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Preface 

Multivariate Statistical Simulation concerns the computer generation of 
multivariate probability distributions. Generation is used in a broader 
context than solely algorithm development. An important aspect of gener-
ating multivariate probability distributions is what should be generated, as 
opposed merely to what could be generated. This viewpoint necessitates an 
examination of distributional properties and of the potential payoffs of 
including particular distributions in simulation studies. Since other avail-
able books document many of the mathematical properties of distributions 
(e.g., Johnson and Kotz, Distributions in Statistics: Continuous Multivariate 
Distributions), a complementary approach is taken here. Generation al-
gorithms are presented in tandem with many graphic aids (three-dimen-
sional and contour plots) that highlight distributional properties from a 
unique perspective. These plots reveal features of distributions that rarely 
emerge from preliminary algebraic manipulations. 

The primary beneficiary of this book is the researcher who is confronted 
with the task of designing and executing a simulation study that will 
employ continuous multivariate distributions. The prerequisite for the 
reader is a relentless curiosity as to the behavior of the method, estimator, 
test, or system under investigation when various multivariate distributions 
are assumed. The multivariate distributions presented in this text can serve 
as simulation drones to satiate the researcher's curiosity. 

For the past ten years or so, my research efforts have consistently 
involved the development of new distributions to be used in simulation 
contexts. Hence several chapters reflect my naturally biased disposition 
toward certain distributions (Pearson Types II and VII elliptically con-
toured distributions, Khintchine distributions, the unifying class for the 
Burr, Pareto, logistic distributions). As a reasonable attempt for complete-
ness, various multivariate distributions that are potential (but as yet not 
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sufficiently developed) competitors to the highlighted distributions are 
mentioned in the research directions chapter or in the supplementary 
bibliography. 

Although not designed as a text, this book can be used as the primary 
reference in a graduate seminar in simulation. Exercises could consist of 
adapting for simulation purposes various references in the supplementary 
list. 

The initial draft of this book was written while I was on sabbatical at the 
University of Arizona and the University of Minnesota during the academic 
year 1982-1983. For the Tucson connection I am grateful to John 
Ramberg, Chairman of the Systems and Industrial Engineering Depart-
ment, and to Chiang Wang, who gave me considerable support. The 
Minnesota visit was made possible by the efforts of Dennis Cook, Chair-
man of the Department of Applied Statistics, and financial support was 
provided by the School of Statistics under the aegis of Seymour Geisser. 
The hospitality at both departments is gratefully acknowledged. Valuable 
insights were provided by Dick Beckman (Los Alamos), Christopher 
Bingham (St. Paul), Adrian Raftery (Seattle), and George Shantikumar 
(Berkeley). I am particularly indebted to Sandy Weisberg at Minnesota, 
whose careful reading of the manuscript led to significant improvements. I 
am grateful to Myrle Johnson and Geralyn Hemphill for computer graphics 
support. Finally, this book would not have been possible without the 
continued support of Larry Booth and Harry Martz, Jr. at Los Alamos. 

Skilled typing was performed by Kathy Leis and Kay Woefle (Tucson), 
Carol Leib and Terry Heineman-Baker (St. Paul), and Kay Grady, Hazel 
Kutac, Sarah Martinez, Corine Ortiz, and Esther Trujillo (Los Alamos). 

MARK E. JOHNSON 

Los Alamos, New Mexico 
October 1986 
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CHAPTER 1 

Introduction 

Monte Carlo methods are becoming widely applied in the course of 
statistical research. This is particularly true in small-sample studies in which 
statistical techniques can be scrutinized under diverse settings. Develop-
ments in computing have also encouraged the creation of new methods, 
such as bootstrapping (Efron, 1979), which exploit this capability. In these 
respects, statistical research and computing have evolved a symbiotic rela-
tionship. 

Monte Carlo studies as reported in the statistical literature typically 
result from the progression of tasks outlined in Figure 1.1. A new statistical 
technique is first conceived and its associated properties are sought. The 
main goal of the investigation is probably to collect evidence that will 
persuade others to employ the method. There are bound to be some 
characteristics of the new method that resist mathematical analysis, in 
which case Monte Carlo methods may be used to provide additional 
knowledge. A preliminary or pilot Monte Carlo study might detect any 
obvious flaws or possible improvements in the new procedure or suggest 
numerically efficient shortcuts. Next a larger scale Monte Carlo study is 
designed in order to address the open questions about the method's 
properties. A key step in this particular task is the selection of cases, which 
involves the choice of distributions and their parameters, sample sizes, and 
so forth. The large-scale study is then conducted and the results synthe-
sized. In the happy situation that the new method performs "well," the 
investigator can proceed to the publication stage. Otherwise, adjustments to 
the simulation design or the method itself may be pondered and various 
tasks repeated. 

