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Preface to the Third Edition 

When Wiley asked if I would consider putting together a third edition, I admit to 
having mixed feelings. Part of me wondered, "Is it really necessary to add more 
material to an already large collection of tools?" During the past ten years 
presenting short courses on mixture designs and mixture data analysis, I would 
generally cover only the first seven chapters of the book over a Ίγ to 3-day period 
of time. Yet another part of me responded, "I believe there has been quite a lot of 
information on mixture experiments written since the printing of the second edition 
11 years ago. And then it hit me: "If I dedicate myself to improving the current 
product (second edition) by offering additional features (such as designs and 
techniques of data analysis) that the competition (other texts that discuss mixture 
experiments in one or two chapters at most) will not match, isn't this the philosophy 
behind what we mean when talking about product improvement?" 

In this third edition, little new material has been added to the first four chapters. 
In Chapter 1, the chronological ordering of the statistical literature on mixtures has 
been extended to the new millennium spanning a 47-year period of time since the 
first mention of mixture experiments in 1953. In Chapter 1 mention is made of a 
strategy that does not work, which is to set up the mixture experiment in only q— 1 
of the q components and proceed as if the q— 1 components were the only ones that 
are part of the mixture. Chapter 2 on the original mixture problem received many 
simple insertions throughout the text along with a new Figure 2.6 and a new Table 
2.9 showing the output of DESIGN-EXPERT. A new Appendix 2C discusses how 
the partitioning of the sources of variation in the analysis of variance table takes 
form when fitting the Scheffé-type mixture models. Chapter 3 on the use of 
independent variables is the same as in the second edition while Chapter 4 on 
multiple constraints on the component proportions received a new section entitled, 
"Allowing the Major Component Proportions to Vary: Mixtures of Mixtures," 
featuring the inter- and intra-category blending of resins in a photoresist 
formulation discussed by Cornell and Ramsey (1998). A second appendix also 
has been added to Chapter 4. 

xiii 



xiv PREFACE TO THE THIRD EDITION 

Chapter 5 has been expanded by showing the type of computer software output 
that has become available. Output in the form of the listing of residuals, studentized 
residuals, Cook's distance measure, and outlier t values are just some of the useful 
model-diagnostic measures offered either by DESIGN-EXPERT, Minitab, and/or 
other software packages. Two new sections, "Leverage and the Hat Matrix" and 
"A Three-component Propellant Example," finish up Chapter 5. Added to 
Chapter 6 is a section entitled "Fitting a Slack-Variable Model" along with a 
numerical example illustrating the fits of different reduced slack-variable models 
and a warning about fitting a slack-variable model. 

Chapter 7 has been expanded by the addition of a section: "Questions Raised 
and Recommendations Made When Fitting a Combined Model Containing Mixture 
Components and Other Variables." An appendix has been added that discusses 
the generalized least-squares solution for fitting the mixed model in the mixture 
components and process variables to data from a split-plot experiment. This type of 
combined mixture component-process variable experiment has gained considerable 
attention in the engineering and statistical communities since the publication of the 
second edition. 

Chapter 8 has received the most attention in this third edition, as one might 
expect, by the addition of four sections. Biplot displays for looking at multiple 
response data are discussed. Biplots are so named because both mixture formu-
lation and multiple response information are displayed in a single plot. A five-
response, plastics-compounding example is presented, illustrating the ease in 
applying this graphical technique. An attempt at multiple response optimization 
through the use of the desirability function or by the overlaying of contour plots is 
the topic of the final two sections of Chapter 8. A modified L-pseudocomponent 
transformation/model and a centered and scaled intercept model now make up a 
new appendix. A section on the press statistic and on studentized residuals has been 
added to Chapter 9, while Chapter 10 remains the same as in the second edition. An 
updated Bibliography now contains more than 200 listings taken from the mixtures 
and related literature. 

Much of what was written in the preface to the second edition about its coverage 
of mixture designs and models holds true for this third edition. Chapters 2 and 4 
remain the lengthiest in terms of number of pages and are the most important. As a 
classroom textbook for a one-semester graduate-level course, I would suggest 
Chapters 1-7 as basic material and then select from Chapters 8-10 according to 
need. If used as a reference or for self-study, Chapters 1 and 2 and 4-7 provide the 
necessary tools for dealing with almost any type of mixture problem. 

In putting together the material for this third edition, I am indebted to many 
people, some of whom I do not know but who offered suggestions on a proposal I 
submitted on specific topics to be included in the third edition. Friends who are 
retired from industry such as John Gorman, formerly of AMOCO, Wendell F. 
Smith, Jr., formerly of Eastman Kodak Company, and Gregory Piepel, presently 
with Battelle Pacific Northwest Laboratories, will forever remain part of what I 
write about mixture experiments because of the discussions we've had and the input 
they've provided as well as the inspiration they've had on me over the years. Others 
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who attended the sessions at national meetings and provided questions that fueled 
my research efforts, to you I extend a heartfelt "thank you." 

