate schools. This is a challenge, 
but it is also an opportunity for American students and international students to learn 
side-by-side with, and also about, one another. It is more important than ever to teach 
undergraduate advanced calculus or analysis in such a way as to prepare and reorient 
the student for graduate study as it is today in mathematics. 

Another recent change is that applied mathematics has emerged on a large scale as 
an important component of many mathematics departments. In applied and numerical 
mathematics, functional analysis at the graduate level plays a very important role. 

Yet another change that is emerging is that undergraduates planning careers in 
the secondary teaching of mathematics are being required to major in mathematics 
instead of education. These students must be prepared to teach the next generation of 
young people for the world in which they will live. Whether or not the mathematics 
major is planning an academic career, he or she will benefit from better preparation 
in advanced calculus for careers in the emerging world. 

The author has taught mathematics majors and graduate students for thirty-seven 
years. He has served as director of his department's graduate program for nearly 
two decades. All the changes described above are present today in the author's 
department. This book has been written in the hope of addressing the following 
needs. 

1. Students of mathematics should acquire a sense of the unity of mathematics. 
Hence a course designed for senior mathematics majors should have an in
tegrative effect. Such a course should draw upon at least two branches of 
mathematics to show how they may be combined with illuminating effect. 

2. Students should learn the importance of rigorous proof and develop skill in 
coherent written exposition to counter the universal temptation to engage in 
wishful thinking. Students need practice composing and writing proofs of their 
own, and these must be checked and corrected. 

3. The fundamental theorems of the introductory calculus courses need to be es
tablished rigorously, along with the traditional theorems of advanced calculus, 
which are required for this purpose. 

4. The task of establishing the rigorous foundations of calculus should be en
livened by taking this opportunity to introduce the student to modern mathe
matical structures that were not presented in introductory calculus courses. 

5. Students should learn the rigorous foundations of calculus in a manner that 
reorients thinking in the directions taken by modern analysis. The classic 
theorems should be couched in a manner that reflects the perspectives of 
modern analysis. 
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Features of this Text 

The author has attempted to address these needs presented above in the following 
manner. 

1. The two parts of mathematics that have been studied by nearly every math
ematics major prior to the senior year are introductory calculus, including 
calculus of several variables, and linear algebra. Thus the author has chosen 
to highlight the interplay between the calculus and linear algebra, emphasizing 
the role of the concepts of a vector space, a linear transformation (including a 
linear functional), a norm, and a scalar product. For example, the customary 
theorem concerning uniform limits of continuous functions is interpreted as a 
completeness theorem for era, b] as a vector space equipped with the sup-norm. 
The elementary properties of the Riemann integral gain coherence expressed 
as a theorem establishing the integral as a bounded linear functional on a con
venient function-space. Similarly, the family of absolutely convergent series 
is presented from the perspective that it is a complete normed vector space 
equipped with the ll-norm. 

2. Many exercises are offered for each section of the text. These are essential 
to the course. An exercise preceded by a dagger symbol t is cited at some 
point in the text. Such citations refer to the exercise by section and number. 
An exercise preceded by a diamond symbol 0 is a hard problem. If a 
hard problem will be cited later in the text, then there will be a footnote to 
say precisely where it will be cited. This is intended to help the professor 
decide whether or not an exercise should be assigned to a particular class based 
upon his or her planned coverage for the course. Topics that can be omitted 
at the professor's discretion without disturbing continuity of the course are 
so-indicated by means of footnotes. 

3. At the end of each chapter there is a brief section called Test Yourself, consisting 
of short questions to test the student's comprehension of the basic concepts and 
theorems. The answers to these short questions, and also to other selected short 
questions, appear in an appendix. There are no proofs provided among those 
answers to selected questions. The reason is that there are many possible correct 
proofs for each exercise. Only the professor or the professor's designated 
assistant will be able to properly evaluate and correct the student's writing in 
exercises requiring proofs. 

4. The Introduction to this book is intended to introduce the student to both the 
importance and the challenges of writing proofs. The guidance provided in 
the introduction is followed by corresponding illustrative remarks that appear 
after the first proof in each of the fi ve chapters of Part I of this text. 

5. Whether a professor chooses to collect written assignments or to have students 
present proofs at the board in front of the class, each student must regularly con
struct and write proofs. The coherence and the presentation of the arguments 
must be criticized. 
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6. Most of the traditional theorems of elementary differential and integral calculus 
are developed rigorously. Since the orientation of the course is toward the role 
of normed vector spaces, Cauchy completeness is the most natural form of the 
completeness concept to use. Thus we present the system of real numbers as 
a Cauchy-complete Archimedean ordered field. The traditional theorems of 
advanced calculus are presented. These include the elements of the study of 
integrable and differentiable functions, extreme value theorems, Mean Value 
Theorems, and convergence theorems, the polynomial approximation theorem 
of Weierstrass, the inverse and implicit function theorems, Lebesgue's theorem 
for Riemann integrability, and the Jacobian theorem for change of variables. 

7. Students learn in this course such concepts as those of a complete normed 
vector space (real Banach space) and a bounded linear functional. This is not 
a course in functional analysis. Rather the central theorems and examples of 
advanced calculus are treated as instances and motivations for the concepts of 
functional analysis. For example, the space of bounded sequences is shown to 
be the dual space of the space of absolutely summable sequences. 