Some possible purposes of the generic study described in Figure 1.1 
might include examination of robustness properties, assessment of small-
sample versus asymptotic agreement, or comparison of the new method 
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2 INTRODUCTION 

with its competitors. This flow chart is generally appropriate for studies that 
involve either univariate or multivariate distributions. However, the prob-
lems in the design stages are vastly different with regard to case selection. 
For a study in which univariate distributions are used, the problem is to 
select from among the many distributions available. The set of continuous 
univariate distributions that can fairly easily be used includes the following: 

Beta 
Burr 
Cauchy 
Contaminated normal 
Exponential power 
Extreme value 
F 
Gamma (including x 2 

Generalized gamma 
Inverse Gaussian 

and exponential) 

Johnson system (including lognormal) 

Kappa 
Lambda 
Laplace 
Logistic 
Normal 
Pareto 
Pearson system 
Slash 
Stable 
t 
Weibull 

With relative ease, an investigator can accumulate vast quantities of 
numerical results. However, broad coverage of distributions garnered from 
the extensive use of the above list can make the subsequent assimilation of 
results difficult. In particular guiding principles can be lacking as to the 
effect of distribution on the statistical method under study. Some authors 
such as Pearson, D'Agostino, and Bowman (1977) have resorted to tabulat-
ing distributional results according to the population skewness and kurtosis 
values. This tactic provides at best a crude ordering for diverse univariate 
distributions. 

In contrast to the univariate setting in which many distributions are 
available, the multivariate setting offers relatively few distributions that are 
suitable in Monte Carlo contexts. Although there are many multivariate 
distributions—the texts by Johnson and Kotz (1972) and Mardia (1970) 
attest to this—the key word is suitable. More recent advances, as can be 
found in the NATO conference volumes following international meetings in 
Calgary (Patil, Kotz, and Ord, 1975) and Trieste (Taillie, Patil, and 
Baldessari, 1981), tend to be inappropriate or incomplete for application in 
Monte Carlo studies. Some current limitations of many of these multi-
variate distributions with respect to Monte Carlo work include the follow-
ing: 

1. Many distributions are tied directly to sampling distributions of 
statistics from the usual multivariate normal distribution. Outside this 
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Figure 1.1. Generic Monte Carlo study. 

realm of normal theory inference or estimation, the distributions may have 
little to offer. 

2. Other distributions present formidable computational problems (e.g., 
Bessel function distributions). 

3. The support of some of the distributions is too restrictive to be of 
general interest. Possible examples include the beta-Stacy distribution 
(Mihram and Hultquist, 1967) and some of the distributions developed by 
Kimeldorf and Sampson (1978). 

4. Some distributions are limited to modeling only weak dependence. 
Morgenstern's distribution (Section 10.1) is such an example, since by any 
measure of association, its intrinsic dependence is restrictive. Also, the 
trivial case of multivariate distributions constructed with independent uni-
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variate components has this obvious shortcoming. Multivariate distribu-
tions with independent components are, however, important as a baseline 
for assessing the effects of nontrivial dependence. This issue is explored in 
detail in some specific contexts later. 

5. Computational support for some distributions is lacking. For exam-
ple, no method may have been published for generating variates from the 
distribution, or if a method is known, the required univariate generation 
routines are unavailable. 

These limitations of some existing distributions should not be viewed as 
grounds to abandon those distributions entirely. The limitations are cited to 
explain their rare use, which might be remedied given particular advances 
in research. Morgenstern's distribution, which has limited dependence 
structure in its own right, can be incorporated neatly with the Burr, Pareto, 
and logistic distribution of Section 9.1 to yield a valuable general distribu-
tion developed in Section 9.2. 

