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Preface 

The past decade has seen a notable resurgence in both applied and theoretical 
research on Markov decision processes. Branching out from operations research roots 
of the 1950’s, Markov decision process models have gained recognition in such diverse 
fields as ecology, economics, and communications engineering. These new applica- 
tions have been accompanied by many theoretical advances. In response to the 
increased activity and the potential for further advances, I felt that there was a need 
for an up-to-date, unified and rigorous treatment of theoretical, computational, and 
applied research on Markov decision process models. This book is my attempt to 
meet this need. 

I have written this book with two primary objectives in mind: to provide a 
comprehensive reference for researchers, and to serve as a text in an advanced 
undergraduate or graduate level course in operations research, economics, or control 
engineering. Further, I hope it will serve as an accessible introduction to the subject 
for investigators in other disciplines. I expect that the material in this book will be of 
interest to management scientists, computer scientists, economists, applied mathe- 
maticians, control and communications engineers, statisticians, and mathematical 
ecologists. As a prerequisite, a reader should have some background in real analysis, 
linear algebra, probability, and linear programming; however, I have tried to keep the 
book self-contained by including relevant appendices. I hope that this book will 
inspire readers to delve deeper into this subject and to use these methods in research 
and application. 

Markov decision processes, also referred to as stochastic dynamic programs or 
stochastic control problems, are models for sequential decision making when out- 
comes are uncertain. The Markov decision process model consists of decision epochs, 
states, actions, rewards, and transition probabilities. Choosing an action in a state 
generates a reward and determines the state at the next decision epoch through a 
transition probability function. Policies or strategies are prescriptions of which action 
to choose under any eventuality at every future decision epoch. Decision makers seek 
policies which are optimal in some sense. An analysis of this model includes 

1. providing conditions under which there exist easily implementablc optimal 

2. determining how to recognize these policies; 
3. developing and enhancing algorithms for computing them; and 
4. establishing convergence of these algorithms. 

policies; 
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Surprisingly these analyses depend on the criterion used to compare policies. Because 
of this, I have organized the book chapters on the basis of optimality criterion. 

The primary focus of the book is infinite-horizon discrete-time models with 
discrete state spaces; however several sections (denoted by * )  discuss models with 
arbitrary state spaces or other advanced topics. In addition, Chap. 4 discusses 
finite-horizon models and Chap. 11 considers a special class of continuous-time 
discrete-state models referred to as semi-Markov decision processes. 

This book covers several topics which have received little or no attention in other 
books on this subject. They include modified policy iteration, multichain models with 
average reward criterion, and sensitive optimality. Further I have tried to provide an 
in-depth discussion of algorithms and computational issues. The Bibliographic 
Remarks section of each chapter comments on relevant historical references in the 
extensive bibliography. I also have attemptcd to discuss recent research advances in 
areas such as countable-state space models with average reward criterion, constrained 
models, and models with risk sensitive optimality criteria. I include a table of symbols 
to help follow the extensive notation. As far as possible I have used a common 
framework for presenting results for each optimality criterion which 

explores the relationship between solutions to the optimality equation and the 

establishes the existence of solutions to the optimality equation; 
shows that it characterizes optimal (stationary) policies; 
investigates solving the optimality equation using value iteration, policy iteration, 

establishes convergence of these algorithms; 
discusses their implementation; and 
provides an approach for determining the structure of optimality policies. 

optimal value function; 

modified policy iteration, and linear programming; 

With rigor in mind, I present results in a “theorem-proof’ format. I then elaborate 
on them through verbal discussion and examples. The model in Sec. 3.1 is analyzed 
repeatedly throughout the book, and demonstrates many important concepts. I have 
tried to use simple models to provide counterexamples and illustrate computation; 
more significant applications are described in Chap. 1, the Bibliographic Remarks 
sections, and left as exercises in the Problem sections. I have carried out most of the 
calculations in this book on a PC using the spreadsheet Quattro Pro (Borland 
International, Scott’s Valley, CA), the matrix language GAUSS (Aptech Systems, Inc., 
Kent, WA), and Bernard Lamond’s package MDPS (Lamond and Drouin, 1992). 
Most of the numerical exercises can be solved without elaborate coding. 

For use as a text, I have included numerous problems which contain applications, 
numerical examples, computational studies, counterexamples, theoretical exercises, 
and extensions. For a one-semester course, I suggest covering Chap. 1; Secs. 2.1 and 
2.2; Chap. 3; Chap. 4; Chap. 5; Secs. 6.1, 6.2.1-6.2.4, 6.3.1-6.3.2, 6.4.1-6.4.2, 
6.5.1-6.5.2, 6.6.1-6.6.7, and 6.7; Secs. 8.1, 8.2.1, 8.3, 8.4.1-8.4.3, 8.5.1-8.5.3, 8.6, and 
8.8; and Chap. 11. The remaining material can provide the basis for topics courses, 
projects and independent study. 

This book has its roots in conversations with Nico van Dijk in the early 1980’s. 
During his visit to the University of British Columbia, he used my notes for a course 
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on dynamic programming, and suggested that I expand them into a book. Shortly 
thereafter, Matt Sobel and Dan Heyman invited me to preparc a chapter on Markov 
decision processes for The Handbook on Operations Research: Volume II, Stochasfic 
Models, which they were editing. This was the catalyst. My first version (180 pages 
single spaccd) was closer to a book than a handbook article. It served as an outline for 
this book, but has undergone considerable revision and enhancement. I have learned 
a great deal about this subject since then, and have been encouraged by the breadth 
and depth of renewed research in this area. I have tried to incorporate much of this 
recent research. 