8. The concept of this book is that the student is guided gradually from the study of 
the topology of the real line to the beginning theorems and concepts of graduate 
analysis, expressed from a modern viewpoint. Many traditional theorems of 
advanced calculus list properties that amount to stating that a certain set of 
functions forms a vector space and that this space is complete with respect 
to a norm. By phrasing the traditional theorems in this light, we help the 
student to mentally organize the knowledge of advanced calculus in a coherent 
and meaningful manner while acquiring a helpful reorientation toward modern 
graduate-level analysis. 

Course Plans that Are Supported by this Book 

Part I of this book consists of five chapters covering most of the standard one-variable 
topics found in two-semester advanced calculus courses. These chapters are arranged 
in order of dependence, with the later chapters depending on the earlier ones. Though 
the topics are mainly the ones typically found, they have been reoriented here from 
the viewpoint of linear spaces, norms, completeness, and linear functionals. 

Part II offers a choice of two mutually independent advanced one-variable topics: 
either Fourier series or Stieltjes integration. It is especially the case in Part II that 
each professor's individual judgment about the readiness of his or her class should 
guide what is taught. Some of these topics will not be for the average student, but 
will make excellent reading material for the student seeking honors credit or writing a 
senior thesis. Individual reading courses can be employed very effectively to provide 
advanced experience for the prospective graduate student. 

In Chapter 6 the introduction of Fourier series is aided by inclusion of complex
valued functions of a real variable. This is the only chapter in which complex-valued 
functions appear, and with these the Hermitian inner product is introduced. The 
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chapter includes 12 and its self-duality, convergence in the L 2 -norm, I the uniform 
convergence of Fourier series of smooth functions, and the Riemann localization 
theorem. The study of a vibrating string is presented to motivate the chapter. 

Chapter 7, which is about Stieltjes integration, includes functions of bounded 
variation and the Riesz Representation Theorem, presenting the dual space of era, b] 
in terms of Stieltjes integration. The latter theorem of F. Riesz is the hardest one 
presented in this book. It is not required for the later chapters. However, it is an 
excellent theorem for a promising student planning subsequent doctoral study, and it 
requires only what has been learned previously in this course. It is a century since 
the discovery of the Riesz Representation Theorem. The author thinks it is time for 
it to take its place in an undergraduate text for the twenty-first century. 

Part III is about several-variable advanced calculus, including the inverse and 
implicit function theorems, and the Jacobian theorems for multiple integrals. Where 
the first two parts place emphasis on infinite-dimensional linear spaces of functions, 
the third part emphasizes finite-dimensional spaces and the derivative as a linear 
transformation. 

At Louisiana State University, Advanced Calculus is offered as a three-semester 
triad of courses. 2 The first semester is taken by all and is the starting point regardless 
of the subsequent choices. But the other two semesters can be taken in either order. 
This enables the Department to offer all three semesters each year, with the first 
semester offered in both fall and spring, and the two other courses being offered with 
only one of them each semester. These courses are not rushed. One must allow 
sufficient time for the typical undergraduate mathematics major to learn to prove 
theorems and to absorb the new concepts. It is the author's experience that all too 
often, courses in analysis are inadvertently sabotaged by packing too much subject 
matter into one term. It is best to teach students to take enough time to learn well 
and learn deeply. 

A few words about testing procedures may be helpful too. At the author's in
stitution, and at many others also, it is important to teach Advanced Calculus in a 
manner that is suitable for both those students who are preparing for graduate study 
in mathematics and those who are not. The author finds that it is appropriate to 
divide each test into two approximately equal parts: one for short questions of the 
type represented in the Test Yourself sections of this book, and the other consisting 
of proofs representative of those assigned and collected for homework. Although 
one would like each student to excel in both, there are many students who excel in 
one class of question but not the other. And there are indeed many students who do 
better in proofs than in the concept-testing short questions. Thus tests that combine 
both types of question provide fuller information about each student and give an 
opportunity for more students to show what they can do. The author always gives a 
choice of questions in each of the two categories: typically eight out of twelve for 

IThe L 2 nonn is used here exclusively with the Riemann integral. 
2Mathematics majors planning careers in high-school teaching take at least the first semester, while the 
others must take at least two of the three semesters. Those students who are contemplating graduate study 
in mathematics are advised strongly to take all three semesters. 
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the short questions, and two out of three for the proofs, for a one-hour test. The pass 
rate in these courses is actually high, despite the depth of the subject. Naturally, each 
professor will need to determine the best approach to testing for his or her own class. 

It is most common for colleges and universities to offer either a single semester 
or else a two-semester sequence in Advanced Calculus or Undergraduate Analysis. 
Below the author has indicated practical syllabi for a one-semester course, as well 
as three alternative versions of a two-semester course. It should be understood that, 
depending on the readiness of the class, it may be possible to do more. 

• Single-semester course: Sections 1.1-1.S, 2.1-2.4, 3.1-3.3, and 4.1-4.3. 