Deficiencies in currently available distributions further point to the 
general issue concerning the purposes of Monte Carlo studies and the role 
of multivariate distribution selection to accommodate these purposes. In 
the absence of a particular investigation, general recommendations for 
distribution selection are difficult to provide. Most new statistical tech-
niques have some basic characteristics or nuances that can influence case 
selection and the design of the Monte Carlo study. To illustrate this point, 
three distinct research topics are outlined in Sections 1.2-1.4. These discus-
sions are intended to illustrate the potential benefits of problem analysis 
prior to the execution of the study. In addition these sections provide more 
justification for the developments given in subsequent chapters. The three 
topics are the robustness of Hotelling's r2-test (Everitt, 1979), error rates in 
partial discriminant analysis (Beckman and Johnson, 1981), and a new 
multivariate goodness-of-fit test (Foutz, 1980). 

These topics are described in some detail, as they may be of independent 
interest and they may provide an appreciation for the problems and 
challenges awaiting future investigations and developments in Monte Carlo 
studies. These are certainly the types of studies that have motivated the 
writing of this text and have influenced the coverage of distributions given 
in subsequent chapters. 

1.1. ROBUSTNESS OF HOTELLING'S T1 STATISTIC 

A standard problem in multivariate analysis is to test the equality of an 
unknown population mean vector p, and a specified mean vector ji0. This 
test can be conducted using a random sample X1,X2, ...,X„ from a 
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multivariate normal distribution denoted A^(|i, 2) where p is the dimen-
sion and 2 is a p X p covariance matrix. The appropriate test statistic is 
Hotelling's T2, computed as 

T2-n(%-to)'S-l&-t0), 

where 

X - i £ x „ and s - - ^ £ ( X , - X ) ( X < - X ) ' . 

Under the null hypothesis that |i = ji0, the statistic (n - p)T2/p(n - 1) 
has an F distribution with p and n - p degrees of freedom. Hotelling's T2 

is the basis of a uniformly most powerful test against the alternative p =* u0 

and is invariant under nonsingular linear transformation (Muirhead, 1982, 
pp. 211-215). In simple terms, if the assumptions are valid that the X,'s are 
independent and identically distributed Np(p, 2), then T2 should be used 
for inference. 

An important practical issue concerns the performance of T2 if the 
underlying assumptions are incorrect. There are a variety of ways in which 
the assumptions could go awry, only a few of which have been addressed in 
the literature (Everitt, 1979 and Nath and Duran, 1983). The typical 
situation involves X/s that have independent and identically distributed 
components following a simple univariate distribution such as rectangular, 
exponential, or lognormal. Of course, the normal distribution is usually 
included in these studies as a check on the computer program. Alternatives 
with independent components are not so restrictive as might be surmised, 
since the results for a given set of X/s would be identical as those for AXt, 
i' = l , 2 , . . . , « , for a nonsingular pXp matrix A. However, it is not 
sufficient to consider only random vectors with independent components. 
Some distributions such as the multivariate Pearson II and VII distributions 
(Section 6.2) cannot be obtained in this manner. The following comments 
outline possible areas of research on the performance of T2 when the 
assumptions are violated. Some of these issues can be handled readily with 
the distributions described in later chapters of this book. 

1. Suppose the assumption of independence in the random sample is 
invalid? This would mean the X1,X2,...,X„ could be thought of as one 
realization from an n X p dimensional multivariate distribution. How does 
this affect T27 

2. Using the independent components model for the X/s, what sort of 
problems arise if the components are not identically distributed? 

3. Moreover, is it really reasonable to assess the effects of the component 
distributions in terms of the univariate population skewness and kurtosis 
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values, as has been done by Everitt, for example? Is it possible to isolate 
these effects to avoid the usual confounding? Everitt demonstrated some 
cases in which lognormal components evidently degraded T2 performance 
more than exponential components. Since the skewness of the lognormal is 
greater than the skewness of the exponential, he argued that skewness was 
the culprit. However, this argument can as well be applied using kurtosis 
instead of skewness, so that a more controlled experiment seems warranted. 

4. For extremely non-normal cases that give terrible results with T2, the 
non-normality is probably apparent, in which case a transformation to 
normality could be sought. Can this idea be used to ameliorate the 
performance of T21 

5. The performance of T2 has been viewed primarily in terms of 
holding the a-level or Type I error rate at a nominal prespecified value. A 
possible extension is that in cases where this robustness holds, what effects, 
if any, can be observed in terms of power? 

6. Consideration of dimension and sample size are critical for any of the 
above topics. The general question related to each of these two factors is: 
Do the results improve, degrade, or remain unaffected as these factors vary? 

