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Preface

This book updates the 1st edition of Bayesian Statistical Modelling and, like its predecessor,
seeks to provide an overview of modelling strategies and data analytic methodology from
a Bayesian perspective. The book discusses and reviews a wide variety of modelling and
application areas from a Bayesian viewpoint, and considers the most recent developments in
what is often a rapidly changing intellectual environment.

The particular package that is mainly relied on for illustrative examples in this 2nd edition
is again WINBUGS (and its parallel development in OPENBUGS). In the author’s experi-
ence this remains a highly versatile tool for applying Bayesian methodology. This package
allows effort to be focused on exploring alternative likelihood models and prior assumptions,
while detailed specification and coding of parameter sampling mechanisms (whether Gibbs or
Metropolis-Hastings) can be avoided – by relying on the program’s inbuilt expert system to
choose appropriate updating schemes.

In this way relatively compact and comprehensible code can be applied to complex prob-
lems, and the focus centred on data analysis and alternative model structures. In more general
terms, providing computing code to replicate proposed new methodologies can be seen as an
important component in the transmission of statistical ideas, along with data replication to
assess robustness of inferences in particular applications.

I am indebted to the help of the Wiley team in progressing my book. Acknowledgements
are due to the referee, and to Sylvia Fruhwirth-Schnatter and Nial Friel for their comments
that helped improve the book.

Any comments may be addressed to me at p.congdon@qmul.ac.uk. Data and programs
can be obtained at ftp://ftp.wiley.co.uk/pub/books/congdon/Congdon BSM 2006.zip and also
at Statlib, and at www.geog.qmul.ac.uk/staff/congdon.html. Winbugs can be obtained from
http://www.mrc-bsu.cam.ac.uk/bugs, and Openbugs from http://mathstat.helsinki.fi/openbugs/.

Peter Congdon
Queen Mary, University of London

November 2006
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CHAPTER 1

Introduction: The Bayesian
Method, its Benefits and
Implementation

1.1 THE BAYES APPROACH AND ITS POTENTIAL ADVANTAGES

Bayesian estimation and inference has a number of advantages in statistical modelling and
data analysis. For example, the Bayes method provides confidence intervals on parameters and
probability values on hypotheses that are more in line with commonsense interpretations. It
provides a way of formalising the process of learning from data to update beliefs in accord
with recent notions of knowledge synthesis. It can also assess the probabilities on both nested
and non-nested models (unlike classical approaches) and, using modern sampling methods, is
readily adapted to complex random effects models that are more difficult to fit using classical
methods (e.g. Carlin et al., 2001).

However, in the past, statistical analysis based on the Bayes theorem was often daunting
because of the numerical integrations needed. Recently developed computer-intensive sam-
pling methods of estimation have revolutionised the application of Bayesian methods, and
such methods now offer a comprehensive approach to complex model estimation, for example
in hierarchical models with nested random effects (Gilks et al., 1993). They provide a way
of improving estimation in sparse datasets by borrowing strength (e.g. in small area mortal-
ity studies or in stratified sampling) (Richardson and Best 2003; Stroud, 1994), and allow
finite sample inferences without appeal to large sample arguments as in maximum likelihood
and other classical methods. Sampling-based methods of Bayesian estimation provide a full
density profile of a parameter so that any clear non-normality is apparent, and allow a range
of hypotheses about the parameters to be simply assessed using the collection of parameter
samples from the posterior.

Bayesian methods may also improve on classical estimators in terms of the precision of
estimates. This happens because specifying the prior brings extra information or data based on
accumulated knowledge, and the posterior estimate in being based on the combined sources
of information (prior and likelihood) therefore has greater precision. Indeed a prior can often
be expressed in terms of an equivalent ‘sample size’.

Bayesian Statistical Modelling. Second Edition P. Congdon
C© 2006 John Wiley & Sons, Ltd



OTE/SPH OTE/SPH

047001875501 October 19, 2006 22:27 Char Count= 0

2 BAYESIAN METHOD, ITS BENEFITS AND IMPLEMENTATION

Bayesian analysis offers an alternative to classical tests of hypotheses under which p-values
are framed in the data space: the p-value is the probability under hypothesis H of data at
least as extreme as that actually observed. Many users of such tests more naturally interpret
p-values as relating to the hypothesis space, i.e. to questions such as the likely range for a
parameter given the data, or the probability of H given the data. The Bayesian framework is
more naturally suited to such probability interpretations. The classical theory of confidence
intervals for parameter estimates is also not intuitive, saying that in the long run with data from
many samples a 95% interval calculated from each sample will contain the true parameter
approximately 95% of the time. The particular confidence interval from any one sample may
or may not contain the true parameter value. By contrast, a 95% Bayesian credible interval
contains the true parameter value with approximately 95% certainty.

1.2 EXPRESSING PRIOR UNCERTAINTY ABOUT PARAMETERS AND
BAYESIAN UPDATING

The learning process involved in Bayesian inference is one of modifying one’s initial probabil-
ity statements about the parameters before observing the data to updated or posterior knowledge
that combines both prior knowledge and the data at hand. Thus prior subject-matter knowledge
about a parameter (e.g. the incidence of extreme political views or the relative risk of thrombo-
sis associated with taking the contraceptive pill) is an important aspect of the inference process.
Bayesian models are typically concerned with inferences on a parameter set θ = (θ1, . . ., θd ),
of dimension d, that includes uncertain quantities, whether fixed and random effects, hierarchi-
cal parameters, unobserved indicator variables and missing data (Gelman and Rubin, 1996).
Prior knowledge about the parameters is summarised by the density p(θ ), the likelihood is
p(y|θ ), and the updated knowledge is contained in the posterior density p(θ |y). From the
Bayes theorem

p(θ |y) = p(y|θ )p(θ )/p(y), (1.1)

where the denominator on the right side is the marginal likelihood p(y). The latter is an integral
over all values of θ of the product p(y|θ )p(θ ) and can be regarded as a normalising constant
to ensure that p(θ |y) is a proper density. This means one can express the Bayes theorem as

p(θ |y) ∝ p(y|θ )p(θ ).

The relative influence of the prior and data on updated beliefs depends on how much weight
is given to the prior (how ‘informative’ the prior is) and the strength of the data. For example,
a large data sample would tend to have a predominant influence on updated beliefs unless the
prior was informative. If the sample was small and combined with a prior that was informative,
then the prior distribution would have a relatively greater influence on the updated belief: this
might be the case if a small clinical trial or observational study was combined with a prior
based on a meta-analysis of previous findings.