• Two-semester course leading to Stieltjes integration: 

1. Chapters 1-3 for the first semester 

2. Chapters 4, 5, and 7 for the second semester 

• Two-semester course leading to Fourier series: 

1. Chapters 1-3 for the first semester 

2. Chapters 4-6 for the second semester 

• Two-semester course leading to the inverse and implicit function theorems: 

1. Sections 1.1-1.S, 2.1-2.4, 3.1-3.3, and 4.1-4.3 for the first semester 

2. Sections S.1-S.3, 9.1-9.3, and 10.1-10.3 for the second semester 

• Three-semester course, with parts 2 and 3 interchangeable in order: 

1. Chapters 1-3 for the first semester 

2. Either 

(a) Chapters 4-6 for the second semester or 

(b) Chapters 4, 5, and 7 for the second semester 

3. Sections S.1-S.3, 9.1-9.3, and 10.1-10.3 for the third semester, and with 
Chapter 11 if there is sufficient time. 

No doubt there are other possible combinations. Whatever is the choice made, the 
author hopes that the whole academic community of mathematicians will devote an 
increased number of courses to the teaching of analysis to undergraduate mathematics 
majors. 

Baton Rouge, Louisiana 

August, 2007 

LEONARD F. RICHARDSON 
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INTRODUCTION 

Why Advanced Calculus is Important 

What is the meaning of knowledge? And what is the meaning of learning? The 
author believes these are questions that must be addressed in order to grasp the 
purpose of advanced calculus. In primary and secondary education, and also in some 
introductory college courses, we are asked to accept many statements or claims and 
to remember them, perhaps to apply them. Individuals vary greatly in temperament 
and are more willing or less willing to acquiesce in the acceptance of what is taught. 
But whether or not we are inclined to do so, we must ask responsible questions about 
the basis upon which knowledge rests. 

Here are a few examples . 

• Have we been taught accurate renditions of the history of our civilization? Is 
there nothing to indicate that history is presented sometimes in a biased or 
misleading way? 

• Were we taught correct claims about the nature of the physical or biological 
world? Are there not examples of famous claims regarding the natural sciences, 
endorsed ardently, yet proven in time to be false? 

xxi 
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• How do we know what is or is not true about mathematics? Is there no record 
of error or disagreement? Is there an infallible expert who can be trusted to 
tell correctly the answers to all questions? 

• If there are authorities who can be trusted without doubt to instruct us correctly, 
what will be our fate when these authorities, perhaps older than ourselves, die? 
Can we not learn for ourselves to determine the difference between truth and 
falsehood, between valid reason and error? 

In the serious study of history, one must learn how to search for records or evidence 
and how to appraise its reliability. In the natural sciences, one must learn to construct 
sound experiments or to conduct accurate observations so as to distinguish between 
truth and wishful thinking. And in the study of mathematics it is through logical 
proof by deductive reasoning that we can check our thinking or our guesswork. 
Learning how to confirm the foundations of our knowledge transforms us from 
receptacles for the claims made by others into stewards for the knowledge mankind 
has acquired through millennia of exertion. It is both our right as human beings and 
our responsibility to assume this role. 

Throughout our lives , we find ourselves with the need to resolve the conflict 
between opposing forces. On the one hand, the human mind is impulsive, eager to 
leap from one spot to another that may have a clearer view. This spark is an engine 
of creativity. We would not be human in its absence. It is also our Achilles' heel. 
Training and self-discipline are required that we may distinguish the worthwhile leaps 
of imagination from the faulty ones. 

A vital aspect of the self-discipline that must be learned by each student of 
mathematics is that proofs must be written down, scrutinized step-by-step, and re
written wherever there is doubt. In a proof the reasoning must be solid and secure 
from start to finish. There is no one among us who can reliably devise a proof 
mentally, leaving it unwritten and unscrutinized. Indeed, mankind's capacity for 
wishful thinking is boundless. Discipline in the standard of logical proof is severe, 
and it is essential to our task. 

Mathematics is not a spectator sport. It can be learned only by doing. It is necessary 
but never sufficient to watch proofs being constructed by an experienced practitioner. 
The latter activity (which includes attendance in class and active participation, as 
well as careful study of the text) can help one to learn good technique. But only the 
effort of writing our own proofs can teach each of us by trial and error how to do it. 
See this as not only a warning but also good news that strenuous effort in this work is 
effective. From more than three decades of teaching as well as personal experience, 
the author can assure each student that this is so. It is possible also to assure the 
student that through vigorous effort in mathematics the student may come to enjoy 
this subject very much and to relish the light that it can shed. Even a seemingly small 
question can be a portal to a whole world of unforeseen surprise and wonder. In this 
spirit it is a pleasure to welcome the student and the reader to advanced calculus. 
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Learning to Write Proofs: A Guide for the Perplexed Student 

I want to do my proof-writing homework, but I don't know how to begin! It is an oft
heard lament. In elementary mathematics courses, the student is provided customarily 
with a set of instructions, or algorithms, that will lead upon implementation to 
the solution of certain types of problems. Thus many conscientious students have 
requested instructions for writing proofs. All sets of instructions for writing proofs, 
however, suffer from one defect: They do not work. Yet one can learn to write proofs, 
and there are many living mathematicians and successful mathematics students whose 
existence proves this point. The author believes that learning to write proofs is not a 
matter of following theorem-proving instructions. The answer lies rather in learning 
how to study advanced calculus. The student, having been in school for much of his or 
her life, may bridle at the suggestion that he or she has not learned how to study. Yet 
in the case of studying theoretical mathematics, that is very likely to be true. Every 
single theorem and every single proof that is presented in this book, or by the student's 
professor in class, is a vivid example of theorem-proving technique. But to benefit 
from these fine examples, the student must learn how to study. Mathematicians find 
that the best way to read mathematics is with paper and pencil! This means that it 
is the reader's task to figure out how to think about the theorem and its proof and to 
write it down coherently. 