With this vast set of factors of interest, Monte Carlo experiments obviously 
should not be conducted without considerable planning. Relatively little 
attention has been given to experimental design principles in the context of 
Monte Carlo studies, although there are exceptions (Margolin and Shruben, 
1978). Additional work in this area would be welcomed. 

1.2. ERROR RATES IN PARTIAL DISCRIMINANT ANALYSIS 

Discriminant analysis involves techniques for classifying individuals into 
one of several populations on the basis of vectors of observations taken on 
the individuals and on the constituents from each population. Many 
discriminant analysis techniques implicitly assume forced discrimination, in 
which every "new" individual is to be classified. Broffitt, Randies, and 
Hogg (1976) described a method for partial discrimination in which an 
additional option—do not classify—is allowed. Subsequently, Beckman 
and Johnson (1981) advocated a related partial discriminant analysis method 
appropriate in the two-population case. This method is first described 
briefly and then its performance from previous Monte Carlo work is 
surveyed. In keeping with the spirit of the Hotelling's T2 example above, a 
number of research questions are then posed. Some of these questions could 
be addressed through Monte Carlo studies employing the techniques and 
the multivariate distributions given in this book. 
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Figure 1.2. Forced and partial discrimination. 

Figure 1.2 is useful for describing a simple discriminant rule for partial 
classification in bivariate populations. The available data on the two 
populations, denoted ir, and ir2, is represented by the X's and O's in the 
figure. In forced discrimination, a new observation Z would be classified in 
TTJ, for example, if it were to the left of the solid line L, and in ir2 otherwise. 
It should be apparent that many errors in classification will be made 
because of the considerable overlap in the populations. On the other hand, 
with partial discriminant analysis, a third region—the do-not-classify area 
—is included; it is the area enclosed by the dashed lines. Only new 
observations outside this region will be classified, and then presumably with 
a high probability of success. 

To automate classification, it is convenient to assign a univariate score to 
each observation. Thus classification decisions can be made by considering 
certain intervals of the real line, as can be seen from the figure. The scoring 
function used there is the linear discriminant function given by the projec-
tion 

L(z) - (X-^S'h, 

where X and Y are the sample mean vectors from the training sets of 
observations and 5 is an estimated pooled covariance matrix. In particular, 
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if the training sets are given by T, = {X^Xj,...,Xfli} for Wj and T2 = 
{Vi,Y2 Y„2} forw2lthen 

- 1 £ X = - £ X , 
"1 < - i 

- 1 £ Y - - E Y , 
"2 , - 1 

5 = 
1 

nl + «2 — 2 
£ (X, - X)(X( - X)' + E (Y( - Y)(Y, - Y)' 
i - i » - i 

Having assigned scores via this or most any other reasonable scheme, the 
next task is to determine the do-not-classify interval endpoints a and b. If 
one knew the probability distribution of the scores from each population, 
represented by the densities fx and f2, then the following optimization 
problem would need to be solved: 

maximize F^a) + 1 - F^b) + F2(a) + 1 - F2{b) (1.1) 
a,b 

such that 

i - fU*) 
1 - F.ib) + F,(a) 

F2(a) + 1 - F2(b) 

< a, 

< a 2> 

(1.2) 

(1.3) 

where a, is the specified probability of misclassification of individuals from 
population / given an attempted classification and Ft is the distribution 
function corresponding to / . The objective function corresponds to the 
proportion of observations classified. The constraints (1.2) and (1.3) relate 
to attaining a specified conditional error rate. In any realistic case, the F/s 
are unknown but can be estimated by the sample distribution function of 
scores. The above optimization problem then becomes discrete and can be 
solved by simple enumeration. An example is provided in Table 1.1. Fifteen 
observations from two populations were assigned scores, and the nominal 
error rates are specified as ax = a2 •* 0.10. The four possible locations for a 
or b are selected from {cv c2, c3, c4}. Any other choice, such as ct between 
the scores of two X's, for example, could be improved. For each of the ten 
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TABLE 1.1. 