How to choose the prior density or information is an important issue in Bayesian inference,
together with the sensitivity or robustness of the inferences to the choice of prior, and the
possibility of conflict between prior and data (Andrade and O’Hagan, 2006; Berger, 1994).
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EXPRESSING PRIOR UNCERTAINTY ABOUT PARAMETERS AND BAYESIAN UPDATING 3

Table 1.1 Deriving the posterior distribution of a prevalence rate π using a discrete prior

Prior weight given Likelihood of

Possible to different data given Prior times Posterior

π values possible values of π value for π likelihood probabilities

0.10 0.10 0.267 0.027 0.098

0.12 0.15 0.287 0.043 0.157

0.14 0.25 0.290 0.072 0.265

0.16 0.25 0.279 0.070 0.255

0.18 0.15 0.258 0.039 0.141

0.20 0.10 0.231 0.023 0.084

Total 1 0.274 1

In some situations it may be possible to base the prior density for θ on cumulative evidence
using a formal or informal meta-analysis of existing studies. A range of other methods exist to
determine or elicit subjective priors (Berger, 1985, Chapter 3; Chaloner, 1995; Garthwaite et al.,
2005; O’Hagan, 1994, Chapter 6). A simple technique known as the histogram method divides
the range of θ into a set of intervals (or ‘bins’) and elicits prior probabilities that θ is located
in each interval; from this set of probabilities, p(θ ) may be represented as a discrete prior or
converted to a smooth density. Another technique uses prior estimates of moments along with
symmetry assumptions to derive a normal N (m, V ) prior density including estimates m and V
of the mean and variance. Other forms of prior can be reparameterised in the form of a mean
and variance (or precision); for example beta priors Be(a, b) for probabilities can be expressed
as Be(mτ, (1 − m)τ ) where m is an estimate of the mean probability and τ is the estimated
precision (degree of confidence in) that prior mean.

To illustrate the histogram method, suppose a clinician is interested in π, the proportion of
children aged 5–9 in a particular population with asthma symptoms. There is likely to be prior
knowledge about the likely size of π, based on previous studies and knowledge of the host
population, which can be summarised as a series of possible values and their prior probabilities,
as in Table 1.1. Suppose a sample of 15 patients in the target population shows 2 with definitive
symptoms. The likelihoods of obtaining 2 from 15 with symptoms according to the different
values of π are given by (15

2)π2(1 − π )13, while posterior probabilities on the different values
are obtained by dividing the product of the prior and likelihood by the normalising factor of
0.274. They give highest support to a value of π = 0.14. This inference rests only on the
prior combined with the likelihood of the data, namely 2 from 15 cases. Note that to calculate
the posterior weights attaching to different values of π , one need use only that part of the
likelihood in which π is a variable: instead of the full binomial likelihood, one may simply
use the likelihood kernel π2(1 − π )13 since the factor (15

2) cancels out in the numerator and
denominator of Equation (1.1).

Often, a prior amounts to a form of modelling assumption or hypothesis about the nature
of parameters, for example, in random effects models. Thus small area mortality models may
include spatially correlated random effects, exchangeable random effects with no spatial pattern
or both. A prior specifying the errors as spatially correlated is likely to be a working model
assumption, rather than a true cumulation of knowledge.
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4 BAYESIAN METHOD, ITS BENEFITS AND IMPLEMENTATION

In many situations, existing knowledge may be difficult to summarise or elicit in the form
of an ‘informative prior’, and to reflect such essentially prior ignorance, resort is made to
non-informative priors. Since the maximum likelihood estimate is not influenced by priors,
one possible heuristic is that a non-informative prior leads to a Bayesian posterior mean very
close to the maximum likelihood estimate, and that informativeness of priors can be assessed
by how closely the Bayesian estimate comes to the maximum likelihood estimate.

Examples of priors intended to be non-informative are flat priors (e.g. that a parameter is
uniformly distributed between −∞ and +∞, or between 0 and +∞), reference priors (Berger
and Bernardo, 1994) and Jeffreys’ prior

p(θ ) ∝ |I (θ )|0.5,

where I (θ ) is the information1 matrix. Jeffreys’ prior has the advantage of invariance under
transformation, a property not shared by uniform priors (Syverseen, 1998). Other advan-
tages are discussed by Wasserman (2000). Many non-informative priors are improper (do not
integrate to 1 over the range of possible values). They may also actually be unexpectedly
informative about different parameter values (Zhu and Lu, 2004). Sometimes improper priors
can lead to improper posteriors, as in a normal hierarchical model with subjects j nested in
clusters i ,

yi j ∼ N (θi , σ
2),

θi ∼ N (μ, τ 2).

The prior p(μ, τ ) = 1/τ results in an improper posterior (Kass and Wasserman, 1996). Ex-
amples of proper posteriors despite improper priors are considered by Fraser et al. (1997) and
Hadjicostas and Berry (1999).

To guarantee posterior propriety (at least analytically) a possibility is to assume just
proper priors (sometimes called diffuse or weakly informative priors); for example, a gamma
Ga(1, 0.00001) prior on a precision (inverse variance) parameter is proper but very close to
being a flat prior. Such priors may cause identifiability problems and impede Markov Chain
Monte Carlo (MCMC) convergence (Gelfand and Sahu, 1999; Kass and Wasserman, 1996,
p. 1361). To adequately reflect prior ignorance while avoiding impropriety, Spiegelhalter et al.
(1996, p. 28) suggest a prior standard deviation at least an order of magnitude greater than the
posterior standard deviation.

In Table 1.1 an informative prior favouring certain values of π has been used. A non-
informative prior, favouring no values above any other, would assign an equal prior prob-
ability of 1/6 to each of the possible prior values of π . A non-informative prior might
be used in the genuine absence of prior information, or if there is disagreement about the
likely values of hypotheses or parameters. It may also be used in comparison with more
informative priors as one aspect of a sensitivity analysis regarding posterior inferences ac-
cording to the prior. Often some prior information is available on a parameter or hypoth-
esis, though converting it into a probabilistic form remains an issue. Sometimes a formal
stage of eliciting priors from subject-matter specialists is entered into (Osherson et al.,
1995).

1 If �(θ ) = log(L(θ |y)) is the likelihood, then I (θ ) = −E
{

∂2�(θ )
∂θi ∂θi

}
.
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MCMC SAMPLING AND INFERENCES FROM POSTERIOR DENSITIES 5

If a previous study or set of studies is available on the likely prevalence of asthma in the
population, these may be used in a form of preliminary meta-analysis to set up an informative
prior for the current study. However, there may be limits to the applicability of previous
studies to the current target population (e.g. because of differences in the socio-economic
background or features of the local environment). So the information from previous studies,
while still usable, may be downweighted; for example, the precision (variance) of an estimated
relative risk or prevalence rate from a previous study may be divided (multiplied) by 10. If
there are several parameters and their variance–covariance matrix is known from a previous
study or a mode-finding analysis (e.g. maximum likelihood), then this can be downweighted
in the same way (Birkes and Dodge, 1993). More comprehensive ways of downweighting
historical/prior evidence have been proposed, such as power prior models (Ibrahim and Chen,
2000).