In reading the proofs of theorems in this text, or in the study of proofs presented by 
one's teacher in class, the student must understand that what is written is much more 
than a body offacts to be remembered and reproduced upon demand. Each proof has 
a story that guided the author in its writing. There is a beginning (the hypotheses), a 
challenge (the objective to be achieved), and a plan that might, with hard work, skill, 
and good fortune, lead to the desired conclusion. It will take time and a concerted 
effort for the student to learn to think about the statements and proofs of the presented 
theorems in this light. Such practice will cultivate the ability to read the exercises as 
well in a fruitful manner. With experience at recognizing the story of the proof or 
problem at hand, the student will be in a position to develop technique through the 
work done in the exercises. 

The first step, before attempting to read a proof, is to read the statement of the 
theorem carefully, trying to get an overall picture of its content. The student should 
make sure he or she knows precisely the definition of each term used in the statement 
of the theorem. Without that information, it is impossible to understand even the 
claim of the theorem, let alone its proof. If a term or a symbol in the statement of a 
theorem or exercise is not recognized, look in the index! Write on paper what you 
find . 

After clarifying explicitly the meaning of each term used, if the student does not 
see what the theorem is attempting to achieve, it is often helpful to write down a few 
examples to see what difficulties might arise, leading to the need for the theorem. 
Working with examples is the mathematical equivalent of laboratory work for a 
natural scientist. At this point the student will have read the statement of the theorem 
at least twice, and probably more often than that, accumulating written notes on a 
scratch pad along the way. Read the theorem again! Remember that in constructing 
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a building or a bridge, it is not a waste of time to dwell upon the foundation . The 
author has assured many students, from freshman to doctoral level, that the way to 
make faster progress is to slow down-especially at the outset. If you were planning 
a grand two-week backpacking trip in a national park, would you simply run out of 
the house? Of course not-you would plan and make preparations for the coming 
adventure. 

At this point we suppose the reader understands the statement of the theorem and 
wishes next to learn why the claimed conclusion is true. How does the author or 
teacher in class overcome the obstacles at hand? Read the whole proof a first time, 
taking written notes as to what combination of steps the author has chosen to proceed 
from the hypotheses to the conclusions. This first reading of the proof itself can be 
likened to one's first look at a road map drawn for a cross-country trip. It will give 
one an overall sense of the journey ahead. But taking the trip, or walking the walk, 
is another matter. Having noted that the journey ahead can be divided into segments, 
much like a trip with several overnight stops, the student should begin in earnest at 
the beginning. For each leg of the journey, it is important to understand thoroughly, 
and to write on paper, the logical justification of each individual step. There must 
be no magical disappearance from point A and reappearance at point BI No external 
authority can be substituted for the student's own understanding of each step taken. 
It is both the right and the responsibility of the student to understand in full detail.3 

By studying the theorems in this book in the manner explained above, the student 
will cultivate the modes of thinking that will enable him or her to write the proofs 
that are required in the exercises. 

The exercises are a vital part of this course, and the proof exercises are the most 
important of all. There is an answer section for selected short-answer exercises 
among the appendices of this book. It includes all the answers to the Test Yourself 
self-tests at the ends of the chapters. But the student will not find solutions to the 
proof exercises there. That is because it is not satisfactory merely to copy a written 
proof. Many correct proofs are possible. Only an experienced teacher can judge the 
correctness and the quality of the proofs you write. The student can and must depend 
upon his or her professor or the professor's designated assistant to read and correct 
proofs written as exercises. 

One of the ways that a teacher can help a student is by explaining that he or she has 
been where the student stands. The student is not alone and can meet the challenges 
ahead much as his or her teacher has done before. When the author was young, he 
had long walks to and from school: about twenty minutes each way at a brisk pace. It 
was a favorite pastime during these walks to review mentally the logical structure of 
advanced calculus-reconstructing the proofs of theorems about Riemann integrals or 
uniform convergence from the axioms of the real number system. Many colleagues 
within mathematics, and some from theoretical physics, have shared with the author 
similar experiences from their own lives. It is the active engagement with a subject 

3The student should reread this introduction before reading Remark 1.1.1 , which appears after the proof 
of the first theorem in this book. Corresponding remarks appear following the first proof in each of the 
five chapters of Part I of this book. 
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that builds firm understanding and that incorporates the knowledge gained into ones 
own mind. 

Experiences in life can be enjoyed only once for the first time. The student is 
about to embark on a mathematical adventure with advanced calculus for his or her 
first time. Neither the author nor your teacher can do this again. But we can wish 
you a wonderful journey, and we do. 