JOHN A. CORNELL 

Gainesville, Florida 
October 2001 



This page intentionally left blank



Preface to the Second Edition 

Since the publication of the first edition 9 years ago, approximately 35 papers have 
appeared in statistical literature that dealt with the construction of mixture designs 
and/or the discussion of methods for analyzing mixture data. Many of the paper 
topics had foundations set previously such as improved ways (algorithms) to 
generate designs for constrained mixture regions, alternative methods for 
measuring component effects in highly constrained mixture problems, and new 
designs and models for including process variables and/or the total amount of the 
mixture in these types of experiments. 

As an active reviewer of papers as well as being an active participant in onsite 
seminars for various industries and short courses sponsored by the American 
Society for Quality Control, I have become increasingly aware of the types of 
mixture experiments that dominate the different areas of application, particularly 
industrial applications. Furthermore, during the past 22 years I have had the good 
fortune of working in an academic environment which has afforded the opportunity 
to fuel my research in a manner that blends theory with practice. As a result, this 
second edition contains a considerable amount of additional material, both new and 
not so new. 

A new section in Chapter 1 compares a factorial experiment to a mixture 
experiment. Chapter 2 discusses the method of using check points for testing the 
adequacy of the fitted model, along with a numerical example which illustrates the 
technique. Rewriting the Scheffé-type mixture models by deleting one of the linear 
blending terms and inserting a constant term so that the model form conforms to the 
requirements of some of the more popular least-squares model fitting programs is 
also included. Chapter 2 ends with questions that one might ask while planning to 
conduct a mixture experiment. 

Chapter 3 once again addresses the use of independent variables with only slight 
changes. Additional comments regard the settings of the mixture components upon 
transforming from the design settings in the independent variables. A new formula 
is given for calculating the radius of the largest sphere, centered at the point of main 
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interest, that will fit inside the simplex region. The four sections on the inclusion of 
process variables have been removed from Chapter 3 and placed in Chapter 7, 
which is now a chapter devoted entirely to the inclusion of process variables in 
mixture experiments. 

The assigning of multiple constraints on the component proportions, 
Chapter 4, has experienced the greatest revision. Previously, only lower-bound 
pseudocomponents, now called L-pseudocomponents, were considered. In this 
edition, upper-bound pseudocomponents, called {/-pseudocomponents, are intro-
duced and used for detecting inconsistent constraints. It is shown how the set of 
inconsistent constraints can be adjusted to make the set of lower and upper bounds 
consistent. A formula is given for enumerating the number of extreme vertices, 
edges, faces, and so on of a constrained region based on the set of consistent 
constraints. This then leads to calculating the coordinates of the extreme vertices of 
the constrained region using i/-pseudocomponents. A section on design strategy for 
fitting the Scheffé quadratic model over a constrained region has been added along 
with a section containing several examples of constrained mixture experiments. 
This section on examples of constrained mixture experiments aids users in checking 
the results obtained with their software packages, against those obtained by this 
author using the two programs, CONVRT and CONAEV, whose steps are now 
listed in Appendices A, B, and С of Chapter 10. 

The analysis of mixture data, Chapter 5, now includes the plotting of the 
response trace for measuring changes in the response brought about by changing 
the proportion of a single component at a time. Chapter 6, on other mixture model 
forms, contains a new section on measuring additivity and interaction in the 
component blending properties by fitting log contrast models. 

Chapters 7, 8, and 10 are new additions. Chapter 7 is devoted entirely to the 
inclusion of process variables and considers the total amount of the mixture as well. 
Combining lattice designs with factorial arrangements is taken from Chapters 3 and 
5 of the first edition and is illustrated using the fish patty experiment previously 
found in Chapter 5. Testing the component blending properties and the effects of 
the process variables when one set of variables is embedded in the other set 
(mixture components embedded in the process variables and vice versa) is also 
illustrated. The use of fractional factorial designs in the process variables as well as 
fractionating the lattice designs in the mixture components through a computer-
aided approach are two new sections. Designs and models for mixture-amount 
experiments close out Chapter 7. 

Chapter 8 reviews orthogonal blocking strategies, comparing the estimates of the 
coefficients in the Scheffé models obtained using weighted and unweighted least-
squares formulas, the generation of optimal designs with the ACED algorithm, and 
a technique that provides a prediction equation that possesses constant variance of 
prediction on concentric triangles for three-component systems. Reparameterizing 
the Scheffé-mixture models to models containing a constant term so that the terms 
can be centered and standardized is suggested as a remedy for improving the 
accuracy of the calculating formulas for the model coefficient estimates. 
Collinearity problems that arise from the fitting of Scheffé's models to data from 
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highly constrained regions are also addressed. Chapter 8 ends with a method for 
fitting segmented Scheffé models to freezing-point data that is collected from a 
binary system and exhibits a eutectic point. The method is illustrated with a 
numerical example. 

Chapter 9 contains a review of matrix algebra, the method of least squares, and 
setting up an analysis of variance table. Chapter 10 is a collection of real data sets 
with partial solutions provided. The example data sets offer the reader an 
opportunity to work on problems with data sets that are larger in size than those 
provided in the exercises at the end of Chapters 2-8. An updated Bibliography 
contains more than 150 entries taken from the mixture literature and also recent 
related literature. 