In practice, there are also mathematical reasons to prefer some sorts of priors to others (the
question of conjugacy is considered in Chapter 3). For example, a beta density for the binomial
success probability is conjugate with the binomial likelihood in the sense that the posterior has
the same (beta) density form as the prior. However, one advantage of sampling-based estimation
methods is that a researcher is no longer restricted to conjugate priors, whereas in the past this
choice was often made for reasons of analytic tractability. There remain considerable problems
in choosing appropriate neutral or non-informative priors on certain types of parameters, with
variance and covariance hyperparameters in random effects models a leading example (Daniels,
1999; Gelman, 2006; Gustafson et al., in press).

To assess sensitivity to the prior assumptions, one may consider the effects on inference
of a limited range of alternative priors (Gustafson, 1996), or adopt a ‘community of priors’
(Spiegelhalter et al., 1994); for example, alternative priors on a treatment effect in a clinical
trial might be neutral, sceptical, and enthusiastic with regard to treatment efficacy. One might
also consider more formal approaches to robustness based on non-parametric priors rather than
parametric priors, or via mixture (‘contamination’) priors. For instance, one might assume a
two-group mixture with larger probability 1 − q on the ‘main’ prior p1(θ ), and a smaller
probability such as q = 0.2 on a contaminating density p2(θ ), which may be any density
(Gustafson, 1996). One might consider the contaminating prior to be a flat reference prior, or
one allowing for shifts in the main prior’s assumed parameter values (Berger, 1990). In large
datasets, inferences may be robust to changes in prior unless priors are heavily informative.
However, inference sensitivity may be greater for some types of parameters, even in large
datasets; for example, inferences may depend considerably on the prior adopted for variance
parameters in random effects models, especially in hierarchical models where different types
of random effects coexist in a model (Daniels, 1999; Gelfand et al., 1996).

1.3 MCMC SAMPLING AND INFERENCES FROM POSTERIOR DENSITIES

Bayesian inference has become closely linked to sampling-based estimation methods. Both
focus on the entire density of a parameter or functions of parameters. Iterative Monte Carlo
methods involve repeated sampling that converges to sampling from the posterior distri-
bution. Such sampling provides estimates of density characteristics (moments, quantiles),
or of probabilities relating to the parameters (Smith and Gelfand, 1992). Provided with
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a reasonably large sample from a density, its form can be approximated via curve esti-
mation (kernel density) methods; default bandwidths are suggested by Silverman (1986),
and included in implementations such as the Stixbox Matlab library (pltdens.m from
http://www.maths.lth.se/matstat/stixbox). There is no limit to the number of samples T of
θ that may be taken from a posterior density p(θ |y), where θ = (θ1, . . . , θk, . . . , θd ) is of di-
mension d. The larger is T from a single sampling run, or the larger is T = T1 + T2 + · · · + TJ

based on J sampling chains from the density, the more accurately the posterior density would be
described.

Monte Carlo posterior summaries typically include posterior means and variances of the
parameters. This is equivalent to estimating the integrals

E(θk |y) =
∫

θk p (θ |y)dθ, (1.2)

Var(θk |y) =
∫

θ2
k p (θ |y)dθ − [E(θk |y)]2

= E
(
θ2

k |y) − [E(θk |y)]2. (1.3)

Which estimator d = θe(y) to choose to characterise a particular function of θ can be decided
with reference to the Bayes risk under a specified loss function L[d, θ ] (Zellner, 1985, p. 262),

min
d

∫
L[d, θ ]p(y|θ )p(θ )dθ,

or equivalently

min
d

∫
L[d, θ ]p(θ |y)dθ.

The posterior mean can be shown to be the best estimate of central tendency for a density under
a squared error loss function (Robert, 2004), while the posterior median is the best estimate
when absolute loss is used, namely L[θe(y), θ ] = |θe − θ |. Similar principles can be applied
to parameters obtained via model averaging (Brock et al., 2004).

A 100(1 − α)% credible interval for θk is any interval [a, b] of values that has probabil-
ity 1 − α under the posterior density of θk . As noted above, it is valid to say that there is a
probability of 1 − α that θk lies within the range [a, b]. Suppose α = 0.05. Then the most
common credible interval is the equal-tail credible interval, using 0.025 and 0.975 quantiles
of the posterior density. If one is using an MCMC sample to estimate the posterior density,
then the 95% CI is estimated using the 0.025 and 0.975 quantiles of the sampled output
{θ (t)

k , t = B + 1, . . . , T } where B is the number of burn-in iterations (see Section 1.5). An-
other form of credible interval is the 100(1 − α)% highest probability density (HPD) interval,
such that the density for every point inside the interval exceeds that for every point outside
the interval, and is the shortest possible 100(1 − α)% credible interval; Chen et al. (2000,
p. 219) provide an algorithm to estimate the HPD interval. A program to find the HPD interval
is included in the Matlab suite of MCMC diagnostics developed at the Helsinki University of
Technology, at http://www.lce.hut.fi/research/compinf/mcmcdiag/.
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One may similarly obtain posterior means, variances and credible intervals for functions
	 = 	(θ ) of the parameters (van Dyk, 2002). The posterior means and variances of such
functions obtained from MCMC samples are estimates of the integrals

E[	(θ )|y] =
∫

	(θ )p(θ |y)dθ,

var[	(θ )|y] =
∫

	2 p(θ |y)dθ − [E(	|y)]2 (1.4)

= E(	2|y) − [E(	|y)]2.

Often the major interest is in marginal densities of the parameters themselves. The marginal
density of the kth parameter θ k is obtained by integrating out all other parameters

p(θk |y) =
∫

p(θ |y)dθ1dθ2 · · · dθk−1dθk+1dθd .

Posterior probability estimates from an MCMC run might relate to the probability that θ k (say
k = 1) exceeds a threshold b, and provide an estimate of the integral

Pr(θ1 > b|y) =
∫ ∞

b

∫
..

∫
p(θ |y)dθ. (1.5)

For example, the probability that a regression coefficient exceeds zero or is less than zero is
a measure of its significance in the regression (where significance is used as a shorthand for
‘necessary to be included’). A related use of probability estimates in regression (Chapter 4)
is when binary inclusion indicators precede the regression coefficient and the regressor is
included only when the indicator is 1. The posterior probability that the indicator is 1 estimates
the probability that the regressor should be included in the regression.

Such expectations, density or probability estimates may sometimes be obtained analytically
for conjugate analyses – such as a binomial likelihood where the probability has a beta prior.
They can also be approximated analytically by expanding the relevant integral (Tierney et al.,
1988). Such approximations are less good for posteriors that are not approximately normal,
or where there is multimodality. They also become impractical for complex multiparameter
problems and random effects models.