PART I 

ADVANCED CALCULUS IN 
ONE VARIABLE 





CHAPTER 1 

REAL NUMBERS AND LIMITS OF 
SEQUENCES 

1.1 THE REAL NUMBER SYSTEM 

During the 19th century, as applications of the differential and integral calculus in 
the physical sciences grew in importance and complexity, it became apparent that 
intuitive use of the concept of limit was inadequate. Intuitive arguments could lead 
to seemingly correct or incorrect conclusions in important examples. Much effort 
and creativity went into placing the calculus on a rigorous foundation so that such 
problems could be resolved. In order to see how this process unfolded, it is helpful 
to look far back into the history of mathematics. 

Approximately 2000 years ago, Greek mathematicians placed Euclidean geometry 
on the foundations of deductive logic. Axioms were chosen as assumptions, and the 
major theorems of geometry were proven, using fairly rigorous logic, in an orderly 
progression. These ancient mathematicians also had concepts of numbers. They 
used natural numbers, known also as counting numbers, the set of which is denoted 
by 

N = {I , 2, 3, .. . , n , n + 1, ... }. 

This is the endless sequence of numbers beginning with 1 and proceeding without 
end by adding 1 at each step. Also used were positive rational numbers, which we 
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denote as 

These numbers were regarded as representing proportions of positive whole numbers. 

Members of the Pythagorean school of geometry discovered that there was no 
ratio of positive whole numbers that could serve as a square root for 2. (See Exercise 
1.11.) This was disturbing to them because it meant that the side and the diagonal 
of a square must be incommensurable. That is, the side and the diagonal of a square 
cannot both be measured as a whole number multiple of some other line segment, or 
unit. So great was these geometers' consternation over the failure of the set of rational 
numbers to provide the proportion between the side and the diagonal of a square that 
confidence in the logical capacity of algebra was diminished. Mathematical reasoning 
was phrased, to the extent possible, in terms of geometry. 

For example, today we would express the area of a circle algebraically as A = 7fr2. 

We could express this common formula alternatively as A = id2 , where d is the 
diameter of the circle. But the ancient Greeks put it this way: The areas of two circles 
are in the same proportion as the areas of the squares on their diameters. The squares 
were constructed, each with a side coinciding with the diameter of the corresponding 
circle, and the areas of the squares were in the same proportion as the areas of the 
circles. Much later, in the 17th century, Isaac Newton continued to be influenced 
by this perspective. In his celebrated work on the calculus, Principia Mathematica, 
we can see repeatedly that where we would use an algebraic calculation, he used a 
geometrical argument, even if greater effort is required. The reader interested in the 
history of mathematics may enjoy the book The Exact Sciences in Antiquity by Otto 
Neugebauer [15] and the one by Carl Boyer [3], The History of the Calculus. 

It took until the 19th century for mathematicians to liberate themselves from their 
misgivings regarding algebra. It came to be understood that the real numbers, the 
numbers that correspond to the points on an endless geometrical line, could be placed 
on a systematic logical foundation just as had been done for geometry nearly two 
thousand years earlier. Most of the axioms that were needed to prove the properties of 
the real number system were already quite familiar from the arithmetic of the rational 
numbers. There was one crucial new axiom needed: the Completeness Axiom of the 
Real Number System. Once this axiom had been added, the theorems of the calculus 
could be proven rigorously, and future development of the subject of Mathematical 
Analysis in the 20th century was facilitated. 

Although we will not attempt the laborious task of rigorously proving every 
familiar property of the real number system, we will sketch the axioms that summarize 
familiar properties, and we will explain carefully the completeness axiom. With the 
latter axiom in hand, we will develop the theory of the calculus with great care. 
Students interested in studying the full and formal development of the real number 
system are referred to J. M. H. Olmsted's book [16], or to a stylistically distinctive 
classic by E. Landau [12]. 
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In addition to the set N of natural numbers, we will consider the set Z of integers, 
or whole numbers. Thus 

Z = {O, ± 1, ±2, ... } = {±n I n EN} U {O}. 

We need also the full set of rational numbers: 

Q = {~ I p, q E Z, q i- 0 } . 

We list in Table 1.1 the axioms for a general Archimedean Ordered Field IF. You 
will observe that the set Q is an Archimedean ordered field. However, the set lR of 
real numbers, which we will define in Section 1.3, will obey all the axioms for an 
Archimedean ordered field together with one more axiom, called the Completeness 
Axiom, which is not satisfied by Q. 

Table 1.1 Archimedean Ordered Field 

An Archimedean Ordered Field IF is a set with two operations, called addition and multi
plication. There is also an order relation, denoted by a < b. These satisfy the following 
properties: 

I. Closure: If a and b are elements of IF, then a + b E IF and ab E IF. 

2. Commutativity: If a and b are elements of lF, then a + b = b + a and ab = ba. 

3. Associativity: If a, b, and c are elements of IF , then a + (b + c) = (a + b) + c and 
a(bc) = (ab)c. 

4. Distributivity: If a , b, and c are elements of IF, then a(b + c) = ab + ac. 

5. Identity: There exist elements ° and 1 in IF such ° + a = a and la = a, for all a E IF. 
Moreover, ° -# 1. 

6. Inverses: If a E IF , then there exists -a E IF such that -a + a = 0. Also, for all a -# 0, 
then there exists a- 1 = ~ ElF such that a~ = 1. 