This expanded second edition is much more complete in its coverage of mixture 
designs and models particularly in the area of constrained mixture regions. Many of 
the new topics covered, particularly in Chapters 2 and 4, are important because 
most arose from questions that were asked during short-course discussions and 
plant visits. And while Chapters 2 and 4 are the lengthiest in terms of number of 
pages, in my opinion, they are the most important because they present designs and 
model fitting exercises for exploring the mixture surface over the entire simplex 
region and over constrained subregions of the simplex, respectively. As a classroom 
textbook for a one-semester graduate-level course, I would suggest Chapters 1-7 as 
basic material and then select from Chapters 8-10 according to need. If used as a 
reference or for self-study, Chapters 1-2 and 4-7 provide the necessary tools for 
dealing with almost any type of mixture problem. 

In putting together the material for this second edition, I am indebted to many 
people. Heading the list of friends from industry are John Gorman who is now 
retired from AMOCO, Wendell Smith of Eastman Kodak Company, and Gregory 
Piepel of Battelle Pacific Northwest Laboratories. Others who attended the ASQC 
short courses on mixtures or who invited me to their particular companies to share a 
common interest in solving problems with mixtures are too numerous to mention 
here and to them I extend a heart warmed "thank you." I wish also to express my 
sincere appreciation to Ms. Pamela Somerville for her excellent typing. 

JOHN A. CORNELL 

Gainesville, Florida 
April 1990 
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C H A P T E R 1 

Introduction 

Many products are formed by mixing together two or more ingredients. Some 
examples are: 

1. Cake formulations using baking powder, shortening, flour, sugar, and water. 
2. Building construction concrete formed by mixing sand, water, and one or 

more types of cement. 
3. Railroad flares, which are the product of blending together proportions of 

magnesium, sodium nitrate, strontium nitrate, and binder. 
4. Fruit punch consisting of juices from watermelon, pineapple, and orange. 
5. Photographic film coating made by blending silver halide, a coupler, two 

coupler solvents, and two stabilizers. 
6. Tobacco blends consisting of flue-cured tobacco, burley, turkish blend, and 

processed tobacco. 

In each of cases 1-6, one or more properties of each product are generally of 
interest to the manufacturer or experimenter who is responsible for mixing the 
ingredients. Such properties are (1) the fluffiness of the cake or the layer appearance 
of the cake where the fluffiness or layer appearance is related to the ingredient 
proportions; (2) the hardness or compression strength [measured in pounds 
per square inch (psi)] of the concrete, where the hardness is a function of 
the percentages of cement, sand, and water in the mix; (3) the illumination in foot-
candles and the duration of the illumination of the flares; (4) the fruitiness 
flavor of the punch, which depends on the percentages of watermelon, pine-
apple, and orange that are present in the punch; (5) the color stability of the 
photographs when exposed to heat and light; and (6) the flavor and aroma of 
the tobacco blend. In every case, the measured property of the final product depends 
on the percentages or proportions of the individual ingredients that are present in 
the formulation. 

Another reason for mixing together ingredients in blending experiments is to 
see whether there exist blends of two or more ingredients that produce more 
desirable product properties than are obtainable with the single ingredients 

1 
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individually. For example, let us imagine we have three different gasoline 
stocks, labeled A, B, and C, and that we are interested in comparing the antiknock 
quality of the three stocks, singly and in combination. In particular we would like to 
know whether there are combinations of the stocks, such as a 50% : 50% blend of 
A : B, or a 33% : 33% : 33% blend of A : В : С, or a 25% : 75% blend of В : С, that 
yield a higher antiknock rating than is obtained from using A alone or from using В 
alone, or С alone. If so, we would no doubt select the particular blend of two or 
more gasoline stocks that produces the highest rating, assuming of course that 
all other variables such as the cost and availability of the blending ingredients 
remain fixed. 

In each of cases 1-6 listed above, it is assumed that the properties of interest 
are functionally related to the product composition and that, by varying the 
composition through the changing of ingredient proportions, the properties of the 
product will vary or change also. From an experimental standpoint, often the reason 
for studying the functional relationship between the measured property or the 
measured response (such as the strength of the concrete) and the controllable 
variables (which in the concrete case are the proportions of the ingredients cement, 
sand, and water) is (i) to determine whether some combination of the ingredients 
can be considered best in some sense, or (ii) to simply gain a better understanding 
of the overall system by studying the roles played by the different ingredients. The 
best ingredient combination for the concrete would be the combination that 
produced the absolutely hardest concrete without incurring an increase in the cost 
of the concrete batch. In an attempt to determine the best combination of 
ingredients (or combinations if more than one blend produces concrete samples 
having approximately equally high strengths), often one resorts to trial and error. 
Other attempts resemble "scattergun" procedures, where a large number of 
combinations of the ingredients are tried. Such scattergun procedures can require 
large expenditures in terms of time and cost of experimentation and in most 
cases better methods can be employed. Procedures used in screening out 
unimportant mixture ingredients are discussed in Section 5.7. Before we discuss 
some methods that have been developed for studying functional relationships and 
that are referred to as response surface methods, we introduce the original mixture 
problem. 