By contrast, MCMC techniques are relatively straightforward for a range of applications,
involving sampling from one or more chains after convergence to a stationary distribution
that approximates the posterior p(θ |y). If there are n observations and d parameters, then
the required number of iterations to reach stationarity will tend to increase with both d and
n, and also with the complexity of the model (e.g. which depends on the number of levels
in a hierarchical model, or on whether a nonlinear rather than a simple linear regression is
chosen). The ability of MCMC sampling to cope with complex estimation tasks should be
qualified by mention of problems associated with long-run sampling as an estimation method.
For example, Cowles and Carlin (1996) highlight problems that may occur in obtaining and/or
assessing convergence (see Section 1.5). There are also problems in setting neutral priors
on certain types of parameters (e.g. variance hyperparameters in models with nested random
effects), and certain types of models (e.g. discrete parametric mixtures) are especially subject
to identifiability problems (Frühwirth-Schnatter, 2004; Jasra et al., 2005).
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A variety of MCMC methods have been proposed to sample from posterior densities
(Section 1.4). They are essentially ways of extending the range of single-parameter sam-
pling methods to multivariate situations, where each parameter or subset of parameters in the
overall posterior density has a different density. Thus there are well-established routines for
computer generation of random numbers from particular densities (Ahrens and Dieter, 1974;
Devroye, 1986). There are also routines for sampling from non-standard densities such as
non-log-concave densities (Gilks and Wild, 1992). The usual Monte Carlo method assumes
a sample of independent simulations u(1), u(2), . . . , u(T ) from a target density π (u) whereby
E[g(u)] = ∫

g(u)π (u)du is estimated as

gT =
T∑

t=1

g
(
u(t)

)
.

With probability 1, gT tends to Eπ [g(u)] as T → ∞. However, independent sampling from
the posterior density p(θ |y) is not feasible in general. It is valid, however, to use dependent
samples θ (t), provided the sampling satisfactorily covers the support of p(θ |y) (Gilks et al.,
1996).

In order to sample approximately from p(θ |y), MCMC methods generate dependent draws
via Markov chains. Specifically, let θ (0), θ (1), . . . be a sequence of random variables. Then
p(θ (0), θ (1), . . . , θ (T )) is a Markov chain if

p
(
θ (t)|θ (0), θ (1), . . . , θ (t−1)

) = p
(
θ (t)|θ (t−1)

)
,

so that only the preceding state is relevant to the future state. Suppose θ (t) is defined on a
discrete state space S = {s1, s2, . . .}, with generalisation to continuous state spaces described
by Tierney (1996). Assume p(θ (t)|θ (t−1)) is defined by a constant one-step transition matrix

Qi, j = Pr
(
θ (t) = s j |θ (t−1) = si

)
,

with t-step transition matrix Qi, j (t) = Pr(θ (t) = s j |θ (0) = si ). Sampling from a constant one-
step Markov chain converges to the stationary distribution required, namely π (θ ) = p(θ |y),
if additional requirements2 on the chain are satisfied (irreducibility, aperiodicity and positive
recurrence) – see Roberts (1996, p. 46) and Norris (1997). Sampling chains meeting these
requirements have a unique stationary distribution limt→∞ Qi, j (t) = π( j) satisfying the full
balance condition π( j) = ∑

i π(i) Qi, j . Many Markov chain methods are additionally reversible,
meaning π(i) Qi, j = π( j) Q j,i .

With this type of sampling mechanism, the ergodic average gT tends to Eπ [g(u)] with
probability 1 as T → ∞ despite dependent sampling. Remaining practical questions include
establishing an MCMC sampling scheme and establishing that convergence to a steady state
has been obtained for practical purposes (Cowles and Carlin, 1996). Estimates of quantities
such as (1.2) and (1.3) are routinely obtained from sampling output along with 2.5th and

2 Suppose a chain is defined on a space S. A chain is irreducible if for any pair of states (si , s j ) ∈ S there is a non-zero

probability that the chain can move from si to s j in a finite number of steps. A state is positive recurrent if the number

of steps the chain needs to revisit the state has a finite mean. If all the states in a chain are positive recurrent then

the chain itself is positive recurrent. A state has period k if it can be revisited only after the number of steps that is a

multiple of k. Otherwise the state is aperiodic. If all its states are aperiodic then the chain itself is aperiodic. Positive

recurrence and aperiodicity together constitute ergodicity.



OTE/SPH OTE/SPH

047001875501 October 19, 2006 22:27 Char Count= 0

THE MAIN MCMC SAMPLING ALGORITHMS 9

97.5th percentiles that provide equal-tail credible intervals for the value of the parameter. A
full posterior density estimate may also be derived (e.g. by kernel smoothing of the MCMC
output of a parameter). For 	(θ ) its posterior mean is obtained by calculating 	(t) at every
MCMC iteration from the sampled values θ (t). The theoretical justification for this is provided
by the MCMC version of the law of large numbers (Tierney, 1994), namely that

T∑
t=1

	
(
θ (t)

)
T

→ Eπ [	(θ )],

provided that the expectation of 	(θ ) under π (θ ) = p(θ |y), denoted by Eπ [	(θ )], exists.
The probability (1.5) would be estimated by the proportion of iterations where θ

(t)
j exceeded

b, namely
∑T

t=1 1(θ
(t)
j > b)/T , where 1(A) is an indicator function that takes value 1 when

A is true, and 0 otherwise. Thus one might in a disease-mapping application wish to obtain
the probability that an area’s smoothed relative mortality risk θ k exceeds zero, and so count
iterations where this condition holds, avoiding the need to evaluate the integral

Pr(θk > 0|y) =
∫

..

∫ ∞

0 ..

∫
p(θ |y)dθ

where the k th integral is confined to positive values.
This principle extends to empirical estimates of the distribution function, F() of parameters

or functions of parameters. Thus the estimated probability that 	 ≤ h for values of h within
the support of 	 is

F̂(d) =
T∑

t=1

1
(
	(t) ≤ h

)
T

.

The sampling output also often includes predictive replicates y(t)
new that can be used in posterior

predictive checks to assess whether a model’s predictions are consistent with the observed data.
Predictive replicates are obtained by sampling θ (t) and then sampling ynew from the likelihood
model p(ynew|θ (t)). The posterior predictive density can also be used for model choice and
residual analysis (Gelfand, 1996, Sections 9.4–9.6).