7. Transitivity: If a < band b < c, then a < c. 

8. Preservation of Order: if a < b and if c E IF, then a + c < b + c. Moreover, if c > 0, 
then ac < bc. 

9. Trichotomy: For all a and bin IF, exactly one of the following three statements will be 
true: a < b, or a = b, or a> b (which means b < a). 

10. Archimedean Property: If E > ° and if M > 0, then there exists n E N such that 
nE > M. (In this general context, N is defined as the smallest subset of lF that contains 
1 and is closed under addition.) 

There is an old adage that loosely paraphrases the Archimedean Property found 
in the table: If you save a penny a day, eventually you will become a millionaire (or 
a billionaire, etc.). 
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From the axioms for an Archimedean ordered field, many familiar properties of 
the real numbers can be deduced. In particular, the behavior of all the operations used 
in solving equations and inequalities follows directly, with the exception that we have 
not established yet that roots of positive numbers, such as square roots, exist. Here 
we will concentrate on those properties that received less emphasis in elementary 
mathematics courses. 

The order axioms are particularly useful for analysis. In this connection, it is 
important to make the following definition. 

Definition 1.1.1 We define 

if a 2': 0, 

if a < 0. 

We think of lal as representing the distance of a from ° on the number line. Note 
that lal is always nonnegative. The absolute value satisfies a vital inequality known 
as the Triangle Inequality. 

Theorem 1.1.1 For all a and b in lR, la + bl ::; lal + Ibl. 

Proof: Observe that 
-Ial ::; a ::; lal, 

and 
-Ibl ::; b ::; Ib l, 

so that 
-(Ial + Ibl) ::; a + b ::; la l + Ibl· (1.1) 

Thus, if a + b 2': 0, 

But if a + b < 0, then from the first inequality in Equation (1.1), we obtain 

la + bl = - (a + b) ::; lal + Ibl· 

We see that whether a + b is negative or nonnegative, we have in either case that 

la + bl ::; lal + Ibl· • 

Remark 1.1.1 If the student has not yet read the Introduction, including the discus
sion of Learning to Write Proofs on page xxiii, this should be done now. It was 
explained that in order to learn to write proofs, the student must learn first how to 
study the theorems and proofs that are presented in this book. Let us note how the 
remarks made there apply to the short proof of the first theorem in this book. 

First we read carefully the statement of Theorem 1.1.1. We note that this is a 
theorem about absolute values, so we reread Definition 1.1.1 to insure that we know 
the meaning of this concept. Since the absolute value of a number a depends upon 
the sign of a, we should test the claimed inequality in the theorem with several 
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pairs of numbers: two positive numbers, two negative numbers, and two numbers 
of opposite sign. The reader should do this, with examples of his or her choice of 
numbers, noting that the triangle inequality in real application gives either equality, 
if the two numbers have the same sign, or else strict inequality, if the two numbers 
have opposite sign. This gives us an intuitive appreciation that the triangle inequality 
ought to be true. Now how do we prove it? Testing more examples will not suffice, 
because infinitely many pairs are possible. Many correct proofs can be given, but we 
will discuss the one chosen by the author. 

The next step in writing a proof requires some playfulness or inquisitiveness on 
the part of the student. In theoretical mathematics we are discouraged from following 
rote procedures in the hope of finding an answer without thought. To bypass thought 
would be to bypass mathematics itself. The student should not even consider such a 
route, just as he or she should not substitute a pill for a good meal. 

We see by playing with the definition of absolute value that lal must be equal to 
either a or - a. This reminds us of what we observed when checking pairs of specific 
numbers of the same or opposite sign, as explained above. The playfulness appears 
when we choose to write this as -Ial ::; a ::; lal for all a, even though the truth of 
this double inequality hinges upon a being equal to either the left side or the right 
side. Then we do the same for b, recognizing that a and b do play symmetrical roles 
in the statement of the theorem. Then we add the two double inequalities, obtaining 
Equation (1.1). The remainder of the proof unfolds from considering that the value 
of la + bl hinges upon the sign of a + b. 

This analysis of the proof of the triangle inequality is representative of what the 
student should do with each proof in this book, and with each proof presented in 
class by his or her professor. Take a fresh sheet of paper and write out a full analysis 
of the proof, including the perceived rationale for the course that it takes. Work on 
this until you are sure you understand correctly. If in doubt, ask your teacher! This 
is the way to learn advanced mathematics, and it is what the student must do to learn 
to prove theorems. 

EXERCISES 

1.1 Let E > O. Determine how large n E N must be to ensure that the given 
inequality is satisfied, and use the Archimedean Property to establish that such n 
exist. 

a) 1. < E? n 

b) -.1, < E? n 
c) In < E? (Assume that fo exists in R ) 

1.2 Prove the uniqueness of the additive inverse - a of a. (Hint: Suppose that 

x+ a = O= y + a 

and prove that x = y.) 