1.1. THE ORIGINAL MIXTURE PROBLEM 

To formulate our thinking about experiments involving mixtures, we simplify the 
gasoline-blending example mentioned earlier by considering only two gasoline 
stocks, which we label fuels A and B. Instead of discussing the antiknock rating, let 
us assume that the response of interest is the mileage obtained by driving a test car 
with the fuel, where the mileage is recorded in units of the average number of miles 
traveled per gallon. It is known ahead of time that fuel A normally yields 13 miles 
per gallon and fuel В normally yields only 7 miles per gallon. If the car is tested 
with each fuel separately by driving with 1 gallon of fuel A and then with 1 gallon 
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One gallon 
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« 
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14 + B) 

2 

10 miles 

Figure 1.1. Summing the miles per gallon of fuels A and B. 

of B, we would expect to travel 13 + 7 = 20 miles on the 2 gallons or, equivalently, 
we expect to average 20/2= 10 miles per gallon (Figure 1.1). The question we 
should like to answer therefore is: "If we combine or blend the two fuels and 
drive the same test car, is there a blend of A and В such as a 50% : 50% blend or a 
33% : 67% blend of A : В that yields a higher average number of miles per gallon 
than the 10 miles per gallon that was obtained by simply averaging the mileage of A 
and of Bl" 

To answer this question, an experiment is performed that consists of driving the 
test car containing a 50% : 50% blend of fuels A and B. A trial consists of driving 
the car with 2 gallons of fuel until the fuel is used up. Five trails were performed 
with the same car and the average mileage was calculated to be 12.0 miles per 
gallon. (See Table 1.1.) 

The average number of miles per gallon for the blend is 12.0 and is higher than 
the simple average mileage of the two fuels, which was 10 miles per gallon. Thus 
fuels A and В are said to be complementary to each other when blended together. If 
the average mileage for all blends of A and В is higher than the simple average of 
the two, this phenomenon might be depicted by the solid curve in Figure 1.2. If the 
mileage figure per gallon is strictly additive, that is, if the 50% : 50% blend resulted 

Table 1.1. Average Mileage for Each of Five Trials 

Trial 

1 

2 
3 
4 
5 

Mileage from Two Gallons 
of 50% : 50% Blended Fuel 

24.6 
23.3 
24.3 
23.1 
24.7 

Overall average 

Average Mileage 
per Gallon 

12.30 
11.65 
12.15 
11.55 
12.35 
12.00 
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Figure 1.2. Plotting the mileage of the 50% : 50% blend of fuels A and B. The formula for the additive 
blending line is mileage = [(13 miles x A) + (7 miles x S)]/100%. 

in exactly 10 miles per gallon, or if a 33%:67% blend of А: В resulted in [(13 
miles x 33%) 4- (7 miles x 67%)]/100% = 9 miles, and if this additivity property 
is true of all possible A : В blends, then this additive mileage property is represented 
by the straight line connecting the mileage values 13 and 7 for fuels A and B, 
respectively, in Figure 1.2. If the average mileage for blends is lower than the 
simple average mileage, this is represented by the dashed curve. 

Definition. In the general mixture problem, the measured response is assumed to 
depend only on the proportions of the ingredients present in the mixture and not on 
the amount of the mixture. (We shall modify this definition later in Chapter 7 when 
discussing mixture-amount experiments.) 

In the fuel mileage example, the measured response was the average number of 
miles traveled per gallon and by putting the amount of fuel on a per-gallon basis, 
we made the mileage dependent only on the proportions of the two fuels in the 
blends and not on the quantity of fuel used. Experimenters often satisfy the defi-
nitional requirement by fixing the total amount of the ingredients to be the same 
value for all blends. On a slightly different note, if in the measurement of crop 
yields due to various mixtures of fertilizers the amount of fertilizer applied to the 
plots is allowed to vary, then the amount can greatly affect the yield. If we 
fix the amount of applied fertilizer to be constant and the same on all plots, 
however, then the fertilizer trials can be considered a legitimate mixture problem 
because the crop yield per plot would then be a function only of the ingredient 
proportions. 

The distinguishing feature of the mixture problem is that the independent or 
controllable factors (fuels A and B, or the fertilizer ingredients) represent propor-
tionate amounts of the mixture rather than unrestrained amounts where the 
proportions are by volume, by weight, or by mole fraction. The proportions are 
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nonnegative, and, if expressed as fractions of the mixture, they must sum to 
unity, especially if they are the only ingredients to be studied comprising the 
mixtures. If the sum of the component proportions is less than unity, for example, if 
the sum is equal to 0.80 because 0.20 of the blend is held fixed, and we wish to 
work only with the variable proportions summing to 0.80, then the variable 
proportions are rewritten as scaled fractions so that the scaled fractions sum to 
unity. Clearly, if we let q represent the number of ingredients (or constituents) in the 
system under study and if we represent the proportion of the /th constituent in 
the mixture by xh then 

JC,->0, i=l,2,...,q (1.1) 

and 

ч 
Σχί =χι +*2 +·■+*<? = 1.0 (1.2) 
1=1 

According to Eq. (1.2), the sum of the nonnegative component proportions or 
fractions is unity. This latter condition (1.2) will be the fundamental restriction 
assigned to the proportions comprising the mixture experiment. 