1.4 THE MAIN MCMC SAMPLING ALGORITHMS

The Metropolis–Hastings (M–H) algorithm is the baseline for MCMC schemes that simulate
a Markov chain θ (t) with p(θ |y) as its stationary distribution. Following Hastings (1970), the
chain is updated from θ (t) to θ* with probability

α
(
θ*|θ (t)

) = min

(
1,

p
(
θ*|y)

f
(
θ (t)|θ*

)
p
(
θ (t)|y)

f
(
θ*|θ (t)

))
,

where f is known as a proposal or jumping density (Chib and Greenberg, 1995). f (θ*|θ (t)) is
the probability (or density ordinate) of θ* for a density centred at θ (t), while f (θ (t)|θ*) is the
probability of moving back from θ* to the original value. The transition kernel is k(θ (t)|θ*) =
α(θ*|θ (t)) f (θ*|θ (t)) for θ* 	= θ (t), with a non-zero probability of staying in the current state,
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namely k(θ (t)|θ (t)) = 1 − ∫
α(θ*|θ (t)) f (θ*|θ (t))dθ*. Conformity of M–H sampling to the

Markov chain requirements discussed above is considered by Mengersen and Tweedie (1996)
and Roberts and Rosenthal (2004).

If the proposed new value θ∗ is accepted, then θ (t+1) = θ*, while if it is rejected, the next
state is the same as the current state, i.e. θ (t+1) = θ (t). The target density p(θ |y) appears in
ratio form so it is not necessary to know any normalising constants. If the proposal density
is symmetric, with f (θ∗|θ (t)) = f (θ (t)|θ*), then the M–H algorithm reduces to the algorithm
developed by Metropolis et al. (1953), whereby

α
(
θ*|θ (t)

) = min

[
1,

p
(
θ*|y)

p
(
θ (t)|y)]

.

If the proposal density has the form f (θ*|θ (t)) = f (θ (t) − θ*), then a random walk Metropolis
scheme is obtained (Gelman et al., 1995). Another option is independence sampling, when
the density f (θ*) for sampling new values is independent of the current value θ (t). One
may also combine the adaptive rejection technique with M–H sampling, with f acting as a
pseudo-envelope for the target density p (Chib and Greenberg, 1995; Robert and Casella, 1999,
p. 249). Scollnik (1995) uses this algorithm to sample from the Makeham density often used
in actuarial work.

The M–H algorithm works most successfully when the proposal density matches, at least
approximately, the shape of the target density p(θ |y). The rate at which a proposal generated
by f is accepted (the acceptance rate) depends on how close θ* is to θ (t), and this depends on
the dispersion 
 or variance σ 2 of the proposal density. For a normal proposal density a higher
acceptance rate would follow from reducing σ 2, but with the risk that the posterior density
will take longer to explore. If the acceptance rate is too high, then autocorrelation in sampled
values will be excessive (since the chain tends to move in a restricted space), while a too low
acceptance rate leads to the same problem, since the chain then gets locked at particular values.

One possibility is to use a variance or dispersion estimate Vθ from a maximum likelihood or
other mode finding analysis and then scale this by a constant c > 1, so that the proposal density
variance is 
 = cVθ (Draper, 2005, Chapter 2). Values of c in the range 2–10 are typical, with
the proposal density variance 2.382Vθ /d shown as optimal in random walk schemes (Roberts et
al., 1997). The optimal acceptance rate for a random walk Metropolis scheme is obtainable as
23.4% (Roberts and Rosenthal, 2004, Section 6). Recent work has focused on adaptive MCMC
schemes whereby the tuning is adjusted to reflect the most recent estimate of the posterior
covariance Vθ (Gilks et al., 1998; Pasarica and Gelman, 2005). Note that certain proposal
densities have parameters other than the variance that can be used for tuning acceptance rates
(e.g. the degrees of freedom if a Student t proposal is used). Performance also tends to be
improved if parameters are transformed to take the full range of positive and negative values
(−∞, ∞) so lessening the occurrence of skewed parameter densities.

Typical random walk Metropolis updating uses uniform, standard normal or standard Student
t variables Wt . A normal random walk for a univariate parameter takes samples Wt ∼ N (0, 1)
and a proposal θ∗ = θ (t) + σ Wt , where σ determines the size of the jump (and the accep-
tance rate). A uniform random walk samples Ut ∼ Unif(−1, 1) and scales this to form a
proposal θ∗ = θ (t) + κUt . As noted above, it is desirable that the proposal density approxi-
mately matches the shape of the target density p(θ |y). The Langevin random walk scheme is an
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Figure 1.1 Uniform random walk samples from a N (0, 1) density.

example of a scheme including information about the shape of p(θ |y) in the proposal, namely
θ∗ = θ (t) + σ (Wt + 0.5∇log(p(θ (t)|y)) where ∇ denotes the gradient function (Roberts and
Tweedie, 1996).

As an example of a uniform random walk proposal, consider Matlab code to sample
T = 10 000 times from a N (0, 1) density using a U (−3, 3) proposal density – see Hastings
(1970) for the probability of accepting new values when sampling N (0, 1) with a uniform
U (−κ, κ) proposal density. The code is

N = 10000; th(1) = 0; pdf = inline('exp(-x^2/2)'); acc=0;
for i=2:n thstar = th(i-1) + 3∗(1-2∗rand);

alpha = min([1,pdf(thstar)/pdf(th(i-1))]);
if rand <= alpha th(i)=thstar; acc=acc+1;
else th(i)=th(i-1); end
end
sprintf('acceptance rate %4.0f',100*acc/n)
hist(th,100);

The acceptance rate is around 49% (depending on the seed). Figure 1.1 contains a histogram
of the sampled values.

While it is possible for the proposal density to relate to the entire parameter set, it is often
computationally simpler in multi-parameter problems to divide θ into D blocks or components,
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and use componentwise updating. Thus let θ[ j] = (θ1, θ2, . . . , θ j−1, θ j+1, . . . , θD) denote the

parameter set omitting component θ j and θ
(t)
j be the value of θ j after iteration t . At step j

of iteration t + 1 the preceding j − 1 parameter blocks are already updated via the M–H
algorithm while θ j+1, . . . , θD are still at their iteration t values (Chib and Greenberg, 1995).
Let the vector of partially updated parameters be denoted by

θ
(t,t+1)
[ j] = (

θ
(t+1)
1 , θ

(t+1)
2 , . . . , θ

(t+1)
j−1 , θ

(t)
j+1, . . . , θ

(t)
D

)
.

The proposed value θ*
t for θ

(t+1)
j is generated from the j th proposal density, denoted by

f (θ*
j |θ (t)

j , θ
(t,t+1)
[ j] ). Also governing the acceptance of a proposal are full conditional densities

p(θ
(t)
j |θ (t,t+1)

[ j] ) specifying the density of θ j conditional on other parameters θ[ j]. The candidate

value θ*
j is then accepted with probability

α
(
θ

(t)
j , θ

(t,t+1)
[ j] , θ*

j

) = min

[
1,

p
(
θ*

j |θ (t,t+1)
[ j]

)
f
(
θ

(t)
j |θ*

j , θ
(t,t+1)
[ j]

)
p
(
θ

(t)
j |θ (t,t+1)

[ j]

)
f
(
θ*

j |(θ (t)
j , θ

(t,t+1)
[ j]

)]
.