1.3 Use the Axiom of Distributivity to prove that aO = 0 for all a E JR, and use 
this to prove that ( - 1) ( - 1) = 1. 
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1.4 Prove that (-l)a = -a for all a E R 

1.5 Prove the uniqueness of the multiplicative inverse a- I of a for all a -I- 0 in R 

1.6 Prove: For all a and b in JR, labl = la llbl. (Hint: Consider the three cases a 
and b both nonnegative, a and b both negative, and a and b of opposite sign.) 

1.7 Prove: For all a, b, c in lR, 

la - cl :::; la - bl + Ib - cI-
(Hint: Use the triangle inequality.) 

1.8 Let E > O. Find a number 6" > Osmallenoughsothatla-bl < 6"andlc-bl < 6" 
implies la - c l < E. 

1.9 t Prove: For all a and b in JR, 

Iial-Ibil :::; la - bl· 

Intuitively, this says that la l and Ib l cannot be farther apart than a and b are. (Hint: 
Write la l = I (a - b) + bl and use the triangle inequality. Then do the same thing for 
Ibl·) 

1.10 Prove or give a counterexample: 
a) If a < band c < d, then a - c < b - d. 
b) If a < band c < d, then a + c < b + d. 

1.11 t This exercise leads in three parts to a proof that there is no rational number 
the square of which is 2. The reader will need to know from another source that each 
rational number can be written in the form ~ in lowest terms. This means that m 
and n have no common factors other than ± 1. 

a) If mE Z is odd, prove that m 2 is odd. 
b) If mE Z is such that m 2 is even, prove that m is even. 
c) Suppose there exists ~ E Ql, expressed in lowest terms, such that 

Prove that m and n are both even, resulting in a contradiction. 
(Hint: For this problem, if the student has not taken any class in number 

theory, the following definitions may be helpful. A number n is called even 
if and only if it can be written as n = 2k for some integer k. A number n 
is called odd if and only if it can be written as n = 2k - 1 for some integer 
k.) 

1.2 LIMITS OF SEQUENCES & CAUCHY SEQUENCES 

By a sequence Xn of elements of a set S we mean that to each natural number n E N 
there is assigned an element Xn E S. Unless otherwise stated, we will deal with 
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sequences of real numbers. We can think of a sequence as an endless list of real 
numbers, or we could equivalently think of a sequence as being afunction whose 
domain is N and whose range lies in R It is very important to define the concept of 
the limit of a sequence. Intuitively, we say that Xn approaches the real number L 
as n approaches infinity, written Xn ---7 L E ~ as n ---7 00, provided we can force 
IXn - L I to become as small as we like just by making n sufficiently big. This is also 
written with the symbols limn->oo Xn = L. The advantage of writing the definition 
symbolically as follows is that this definition provides inequalities that can be solved 
to determine whether or not Xn ---7 L. 

Definition 1.2.1 A sequence Xn ---7 L E ~ as n ---7 00 if and only if for all E > 0, 
there exists N E N corresponding to E such that 

n ::::: N ~ IXn - LI < E. 

If there exists a number L such that Xn ---7 L, we say Xn is convergent. Otherwise we 
say that Xn is divergent. 

See Exercise 1.12 . 

• EXAMPLE 1.1 

We claim that if Xn = ~, then Xn ---7 O. 

Proof: Let E > O. We need N E N such that n ::::: N implies 

That is, we need to solve the inequality ~ < E. Multiplying both sides of this 
inequality by the positive number ~, we see that ~ < n. That is, if we pick 
N E N such that N > ~, then 

1 1 
n ::::: N ~ ; ::; N < E. 

We know that such an N exists in N since E and I are both positive. Thus there 
exists N E N such that Nl = N > ~ by the Archimedean Principle. _ 

The student should note that the value of N does indeed correspond to E. If E > 0 
is made smaller, then N must be chosen larger . 

• EXAMPLE 1.2 

Let Irl < 1. We claim that rn ---7 0 as n ---7 00 . 

Let E > O. We need to find N E N such that n ::::: N implies 
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In the special case in which r = 0, it would suffice to take N = 1. So suppose 
r i- O. Then we need to solve 

( l)n 1 
R > ~. 

Note that we do not proceed by taking nth roots of both sides of this inequality, 
since we have not yet established the existence of such roots for all positive 
real numbers. Since Irl < 1, 1; 1 = 1 + P > 1 for some p > O. Thus 

C~I) n = (1 + p) n 

= (l + p)(I + p)· · ·(I + p) 

= I n + np + .. . + pn 

> np. 

By transitivity of inequalities, it would suffice to find N E N such that N p > ~. 
Such integers N exist because of the Archimedean property. So pick N E N 
such N p > ~ and we find that n 2: N implies np 2: N p > ~ so that 
Irn - 01 = Ir ln < Eo 

Notice that if Xn is convergent, then after some finite number N of terms, all 
subsequent terms are bunched very close to one another: in fact, within E of some 
number L. This motivates the following definition and theorem. 

Definition 1.2.2 A sequence Xn is called a Cauchy sequence if and only if, for all 
E > 0, there exists N E N, corresponding to E, such that nand m 2: N implies 
IXn - xml < E. 