Satisfying the restrictions in Eqs. (1.1) and (1.2) means only that a mixture 
composition will be formed by adding together nonnegative quantities. Actually, 
since in Eq. ( 1.2) an individual proportion JC, could be unity, a mixture could be a 
single ingredient or constituent. Such a mixture is called a pure mixture or 
a "single-component" mixture. Single-component mixtures are used mainly as a 
benchmark or as a standard against which multicomponent blends are compared. 
We discuss the use of single-component mixtures in the next chapter when 
introducing the simplex-lattice designs, but in Chapters 3-6 nearly all of the design 
points selected will require most of the constituents to be simultaneously present in 
the blends. Hereafter we shall call the xh i= 1,2,... ,q, satisfying Eqs. (1.1) and 
(1.2) the components of the mixture. 

By virtue of the constraints on the x, shown in Eqs. (1.1) and (1.2) the geometric 
description of the factor space containing the q components consists of all points on 
or inside the boundaries (vertices, edges, faces, etc.) of a regular (q— l)-dimensional 
simplex. For q = 2 components, the simplex factor space is a straight line, 
represented by the horizontal axis in Figure 1.2. Each blend of the two fuels A and 
В is represented by a point on the line or axis. 

With three components (q = 3), the simplex factor space is an equilateral 
triangle, and for q = 4 the simplex is a tetrahedron. Figure 1.3 presents the factor 
space for the three components 1, 2, and 3, whose proportions are denoted by xu x2, 
and JC3. The coordinate system used for the values of the JC„ ; = 1,2,..., q, is called 
a simplex coordinate system. With three components, for example, the coordinates 
can be plotted on triangular graph paper that has lines parallel to the three sides 
of an equilateral triangle; see Figure 1.4. In Figures 1.3 and 1.4, we see that 
the vertices of the simplex or triangle represent the single-component mixtures 
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Figure 1.3. Three-component simplex region. All experimental points must lie on or inside the triangle 
whose equation is лг, + x2 + jr.i = 1. 

Figure 1.4. Triangular coordinate paper. 
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and are denoted by x,■■— 1, Xj = 0 for i,j =1 ,2 , and 3, i ψ}. The interior points of 
the triangle represent mixtures in which none of the three components is 
absent; that is, x\ > 0, x2 > 0, and JC3 > 0. The centroid of the triangle corresponds 
to the mixture with equal proportions (5,3,3) from each of the components. 
Figure 1.5 is the tetrahedron for the four components whose proportions are 
xi,X2,x$, and X4. 

Frequently situations exist where some of the proportions дс, are not allowed to 
vary from 0 to 1.0. Instead, some, or possibly all, of the component proportions are 
restricted by either a lower bound and/or an upper bound. In the case of component 
i, these constraints might be written as 

0<L,-<jc,-< t/,· < 1.0, \<i<q 

where L, is the lower bound and i/, is the upper bound. As an example, in the 
production of a commercial laundry bleach that is to be used for removing ink 
stains and that is comprised of the constituents bromine (дГ|), dilute HC1 (x2), and 
hypochlorite powder (дг3), to be effective the bleach must contain in solution all 
three of the constituents. This means that each L, > 0 and each C/, < 1.0. To be more 
exact, it might be necessary to require x2 (dilute HC1) to take values in the interval 
0.05 <x2< 0.09, which therefore forces L2 = 0.05 and U2 = 0.09. Furthermore, the 
value of L2 = 0.05 forces U\ and i/3 to be at most equal to 1 — L^ = 0.95. Such 
mixtures in which all of the components are present in nonzero proportions are 
called complete mixtures. 

Finally, in the chapters that follow, we shall try to keep in mind the following as 
being the potential goals of a mixture experiment. We shall try to model the 
dependence of the response variable (or variables if more than one response is of 

Figure 1.5. Four-component tetrahedron. 
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interest) on the relative proportions of the components with some form of 
mathematical equation so that: 

1. The influence on the response of each component singly and in combination 
with the other components can be measured. If this is done successfully, those 
components having the least effect or felt to be less active might be 
"screened" out, leaving us with only those components having the greatest 
effect on the response (Chapters 2 and 5). 

2. Predictions of the response to any mixture or combination of the component 
proportions can be made. 

3. Identifying mixtures or blends of the components that yield desirable values 
of the response. 

1.2. GENERAL REMARKS ABOUT RESPONSE 
SURFACE METHODS 

In much of the experimental work involving multicomponent mixtures, the 
emphasis is on studying the physical characteristics, such as the shape or the 
highest point, of the measured response surface. For example, let us assume that we 
are making a fruit punch by blending proportions of orange juice (*i), pineapple 
juice (JC2), and grapefruit juice (x3). The response of interest is the fruitiness flavor 
of the punch quantified on a 1-9 scale as 1 = not fruity, 5 = average, 9 = extremely 
fruity. If the measured response or flavor rating in this case to any blend of the 
juices can be represented by the perpendicular height directly above the blend 
whose coordinates are located inside or on the boundaries of the triangle, then the 
locus of the flavor values for all one-, two-, and three-juice blends can be visualized 
as a surface above the triangle. One such surface, which is assumed to be 
continuous for all possible juice blends, is presented in Figure 1.6 and the contour 
plot of the estimated flavor surface is presented in Figure 1.7. Geometrically, each 
contour curve in Figure 1.7 is a projection onto the three-component triangle of a 
cross section of the flavor surface made by a plane, parallel to the triangle, cutting 
through the surface at a particular height. The heights of the cutting or intersecting 
planes that generated the contour curves in Figure 1.7 range from 5.8 up to 6.6. 