1.4.1 Gibbs sampling

The Gibbs sampler (Casella and George, 1992; Gelfand and Smith, 1990; Gilks et al., 1993) is
a special componentwise M–H algorithm whereby the proposal density for updating θ j equals

the full conditional p(θ*
j |θ[ j]) so that proposals are accepted with probability 1. This sampler

was originally developed by Geman and Geman (1984) for Bayesian image reconstruction, with
its potential for simulating marginal distributions by repeated draws recognised by Gelfand
and Smith (1990). The Gibbs sampler involves parameter-by-parameter or block-by-block
updating, which when completed forms the transition from θ (t) to θ (t+1):

1. θ
(t+1)
1 ∼ f1

(
θ1|θ (t)

2 , θ
(t)
3 , . . . , θ

(t)
D

)
;

2. θ
(t+1)
2 ∼ f2

(
θ2|θ (t+1)

1 , θ
(t)
3 , . . . , θ

(t)
D

)
;

�
�
�
D. θ

(t+1)
D ∼ fD

(
θD|θ (t+1)

1 , θ
(t+1)
3 , . . . , θ

(t+1)
D−1

)
.

Repeated sampling from M–H samplers such as the Gibbs sampler generates an autocorrelated
sequence of numbers that, subject to regularity conditions (ergodicity, etc.), eventually ‘forgets’
the starting values θ (0) = (θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
D ) used to initialise the chain, and converges to a

stationary sampling distribution p(θ |y).
The full conditional densities may be obtained from the joint density p(θ, y) = p(y|θ )p(θ )

and in many cases reduce to standard densities (normal, exponential, gamma, etc.) from which
sampling is straightforward. Full conditional densities can be obtained by abstracting out from
the full model density (likelihood times prior) those elements including θ j and treating other
components as constants (Gilks, 1996).
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Consider a conjugate model for Poisson count data yi with exposures ti and means λi that
in turn are gamma distributed, λi ∼ Ga(α, β),

p(λi |α, β) = λα−1
i e−βλi βα/�(α).

Assume priors α ∼ E(a), β ∼ Ga(b, c) where a, b and c are preset constants (George et al.,
1993). The posterior density of the n + 2 parameters θ = (λ1, . . . , λn, α, β), given y is pro-
portional to

e−aαβb−1e−cβ

{
n∏

i=1

exp(−tiλi )λ
yi

i

} {
n∏

i=1

λα−1
i exp(−βλi )

} [
βα

�(α)

]n

,

where all constants (such as the denominator yi ! in the Poisson likelihood) are combined
in the proportionality constant. The full conditional densities of λi and β are obtained as
Ga(yi + α, β + ti ) and Ga(b + nα, c + ∑n

i=1 λi ), respectively. The full conditional density
of α is

f (α|y, β, λ) ∝ e−aα

[
βα

�(α)

]n
(

n∏
i=1

λi

)α−1.

This density cannot be sampled directly, though techniques such as adaptive rejection sampling
(Gilks and Wild, 1992) may be used. Alternatively, a Metropolis step may be included to update
α while other parameters are sampled from their full conditionals, an example of a Metropolis
within Gibbs procedure (Brooks, 1999).

Figure 1.2 contains a Matlab code applying the latter approach to the well-known data on
failures in 10 power plant pumps, also analysed by George et al. (1993). The number of failures
is assumed to follow a Poisson distribution yi ∼ Poisson(λi ti ), where λi is the failure rate, and ti
is the length of pump operation time (in thousands of hours). Priors are α ∼ E(1), β ∼ Ga(0.1,
1). The code includes calls to a kernel-plotting routine, and a Matlab adaptation of the coda
routine, both from Lesage (1999); coda is the suite of convergence tests originally developed
in S-plus (Best et al., 1995). Note that the update for α is in terms of ν = g(α) = log(α), and
so the prior for α has to be adjusted for the Jacobean ∂g−1(ν)/∂ν = eν = α.

[time,y] = textread('pumps.txt','%f%f')
n=10;T=10000; B=1000;lam=ones(n,1);beta=0.9*ones(1,T); acc=0;
scale=0.75;a.alph=0.1; nu=-0.4*ones(1,T);a.beta=0.1; b.beta=1;
alph(1)=exp(nu(1));
for t=1:T for i=1:n
loglam(i,t)=log(lam(i,t));end
P=exp(nu(t)-a.alph*alph(t)+n*alph(t)*log(beta(t))...
-n*gammaln(alph(t))+(alph(t)-1)*sum(loglam(1:n,t)));

nustar=nu(t)+ scale*randn;
alphstar=exp(nustar);
Pstar=exp(nustar-a.alph*alphstar+n*alphstar*log(beta(t))...
-n*gammaln(alphstar)+(alphstar-1)*sum(loglam(1:n,t)));

if (rand <= Pstar/P) alph(t+1)=exp(nustar); acc=acc+1;
else alph(t+1)=alph(t); end
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% update parameters from full conditionals
for i=1:n
lam(i,t+1)=gamrnd(alph(t+1)+y(i),1/(beta(t)+time(i)));end
beta(t+1)=gamrnd(a.beta+n*alph(t+1),1/(b.beta+sum(lam(1:n,t+1))));
% accumulate draws for coda input
for i=1:n pars(t,i)=lam(i,t);end
pars(t,n+1)=beta(t); pars(t,n+2)=alph(t); end
sprintf('acceptance rate alpha %5.1f',100*acc/T)
hist(beta,100); pause; hist(alph,100); pause;
[hbeta,smbeta,xbeta] = pltdens(beta); plot(xbeta,smbeta); pause;
[halph,smalph,xalph] = pltdens(alph); plot(xalph,smalph); pause;
for i=1:12 for t=B+1: T
parsamp(t-B,i)=pars(t,i); end
end
coda(parsamp)

Figure 1.2 Matlab code: nuclear pumps data Poisson–gamma model.

Figure 1.3 shows the histogram of β obtained from a single-chain run of 10 000 iterations,
and its slight positive skew. Single-chain diagnostics (with 1000 burn-in iterations excluded)
are satisfactory with lag 10 autocorrelations under 0.10 for all unknowns. The acceptance rate
for α is 38%.

1.5 CONVERGENCE OF MCMC SAMPLES

There are many unresolved questions around the assessment of convergence of MCMC sam-
pling procedures (Brooks and Roberts, 1998; Cowles and Carlin, 1996). One view is that a
single long chain is adequate to explore the posterior density, provided allowance is made
for dependence in the samples (e.g. Bos, 2004; Geyer, 1992). Diagnostics in the coda routine
include those obtainable from a single chain, such as the relative numerical efficiency (RNE)
(Geweke, 1992; Kim et al., 1998), Raftery–Lewis diagnostics, which indicate the required
sample to achieve a desired accuracy for parameters, and Geweke (1992) chi-square tests.