Theorem 1.2.1 If Xn is any convergent sequence of real numbers, then Xn is a 
Cauchy sequence. 

Proof: Suppose Xn is convergent: say Xn -+ L. Let E > O. Then, since ~ > 0 
as well, we see there exists N E N, corresponding to E, such that n 2: N implies 
IXn - LI < ~. Then, if nand m 2: N, we have 

IXn - xm l = I(xn - L) + (L - xm )1 

:::; IXn - L I + IL - xml 
E E 

< - + - = E. 
2 2 

• 
Remark 1.2.1 We make some remarks here to help the student to write his or her own 
detailed analysis of the proof of Theorem 1.2.1, as recommended in the introduction, 
on page xxiii. The student should begin with the intuitive understanding that if 
Xn -+ L, then Xn will be very close to L for all sufficiently big n. The point is that 
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we want both Xn and Xm to be so close to L that Xn and Xm must be within E of one 
another. The student should use visualization to recognize that since Xn and Xm can 
be on opposite sides of L, we will need both Xn and Xm to be within ~ of L. Then the 
triangle inequality for real numbers assures that Xn and Xm are no more than E apart. 
The student should write a careful analysis of every proof in this course, whether 
proved in the text or by the professor in class . 

• EXAMPLE 1.3 

We claim the sequence Xn = (- 1 )n+l is divergent. 
In fact, if Xn were convergent, then Xn would have to be Cauchy. But 

IXn - xn+ll == 2, for all n. Thus, if 0 < E ::; 2, it is impossible to find N E N 
such that nand m ~ N implies IXn - xml < E. 

Definition 1.2.3 A sequence Xn is called bounded if and only if there exists M E lR 
such that IXn 1 ::; M, for all n E N. 

Theorem 1.2.2 If Xn is Cauchy, then Xn must be bounded. 

Remark 1.2.2 Observe that if Xn is convergent, then it is Cauchy, so this theorem 
implies that every convergent sequence is bounded. 

Proof: We will show that every Cauchy sequence is bounded. In fact, taking E = 1, 
we see that there exists N E N such that nand m ~ N implies IXn - xml < 1. In 
particular, n ~ N implies 

IXnl-lxNI::; Ilxn l-lxNII ::; IXn - xNI < 1 

so that IXnl < 1 + IXNI. If we let 

making M the largest element of the indicated set of N numbers, then IXn 1 ::; M for 
all n E N. • 

• EXAMPLE 1.4 

If Xn = n, then .Tn is not convergent. 
If .T n were convergent, then Xn would be bounded. But for all M > 0, 

there exists n E N, corresponding to M, such that n > M by the Archimedean 
Property. So Xn is not bounded. 
It is also convenient to define the concepts Xn ---7 00 and Xn ---7 -00. However, 00 

is not a real number, so we have not defined anything like IXn - 001 and thus cannot 
prove such a difference is less than E. (Compare this with the discussion on page 9.) 
We adopt the following definition. 
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Definition 1.2.4 We write Xn ----+ 00 if and only if!or all M > 0 there exists N E N 
such that n 2:: N implies Xn > M. Similarly, we write Xn ----+ -00 if and only if!or 
all m < 0 there exists N E N such that n 2:: N implies Xn < m. 

EXERCISES 

1.12 t Use Definition 1.2.1 to prove that the limit of a convergent sequence Xn is 
unique. That is, prove that if Xn ----+ Land Xn ----+ M then L = M . 

1.13 Let 

Xn = {~ if n < 100, 

if n 2:: 100. 

Prove that Xn converges and find lim X n . 

1.14 

1. IS 

1.16 

1.17 

1.18 

Let Xn = n;;: l. Prove Xn converges and find the limit. 

Let Xn = ( · ~~r . Prove Xn converges and find the limit. 

Let Xn = ,&. Prove Xn converges and find the limit. 

2 

Let Xn = n ;;n. Does Xn converge or diverge? Prove your claim. 

Let Xn = (- lC +l. Does Xn converge or diverge? Prove your claim. 

1.19 t Prove: If Sn :S t n :S Un for all n and if both Sn ----+ L and Un ----+ L then 
t n ----+ L as n ----+ 00 as well. (This is sometimes called the squeeze theorem or the 
sandwich theorem for sequences.) 

1.20 Prove or give a counterexample: 
a) Xn + Yn converges if and only if both Xn and Yn converge. 
b) XnYn converges if and only if both Xn and Yn converge. 
c) If Xn Y n converges, then lim Xn Yn = lim Xn lim Y n . 

1.21 Let Xn = si ~ n . Prove Xn converges, and find the limit. 

1.22 t Suppose a :S Xn :S b for all n and suppose further that Xn ----+ L . Prove: 
L E [a, b]. (Hint: If L < a or if L > b, obtain a contradiction.) 

1.23 Suppose Sn :S tn :S Un for all n, Sn ----+ a < b, and Un ----+ b. Prove or give a 
counterexample: limn---+oo t n E [a, b]. 

1.24 For each of the following sequences: 

i. Determine whether or not the sequence is Cauchy and explain why. 

a) Xn = (-l) nn 

b) Xn = n + .1 n 
c) Xn = J., n 