The main considerations connected with the exploration of the response surface 
over the simplex region are (1) the choice of a proper model to approximate the 
surface over the region of interest, (2) the testing of the adequacy of the model in 
representing the response surface, and (3) a suitable design for collecting 
observations, fitting the model, and testing the adequacy of fit. To this end, we 
shall assume that there exists some functional relationship 

η = φ{χί,χ2,...,χ4) (1.3) 

that, in theory, exactly describes the surface. We shall write the quantity η to denote 
the response value that is dependent on the proportions x\,x2,--.,x4 of the 
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Figure 1.6. Fruitiness flavor surface of fruit punch. 
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Figure 1.7. Contours of constant fruitiness flavor of the fruit punch surface. 

components. One very basic assumption that we are making here is that the 
response surface, represented by the function <f>, is depicted to be a continuous 
function in the jt„ i = 1,2,..., q. This assumption might be questionable with some 
systems, for example, a gaseous system whose catalytic reactions break down with 
the addition or deletion of components. For these systems, model forms other than 
the standard polynomial equations that we shall work with initially will need to be 
considered. Chapter 6 presents equations containing inverse terms for the purpose 
of modeling discontinuities of this type in the surface. 

The problem of associating the shape of the response surface with the ingredient 
composition centers around determining the mathematical equation that adequately 
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represents the function φ(-) in Eq. (1.3). In general, polynomial functions are used 
to represent ^(J^ , · · -,хя), the justification being that one can expand ф(хи.. .,хч) 
using a Taylor series, and thus a polynomial can be used also as an approximation. 
Normally a low-degree polynomial such as the first-degree polynomial 

or the second-degree polynomial 

я ч ч 

ν = βο + Σ ßiXi + 5 3 5 3 fa** (1 ·5) 
ί=1 i<j 

is the kind of model we believe to represent the surface. The low-degree 
polynomial equations are more conveniently handled than the higher-degree 
equations because the lower-degree polynomials contain fewer terms and therefore 
require fewer observed response values in order to estimate the parameters (the /?'s) 
in the equation. On those occasions when a very complicated system is being 
studied such as shown in Figure 1.8, we may feel the need to use a third-degree 
equation or some special form of a cubic or third-degree equation (especially when 
even a transformation of the data values does not simplify the system). Most of 
the time, however, we shall try to be successful with at most the second-degree 
model. 

Figure 1.8 shows contours of equal dielectric constant lines in the system 
РЬ(Со1/3№>2/з)Оз-РЬТЮз-РЬггС)з as estimated with a third-degree polynomial 
equation. As seen from the contours, the dielectric constants in the system in-
crease with increasing proportion of Pb(Coi/3Nb2/3)03 up to about 80% : 20% of 
Pb(Coi/3Nb2/3)03. Near the center of the system is a steep cliff that appears to drop 

PblCo./jNb^lOj 

PbTi03 Pb2r03 

Figure 1.8. Equal dielectric constant lines in system РЬ(СО|^Ь2/з)Оз-РЬТЮз-РЬ7Ю3. 
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off in the directions of pure РЬТЮз and pure PbZr03. Contour plots as in Figures 
1.7 and 1.8 are extremely helpful when studying a three-component system. 

While observing the response η during an experimental program consisting of /V 
trials, it is natural to assume that the observed value that we denote by yu for the Mth 
trial (u = 1,2,..., N) varies about a mean of η„ with a common variance σ2 for all 
и = 1,2,..., N. The observed value contains additive experimental error eu: 

Уи = Ч.+еи, \<u<N (1.6) 

The experimental errors eu are assumed to be uncorrelated and identically 
distributed with zero mean and common variance σ2. These properties of the errors 
are defined, using an expectation operator £(·), as 

E(eu ) = 0, Ε{ε\ )=σ2, E{eueu. ) = 0, 

и =£ u', u,u' = 1,2,... ,N 

and, therefore, the expected value for the observed value yu is E(yu) = цш for all 
и=1,2,.. . ,ЛГ. 

In order to approximate the functional relationship 77 = ф(хх,х2, ■ ■ ■ ,xq) with a 
polynomial or with any other form of model equation, some preselected number of 
experimental runs are performed at various predetermined combinations of the 
proportions of the q components. This set of combinations of the proportions (or 
blends of the ingredients) is referred to as the experimental design. Once the N 
observations are collected, the parameters in the model are estimated by the method 
of least squares. 