Relative numerical efficiency compares the empirical variance of the sampled values to a
correlation-consistent variance estimator (Geweke, 1999; Geweke et al., 2003). Numerical
approximations of functions such as (1.4) based on T samples will have the same accuracy as
(T × RNE) samples based on iid (independent, identically distributed) drawings directly from
the posterior distribution. The method of Raftery and Lewis (1992) provides an estimate of the
number of MCMC samples required to achieve a specified accuracy of the estimated quantiles
of parameters or functions; for example, one might require the 2.5th percentile to be estimated to
an accuracy ±0.005, and with a certain probability of attaining this level of accuracy (say, 0.95).
The Raftery–Lewis diagnostics include the minimum number of iterations needed to estimate
the specified quantile to the desired precision if the samples in the chain were independent.
This is a lower bound, and may tend to be conservative (Draper, 2006). The Geweke procedure
considers different portions of MCMC output to determine whether they can be considered as
coming from the same distribution; specifically, initial and final portions of a chain of sampled
parameter values (e.g. the first 10% and the last 50%) are compared, with tests using sample
means and asymptotic variances (estimated using spectral density methods) in each portion.
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Figure 1.3 Histograms of samples of beta.

Many practitioners prefer to use two or more parallel chains with diverse starting values
to ensure full coverage of the sample space of the parameters, and so diminish the chance
that the sampling will become trapped in a small part of the space (Gelman and Rubin,
1992, 1996). Single long runs may be adequate for straightforward problems, or as a pre-
liminary to obtain inputs to multiple chains. Convergence for multiple chains may be as-
sessed using Gelman–Rubin scale-reduction factors that compare variation in the sampled
parameter values within and between chains. Parameter samples from poorly identified mod-
els will show wide divergence in the sample paths between different chains, and variability
of sampled parameter values between chains will considerably exceed the variability within
any one chain. To measure variability of samples θ

(t)
j within the j th chain ( j = 1, . . . , J )

define

w j = (
θ

(t)
j − θ j

)2
/(T − 1),

defined over T iterations after an initial burn-in of B iterations. Ideally the burn-in period is a
short initial set of samples where the effect of the initial parameter values tails off; during the
burn-in the parameter trace plots will show clear monotonic trends as they reach the region of
the posterior.

Variability within chains W is then the average of the w j . Between-chain variance is
measured by

B = T

J − 1

J∑
j=1

(θ j − θ )
2
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where (θ ) is the average of the θ j . The potential scale reduction factor (PSRF) compares a
pooled estimator of var(θ ), given by V = B/T + T W/(T − 1) with the within-sample esti-
mate W . Specifically the PSRF is (V/W )0.5 with values under 1.2 indicating convergence.

Another multiple-chain convergence statistic is due to Brooks and Gelman (1998) and known
as the Brooks–Gelman–Rubin (BGR) statistic. This is a ratio of parameter interval lengths,
where for chain j the length of the 100(1 − α)% interval for parameter θ is obtained, namely the
gap between 0.5α and (1 − 0.5α) points from T simulated values. This provides J within-chain
interval lengths, with mean IU . For the pooled output of TJ samples, the same 100(1 − α)%
interval IP is also obtained. Then the ratio IP /IU should converge to 1 if there is convergent
mixing over different chains. Brooks and Gelman also propose a multivariate version of the
original G–R ratio, which, a review by Sinharay (2004) indicates, may be better at detecting
convergence in models where identifiability is problematic; this refers to practical identifia-
bility of complex models for relatively small datasets, rather than mathematical identifiability.
However, multiple-chain analysis can also be a useful check on unsuspected mathematical
non-identifiability, or on model priors that are not constrained to produce unique labelling.
Fan et al. (2006) consider diagnostics based on score statistics for parameters θk ; for likeli-
hood L = p(y | θ ), or target density π (θ ) = p(θ |y), define score functions Uk = ∂π/∂θk ,
and then obtain means mk and variances Vk of Ukj statistics obtained from chains j =
1, . . . , J . Then X2 = J m2

k/Vk is asymptotically chi-squared with d degrees of freedom under
convergence.

The following Matlab program obtains univariate PSRFs and the multivariate PSRF for an
augmented data probit analysis of the shopping data used in Example 4.9. Two chains are
run for T = 1000 iterations with a burn-in of 50 iterations, with flat priors on the regression
parameters. All scale factors obtained are very close to 1. The main program and the Gelman–
Rubin functions called are as follows:

[y,Inc,Hsz,WW] = textread('shop.txt','%f %f %f %f'); n=84;
for i=1:n X(i,1)=1; X(i,2)=Inc(i); X(i,3)=Hsz(i); X(i,4)=WW(i); end
beta = [0 0 0 0]'; Lo = -10.* (1-y); Hi =10.* y; T=1000; burnin=50;
for ch=1:2 for t=1:T
% truncated normal sample between Lo and Hi
Z = rand_nort(X * beta, ones(size(X * beta)), Lo, Hi);
sigma=inv(X' * X); betaMLE = inv(X' * X)* X' * Z;
beta = rand_MVN(1, betaMLE, sigma)';

for j=1:4 betas(t,j,ch)=beta(j); end
end
end
[PSRF] = GRpsrf(betas,T,4,2)
[MPSRF] = GRmpsrf(betas,T,4,2)

function [PSRF] = GRpsrf(th,T,d,J)
W = zeros(1,d); B = zeros(1,d); mn = mean(reshape(mean(th),d,J)');
for j=1:J
dw = th(:,:,j) - repmat(mean(th(:,:,j)),T,1);
db = mean(th(:,:,j))- mn;
W = W + sum(dw.*dw); B = B + db.*db; end
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W = W / ((T-1) * J); S = (T-1)/T * W + B/(J-1);
PSRF = sqrt((J+1)/J * S ./ W - (T-1)/J/T); end

function [MPSRF] = GRmpsrf(th,T,d,J)
W = zeros(d); B = zeros(d); mn = mean(reshape(mean(th),d,J)');
for j=1:J

dw = th(:,:,j) - repmat(mean(th(:,:,j)),T,1);
db = mean(th(:,:,j))- mn;
W = W + dw'*dw; B = B + db'*db; end

W = W / ((T-1) * J); B = B / (J-1); V = sort(abs(eig(W\B)));
MPSRF = sqrt( (T-1)/T + V(end) * (J+1)/J); end

Parameter samples obtained by MCMC methods are correlated, which means extra samples
are needed to convey the same information. The extent of correlation will depend on a number
of factors including the form of parameterisation, the complexity of the model and the form
of sampling (e.g. block or univariate sampling of parameters). Analysis of autocorrelation in
sequences of MCMC samples amounts to an application of time series methods, in regard
to issues such as assessing stationarity in an autocorrelated sequence. Autocorrelation at lags
1, 2 and so on may be assessed from the full set of sampled values θ (t), θ (t+1),θ (t+2), . . . ,
or from subsamples K steps apart θ (t), θ (t+K ), θ (t+2K ), . . . , etc. If the chains are mixing
satisfactorily then the autocorrelations in the one-step apart iterates θ (t) will fade to zero as the
lag increases (e.g. at lag 10 or 20). Non-vanishing autocorrelations at high lags mean that less
information about the posterior distribution is provided by each iterate and a higher sample
size T is necessary to cover the parameter space. Slow convergence will show in trace plots
that wander, and that exhibit short-term trends rather than rapidly fluctuating around a stable
mean.