Ordering of Scores 

XXXXXXXXX O X O O O XXXX O O X O O O O O O O O O 
T T T I 
c, c2 c3 c4 

Enumeration of Possible Solutions 

a 

c\ 
c, 
c, 
c i 
c2 

c2 

c2 
c3 
c3 

e4 

b 

<=1 

Cl 

Ci 

C4 

*2 

Ci 

C4 

Cj 

*4 

^4 

Number of X's Incorrect 

Number of X's Oassified 

6/15 
5/14 
1/10" 
0/9" 
5/15 
1/11" 
0/10" 
1/15" 
0/14" 
0/15" 

Number of O's Incorrect 

Number of O's Classified 

0/15" 
0/14" 
0/11" 
0/9" 
1/15" 
1/12" 
1/10" 
4/15 
4/13 
6/15 

Total Number 
Classified 

30 
28 
21* 
18* 
30 
23* 
20* 
30 
27 
30 

"Observed conditional error rates less than or equal to 0.10. 
*Both conditional error rates acceptable. 

possible pairs (a, b), the error rates on the training sets themselves are 
computed. Four of the ten cases, namely (c l f c3), (c1 ; c4) , (c 2 , c3), and 
( c 2 , c 4 ) , attain the specified 10% error rate in each population, at least on 
the training sets. Of these, the pair (c 2 , c3) classifies the most number of 
individuals, 23. 

One additional adjustment to this method is necessary to ensure its 
decent performance in small samples. The reason for an adjustment is that 
discrimination performance is overly optimistic on the training sets in 
comparison to new observations. A computing-intensive scheme for reduc-
ing this bias was developed by Beckman and Johnson (1981), and a brief 
description is included here for completeness. Assume a scoring function L 
whose parameters can be estimated from the training sets 7\ and T2, as 
given above. A new observation Z is to be classified. We first pretend that Z 
belongs to population v , so that our training sets are {Z} U Tx and T2 of 
size nl + 1 and n2, respectively. A scoring function L1 is then determined 
based on these training sets. The discrete optimization problem represented 
by (1.1)—(1.3) is solved to obtain cutoff points ax and bx and pertinent 
intervals Ax — ( - 0 0 , ax\ and Bx = [blt 00). Clearly, L,(Z) e A2 is evi-
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dence to suspect that Z belongs to irt and L2(Z) e Bl suggests that Z 
belongs to m2. The previous steps are then repeated pretending that Z 
belongs to w2. A revised scoring function L2 based on training sets 7\ and 
T2 U {Z} is determined and new cutoff values a2 and b2 are calculated 
leading to intervals A2 = ( — oo, a2] and B2 = [fr2, oo). If L2(Z) e .42, then 
perhaps Z belongs to ny, if L2(Z) € £2, then possibly Z e w2. The results 
of these two exercises lead to the following classification rule: 

If L,(Z) e A1 and L2(Z) e A2, then classify Z in *rt. 
If L2(Z) e Bt and L2(Z) e B2, then classify Z in m2. 
Otherwise, do not classify Z. 

This classification rule seems to be asymptotically distribution-free al-
though explicit restrictions on the distributions that underly populations -nx 

and m2 and the scoring functions have not been derived. However, some of 
the small-sample properties have been considered and no evidence to refute 
this point has emerged. A brief review of the cases examined by Beckman 
and Johnson is now given. Of particular interest was the performance of 
this method for a variety of distributions. Three bivariate distributions for 
the populations were considered: normal (Section 4.1), t (Section 6.2), and 
lognormal (Chapter 5). For each distributional case, four subcases set the 
population covariance matrices equal, 2^ = 2 2 and four subcases have 
2 t =* 2 2 . The 2j = 2 2 cases considered correlations between the two 
components as 0, J, \, and \. In the 2 t # 2 2 case, population 7̂  was 
governed by independence ( ^ = / ) and in IT2, 2 2 had four possibilities 
obtained from two choices of p(i or ^) crossed with two choices of (a^ a2) 
—either (1,1) or (1,2). Finally, sample sizes were varied as 21, 35, 51,101, 
201. Thus there were 120 individual cases considered although only three 
specific distributions were used. This may be a typical phenomenon—rarely 
can "distribution" be treated as an isolated treatment in the design sense. 
Sample size is important in general and covariance structure is particularly 
important in discriminant analysis studies. The results of the study basically 
indicated that for sample sizes 51 and larger, the proposed partial discrimi-
nant analysis method worked correctly—the nominal conditional error 
rates were achieved. 

The results of this Monte Carlo study were not intended to be extrapo-
lated to cover all multivariate distributions, covariance structures, and their 
combinations with two populations. The results did, however, appear 
sufficiently promising to apply the technique in a geological investigation 
that had previously provided tacit inspiration for the cases in the Monte 
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Carlo study (Patterson et al., 1981). In fact, there are many additional 
avenues of investigation that could be pursued, some of which are given 
below: 

1. Does the procedure continue to perform correctly in higher dimen-
sions? It might be surmised that larger sample sizes would be required to 
attain comparable results. 