As an example, let us suppose we have q = 2 components so that coupled with 
the structure of yu in Eq. (1.6) we may write 

yu = (ß\Xl+ßlXi)u+Su (1-7) 

The absence of the parameter ß0 in Eq. (1.7) is due to the restriction X| + x2 = 1. 
We shall discuss the derivation of the model ( 1.7) form in Section 2.2. With some 
number N > 2 of observations collected on yu, we can obtain the estimates b\ and 
b2 of the parameters ß\ and /?2, respectively. If it is decided that the param-
eter estimates bt and b2 are satisfactory in the sense that they are nonzero and 
therefore they relay information about the system we are modeling, then 
the unknown parameters in Eq. (17) are replaced by their respective estimates to 
give 

у = b\x\ + b2x2 (1.8) 

where у (read "y hat") denotes the predicted or estimated value of η for given 
values of xt and x2. Of course, before any predictions are made with Eq. (1.8), we 
must determine that the prediction equation (1.8) does an adequate job of fitting the 
observed data. We discuss ways of testing the adequacy of empirical models fitted 
to data in Chapters 2 and 5. 
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The properties of the polynomials used to estimate the response function depend 
to a large extent on the specific program of experiments that we have called the 
experimental design. The experimental design also defines the range of interest of 
the experimenter with respect to the proportions used for each of the components. 
This is because the design may cover the entire simplex factor space if the 
experimenter's interest is with all the values of x, ranging from 0 to 1.0 for all 
(' = 1,2,..., q, or the design might cover only a subportion or smaller subspace 
within the simplex. This latter situation comes up in practice when additional 
constraints in the form of upper and/or lower bounds are placed on the component 
proportions, or, perhaps, when the experimenter is interested only in a group of 
mixtures that are located in some small region inside the simplex. Both of these 
cases are discussed in Chapters 4 and 3, respectively. 

1.3. A FACTORIAL EXPERIMENT OR A MIXTURE EXPERIMENT? 

One of the reviewers of the first edition of this text commented that somewhere in 
the introductory chapter the following question should be addressed: "Why is a 
book on mixture experiments necessary?" This question no doubt would be 
followed by a second question: "Can't we perform other types of experiments, such 
as factorial experiments, and get the same kind of information from them that we 
get from mixture experiments?" 

To answer the second question first, we shall repeat the definition of a mixture 
experiment given earlier in Section 1.1 and also define a factorial experiment. We 
shall then present a glass coating example to illustrate the difference between 
running a factorial experiment and performing a mixture experiment and at 
the same time address the question of why we need to perform mixture 
experiments. 

Definition of Mixture Experiment. This is an experiment in which the response 
is assumed to depend only on the relative proportions of the ingredients present in 
the mixture and not on the amount of the mixture. [A mixture-amount experiment 
(Section 7.9) is an experiment where the amount of the mixture varies as well and 
the response depends not only on the relative ingredient proportions but also on the 
total amount of the ingredients.] In a mixture experiment then, if the total amount is 
held constant and the value of the response changes when changes are made in the 
relative proportions of those ingredients making up the mixture, then the behavior 
of the response is said to be a function of the joint blending property of the 
ingredients in the mixture. 

Definition of Factorial Experiment. A factorial experiment studies the effect on 
some observable quantity (the response) of varying two or more factors, such as 
temperature and source of raw material. A series of values or levels of each factor is 
chosen, and certain combinations of the levels of the factors are tested. In a 
complete factorial design, all combinations of the levels of all the factors are tested. 
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The objective of a factorial experiment is to measure the change in the response 
when changing the level of each factor while holding the levels of the other factors 
fixed as well as when changing the levels of two or more factors simultaneously. 
Such changes in the response are called the main effects of the factors and 
interaction effects between the factors. 

An Example. A company manufactures a liquid material that results in a thin film 
for coating window glass. When applied to the glass, the coating film provides a 
barrier to ultraviolet rays and also reduces glare from the sun. Initially the coating is 
a liquid consisting of water (W), which is combined with three active solid 
ingredients: a polymer (P), a coupling agent (CA), and a lubricant (L). The film is 
formed by extruding the liquid material at high temperatures. 

An experiment is to be conducted consisting of several different combinations of 
W, P, CA, and L, where a single combination comprises a single coating. The 
thickness of the film coating is determined by how much water and active solids are 
mixed. The objective of the overall experiment is to determine the combination of 
W, P, С A, and L that is most effective in terms of reducing light penetration. Light 
penetration is measured by first taking a bright colored cloth affixed to the coated 
glass and exposing the cloth to light, through the glass, for a fixed period of time. 
The color of the cloth after exposure is then compared to an unexposed piece of 
cloth of the same color and the degree of fading that has occurred is recorded. A 
low percent fade value is considered to be desirable. 

In making up the various combinations of water (W), polymer (P), coupling 
agent (CA), and lubricant (L) to produce the different coatings, we present the 
following strategies: 

Strategy A. Each bath of liquid coating material is mixed in a 250-mL beaker. 
Exactly 225 g of W is mixed with 25 g of active solids, fixing the ratio of 
water to active solids at 9:1 for all combinations. With the active solids, the 
amounts of P, CA, and L are varied as follows: 

P(%) 

20 
22 
22 
22.5 

CA(g) 

4 
2 
2.5 
2 

Mg) 
1 
1 
0.5 
0.5 

Total 
Active 

Solids (g) 

25 
25 
25 
25 

Percentage of 
Active Solids 
P 

80 
88 
88 
90 

CA L 

16 4 
8 4 

10 2 
8 2 

The amounts of water (225 g) and active solids (P + CA + L = 25 g) are held 
fixed with all combinations. The amounts of P, CA, and L are varied, but since 
P + CA + L — 25 g, this is a three-component mixture experiment. Here the 
interest is in studying how different proportions (or percentages) of P, CA, 
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and L when combined with water in a 9: 1 ratio of water to active solids 
influence the degree of light penetration. 