Problems of convergence in MCMC sampling may reflect problems in model identifiability
due to overfitting or redundant parameters. Running multiple chains often assists in diagnosing
poor identifiability of models. This is illustrated most clearly when identifiability constraints are
missing from a model, such as in discrete mixture models that are subject to ‘label switching’
during MCMC updating (Frühwirth-Schnatter, 2001). One chain may have a different ‘label’ to
others and so applying any convergence criterion is not sensible (at least for some parameters).
Choice of diffuse priors tends to increase the chance of poorly identified models, especially
in complex hierarchical models or small samples (Gelfand and Sahu, 1999). Elicitation of
more informative priors or application of parameter constraints may assist identification and
convergence.

Correlation between parameters within the parameter set θ = (θ1, θ2, . . . , θd ) also tends
to delay convergence and increase the dependence between successive iterations. Reparame-
terisation to reduce correlation – such as centring predictor variables in regression – usually
improves convergence (Zuur et al., 2002). Robert and Mengersen (1999) consider a reparam-
eterisation of discrete normal mixtures to improve MCMC performance. Slow convergence in
random effects models such as the two-way model (e.g. repetitions j = 1, . . . , J over subjects
i = 1, . . . , I )

yi j = μ + αi + ui j
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with αi ∼ N (0, σ 2
α ) and ui j ∼ N (0, σ 2

u) may be lessened by a centred hierarchical prior,
namely yi j ∼ N (κ i , σ 2

u) and κ i ∼ N (μ, σ 2
α) (Gelfand et al., 1995; Gilks and Roberts, 1996).

For three-way nesting with

yi jk = μ + αi + βi j + ui jk

with β i j ∼ N (0, σ 2
β), the centred version is yi jk ∼ N (ζ i j , σ 2

u), φi j ∼ N (κ i , σ 2
β), and κ i ∼

N (μ, σ 2
α). Vines et al. (1996) suggest sweeping for the subject effects, so that

yi j = ν + ρi + ui j ,

where ρi = αi − α, ν = μ + α, so that
∑I

i=1 ρi = 0, with ρi ∼ N (0, σ (1 − 1/I ).
Scollnik (2002) considers WINBUGS implementation of this prior.

1.6 PREDICTIONS FROM SAMPLING: USING THE POSTERIOR
PREDICTIVE DENSITY

In classical statistics the prediction of out-of-sample data z (for example, data at future time
points or under different conditions and covariates) often involves calculating moments or
probabilities from the assumed likelihood for y evaluated at the selected point estimate θm ,
namely p(y|θm). In the Bayesian method, the information about θ is contained not in a single
point estimate but in the posterior density p(θ |y) and so prediction is correspondingly based
on averaging p(z|y, θ ) over this posterior density. Generally p(z|y, θ ) = p(z|θ ), namely that
predictions are independent of the observations given θ . So the predicted or replicate data z
given the observed data y is, for θ discrete, the sum

p(z|y) =
∑

θ

p(z|θ )p(θ |y)

and is an integral over the product p(z|θ )p(θ |y) when θ is continuous. In the sampling approach,
with iterations t = B +1, . . . , B + T after convergence, this involves iteration-specific samples
of z(t) from the same likelihood form used for p(y|θ ), given the sampled value θ (t).

There are circumstances (e.g. in regression analysis or time series) where such out-of-
sample predictions are the major interest; such predictions may be in circumstances where
the explanatory variates take different values to those actually observed. In clinical trials
comparing the efficacy of an established therapy as against a new therapy, the interest may
be in the predictive probability that a new patient will benefit from the new therapy (Berry,
1993). In a two-stage sample situation where m clusters are sampled at random from a larger
collection of M clusters, and then respondents are sampled at random within the m clusters,
predictions of populationwide quantities or parameters can be made to allow for the uncertainty
attached to the unknown data in the M – m non-sampled clusters (Stroud, 1994).

1.7 THE PRESENT BOOK

The chapters that follow review several major areas of statistical application and modelling with
a view to implementing the above components of the Bayesian perspective, discussing worked
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examples and providing source code that may be extended to similar problems by students
and researchers. Any treatment of such issues is necessarily selective, emphasising particular
methodologies rather than others, and particular areas of application. As in the first edition of
Bayesian Statistical Modelling, the goal is to illustrate the potential and flexibility of Bayesian
approaches to often complex statistical modelling and also the utility of the WINBUGS package
in this context – though some Matlab code is included in Chapter 2.

WINBUGS is S based and offers the basis for sophisticated programming and data manip-
ulation but with a distinctive Bayesian functionality. WINBUGS selects appropriate MCMC
updating schemes via an inbuilt expert system so that there is a blackbox element to some
extent. However, respecifying or extending models can be done simply in WINBUGS without
having to retune the MCMC sampling update schemes, as is necessary in more direct program-
ming in (say) R, Matlab or GAUSS. The labour and checking required in direct programming
increases with the complexity of the model. However, the programming flexibility offered by
WINBUGS may be more favourable to some tastes than others – WINBUGS is not menu
driven and pre-packaged, and does make greater demands on the researcher’s own initiative.
A brief guide to help new WINBUGS users is included in an appendix, though many online
WINBUGS guides exist; extended discussion of how to use WINBUGS appears in Scollnik
(2001), Fryback et al. (2001), and Woodworth (2004, Appendix B).

Issues around prior elicitation and sensitivity to alternative priors may to some viewpoints be
downplayed in necessarily abbreviated worked examples. In most applications multiple chains
are used with convergence assessed using Gelman–Rubin diagnostics, but without a detailed
report of other diagnostics available in coda and similar routines. The focus is more towards
illustrating Bayesian implementation of a range of modelling techniques including multilevel
models, survival models, time series and dynamic linear models, structural equation models,
and missing data models. Any comments on the programs, data interpretation, coding mistakes
and so on would be appreciated at p.congdon@qmul.ac.uk. The reader is also referred to the
website at the Medical Research Council Biostatistics Unit at Cambridge University, where a
highly illuminating set of examples are incorporated in the downloadable software, and links
exist to other collections of WINBUGS software.
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