2. In the previous studies, the distributional forms underlying mx and tr2 

were the same—only the parameters varied. Are the results different if itl 

and ir2 originate from distinct distributions? For example, suppose irt is 
governed by a normal and IT2 by a lognormal? 

3. For cases in which irt and ir2
 n a v e t n e same mean vector, discrimina-

tion could be made on the basis of dispersion about the mean. Assuming 
adjustments to the basic partial discriminant analysis method can be 
discerned, what sort of performance is achievable? 

4. Certainly other scoring functions could be considered. Also, different 
estimators of the parameters of a particular scoring function could be tried. 
For example, robust estimates of the /i's and 2 could be calculated. Is there 
an increase in the proportion of observations classified and if so, is it 
sufficient to justify the additional effort in calculating these estimates? Is it 
possible to recommend particular scoring functions for various classes of 
distributions? 

5. Extensive Monte Carlo studies provide some assurance that the 
method applied to real data will be satisfactory. A practitioner may want 
additional guarantees that on the specific data being considered the specified 
conditional error rates will really be achieved and the maximum number of 
individuals will be classified. One possible approach to collecting this 
evidence is to apply Efron's (1979) bootstrapping technique to estimate the 
standard errors of the estimated conditional error rates and proportion of 
classifications Efron gives an example of the bootstrap's use in forced 
discrimination so that only a slight adaptation is necessary for the partial 
discrimination problem. 

13. FOUTZ'TEST 

Foutz (1980) developed a new general-purpose goodness-of-fit test that can 
be applied in multivariate situations. This test has a number of intuitively 
appealing features that encourage a thorough empirical examination. First 
Foutz' test is described and then, in keeping with the previous two exam-
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pies, a set of research questions is posed. The primary intent is to provide 
additional motivation for having included the material in subsequent 
chapters. 

Suppose Xt ,X2, . . . ,Xn_1 constitute a random sample distributed 
according to a probability measure P that is assumed to be absolutely 
continuous with respect to Lebesque measure. The problem is to test the 
hypothesis that P = P0 where P0 is a specified probability measure. In 
comparing these two measures, it is natural to find the Borel set in Rp, say 
B*, for which \P(B*) - P0(B*)\ is a maximum. This is a tricky problem to 
say the least—searching through the Borel sets. Foutz devises an ingenious 
scheme for conducting a test of P = P0, a scheme that requires the 
computation of probabilities of only n Borel sets. These sets are generated 
through the construction of statistically equivalent blocks Bv B2,..., Bn, 
which depend on the data in a manner to be described shortly. Given these 
blocks and the hypothesized measure P0, Foutz' test statistic F„ is com-
puted as follows: 

1. Compute £>, = P0(Bj), i - 1,2 n. 
2. Order these probabilities as D(1) < D(2) < • • • < D(n). 
3. Evaluate F„ = max,_12 n-XU/" ~ Dm - D{2) - Du)). 

For very small values of n (< 5) the null distribution of Fn can be worked 
out exactly. For intermediate values up to possibly SO, a Monte Carlo 
approach can be used. Franke and Jayachandran (1983) report critical 
values for n = 20,30,50 at the significance levels 0.10, 0.05, and 0.01. 
Asymptotically, F„ is normally distributed with mean e~l and variance 
(2e_1 - 5e~2)/n. Of particular importance is that the distribution of Fn is 
the same for any dimension p. 

It remains to describe how the statistically equivalent blocks Bv 

B2,..., B„ are constructed. The method is due to Anderson (1966) and 
described by Foutz. Here the basic setup using Foutz* notation is described 
and then the mechanics are carried out on a simple example. To start, the 
n - 1 data points X1,X2,...,Xn_1 are in Rp, which in the block notation 
is Bl2 „. Suppose there are n — 1 real-valued functions /^(x), h2(x),..., 
hn_1(x) such that A,(X) is a continuous random variable / = 1 ,2 , . . . ,« - 1, 
if X is distributed according to P. 

Each function is used to identify one data point for purposes of 
partitioning i?f or a subset of Rp. These functions are subsequently 
considered in the order given by a permutation Kx, K2,..., Kn_l of the 
integers 1,2,..., n - 1. At the first stage, the function hKi is used and the 
values hK (XJ , . . . , hK (X,,^) are computed. The Kx\h smallest such value 