Strategy B. Each batch of liquid coating is mixed in a 250-mL beaker but the 
amount of water is fixed at 200 g while the amount of active solids is varied 
between 25 and 43 g. The combinations are as follows: 

Water (g) 

200 
200 
200 
200 

Active Solids (g) 

25 
28.5 
35.3 
42.4 

Total Weight (g) 

225 
228.5 
235.3 
242.4 

Ratio 
Water : Active Solids 

8.90:1.1 
8.75:1.25 
8.50:1.5 
8.25:1.75 

Within each fixed amount of active solids, if the percentages of P, CA, and L 
are varied as in Strategy A, then this is a three-component mixture-amount 
experiment. If, on the other hand, only one blend of P, CA, and L is studied, 
say, P = 80%, CA= 16%, and L = 4% within each of the four amounts of 
active solids, then we have a single-factor experiment with active solids at 
four levels. The objective is to measure the effect of changing the ratio of 
water to active solids (or of changing the amount of active solids while 
holding the amount of water fixed) on the degree of light penetration. 

Strategy C. Two levels of water (225 and 270 g) and two levels of active solids 
(25 and 30 g) are to be tested. The percentages of P, CA, and L are fixed at 
80%, 16%, and 4%, respectively, with each level of active solids. The 
combinations are as follows: 

Water (g) 

225 
270 
225 
270 

Active Solids 

25 
25 
30 
30 

(g) Total Amount (g) 

250 
295 
255 
300 

Ratio 
Water : Active Solids 

9.0:1.0 
9.15:0.85 

8.8:1.2 
9.0:1.0 

This is a 2 x 2 factorial experiment. The interest is in measuring how changes 
in the degree of light penetration are influenced by changing or increasing the 
level of water and by changing the level of active solids. 

The difference between a mixture experiment and a factorial experiment is 
illustrated by comparing Strategies A and C. With Strategy A, the total amount (or 
weight in grams) of active solids is fixed at 25 g so that when combined with 
225 mL of water, the total amount of liquid coating to be sprayed on the glass is 
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fixed at 250g. The four combinations of P, CA, and L differ only in the relative 
proportions of each of the three ingredients. Thus changes in the degree of light 
penetration arising from the four different combinations of P, CA, and L do not 
occur as a result of varying the amount (P+ CA + L) of active solids or the amount 
of coating sprayed on the glass but rather by changing the proportions or 
percentages of P, CA, and L in the active solids portion of the blend. 

In Strategy C, we have a factorial experiment. For this case the active solids 
portion of the blend is varied from 25 to 30 g and the percentages of P, CA, and L 
are fixed at 80, 16, and 4, respectively. The amount of water is varied from 225 to 
275 g. Thus the total amount of coating liquid that is applied to the glass varies 
from 250 to 300 g. While it is suspected that the degree of light penetration will 
change from one combination of water and active solids to the next owing to the 
varying total amounts, we are primarily interested in finding out how changing the 
amount of active solids, with fixed percentages of P, CA, and L, affects the degree of 
light penetration at each level of water and vice versa. Hence the latter experimental 
strategy emphasizes the amount of coating that is applied by varying the amounts of 
water and active solids, while the former experiment (Strategy A) fixes the total 
amount that is applied and investigates the changes in the response of interest that 
are effected by changing the ingredient proportions within each blend. 

1.3.1. A Warning Regarding a Strategy that Doesn't Work 

A question that often comes up is: "Isn 't it possible to perform a factorial experiment 
in the proportions or amounts of only q—1 of the components and let the qth 
component take up the slack?" As an example, suppose with Strategy A we elect to 
perform a 2 x 2 factorial experiment in the amounts of P and CA (and let L make up 
the remainder of the 25 g) but ignore L. Such a strategy might be depicted as follows: 

P(g) 

20 
22 
20 
22 

CA(g) 

2 
2 
3 
3 

Mg) 
3 
1 
2 
0 

Total 
Active Solids (g) 

25 
25 
25 
25 

Response 

3Ί 

У2 

Уз 
У4 

Zi 

- 1 
1 

- 1 
1 

Zi 

- 1 
- 1 

1 
1 

Next, suppose we define the coded variables Zi and z2 as Z\ —{P—2\)l\ and 
z2 = (CA -2.5)/0.5, so that when P = 20 or 22 then z\ = -1 or 1, and when CA = 2 
or 3 then z2 = — 1 or 1. When fitted to the response values yu y2, Уз, and ;y4 above, 
the first-degree model in Z\ and z2, E(y) = ß0 + ßxz\ + ß2z2, becomes 

y{z\,Z2)-bo + b]Z\+b2Z2 (1.9) 

where b0 = (y\ + y2 + y3 + y4)/4 is an estimate of the overall mean response, which 
is represented by /30 in the model for E(y). The coefficients bs = (y2 + У4~у\ -уз)/4 
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