Many individuals have provided valuable input and/or reviews of portions of this 
book. Of course, all errors remain my responsibility. I want to thank Hong Chen, 
Eugene Feinbcrg, and Bernard Lamond for their input, comments and corrections. I 
especially want to thank Laurence Baxter, Moshe Haviv. Floske Spieksma and Adam 
Shwartz for their invaluable comments on several chapters of this book. I am indebted 
to Floske for detecting several false theorems and unequal equalities. Adam used the 
first 6 chapters while in proof stage as a course text. My presentation benefited great- 
ly from his insightful critique of this material. Linn Sennott deserves special thanks 
for her numerous reviews of Sects. 6.10 and 8.10, and I want to thank Pat Kennedy for 
reviewing my presentation of her research on Cooper’s hawk mate desertion, and pro- 
viding the beautiful slide which appears as Fig. 1.6. I .  Bob Foley, Kamal Golabi, Tom 
McCormick, Evan Porteus, Maurice Queyranne, Matt Sobel, and Pete Veinott have 
also provided useful input. Several generations of UBC graduate students have read 
earlier versions of the text. Tim Lauck, Murray Carlson, Peter Roorda, and Kaan 
Katiriciougulu have all made significant contributions. Tim Lauck wrote preliminary 
drafts of Sects. I .4, 1.6, and 8.7.3, provided several problems, and pointed out many 
inaccuracies and typos. I could not have completed this book without the support of 
my research assistant, Noel Paul, who prepared all figures and tables, most of the Bib- 
liography, tracked down and copied many of the papers cited in the book, and ob- 
tained necessary permissions. I especially wish to thank the Natural Sciences and En- 
gineering Research Council for supporting this project through Operating Grant 
A5527, The University of British Columbia Faculty of Commerce for ongoing sup- 
port during the book’s development and the Department of Statistics at The Universi- 
ty of Newcastle (Australia) where I completed the final version of this book. My sin- 
cere thanks also go to Kimi Sugeno of John Wiley and Sons for her editorial 
assistance and to Kate Roach of John Wiley and Sons who cheerfully provided advice 
and encouragement. 

Finally, I wish to express my appreciation to my wife, Dodie Katzenstein, and my 
children, Jenny and David, for putting up with my divided attention during this book’s 
six year gestation period. 

MARTIN L. PUTEKMAN 
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C H A P T E R  1 

Introduction 

Each day people make many decisions; decisions which have both immediate and 
long-term consequences. Decisions must not be made in isolation; today’s decision 
impacts on tomorrow’s and tomorrow’s on the next day’s. By not accounting for the 
relationship between present and future decisions, and present and future outcomes, 
we may not achieve good overall performance. For example, in a long race, deciding 
to sprint at the beginning may deplete energy reserves quickly and result in a poor 
finish. 

This book presents and studies a model for sequential decision making under 
uncertainty, which takes into account both the outcomes of current decisions and 
future decision making opportunities. While this model may appear quite simple, it 
encompasses a wide range of applications and has generated a rich mathematical 
theory. 

1.1 THE SEQUENTIAL DECISION MODEL 

We describe the sequential decision making model which we symbolically represent in 
Figure 1.1.1. At a specified point in time, a decision maker, agent, or controller 
observes the state of a system. Based on this state, the decision maker chooses an 
action. The action choice produces two results: the decision maker receives an 
immediate reward (or incurs an immediate cost), and the system evolves to a new 
state at a subsequent point in time according to a probability distribution determined 
by the action choice. At this subsequent point in time, the dccision maker faces a 
similar problem, but now the system may be in a different state and there may be a 
different set of actions to choose from. 

The key ingredients of this sequential decision model are the following. 

1. A set of decision epochs. 
2. A set of system states. 
3. A set of available actions 
4. A set of state and action dependent immediate rewards or costs. 
5. A sct of state and action dependcnt transition probabilities. 
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ACTlON 

I 

INTRODUCTION 

ACTION 

t 
REWARD REWARD 

PRESENT DECISION NEXT DECISION 
EPOCH EPOCH 

Figure 1.1.1 Symbolic representation of a sequential decision problem. 

With the exception of some models which we refer to in the Afterword, we assume 
that all of these elements are known to the decision maker at the time of each 
decision. 

Using this terminology, we describe the probabilistic sequential decision model as 
follows. At each decision epoch (or time), the system state provides the decision 
maker with all necessary information for choosing an action from the set of available 
actions in that state. As a result of choosing an action in a state, two things happen: 
the decision maker receives a reward, and the system evolves to a possibly different 
state at the next decision epoch. Both the rewards and transition probabilities depend 
on the state and the choice of action. As this process evolves through time, the 
decision maker receives a sequence of rewards. 

At each decision epoch, the decision maker chooses an action in the state occupied 
by the system at that time. A policy provides the decision maker with a prescription 
for choosing this action in any possible future state. A deckion rule specifies the 
action to be chosen at a particular time. It may depend on the present state alone or 
together with all previous states and actions. A policy is a sequence of decision rules. 
Implementing a policy generates a sequence of rewards. The sequential decision 
problem is to choose, prior to the first decision epoch, a policy to maximize a function 
of this reward sequence. We choose this function to reflect the decision maker’s 
intertemporal tradeoffs. Possible choices for these functions include the expected 
total discounted reward or the long-run average reward. 

This book focuses on a particular sequential decision model which we refer to as a 
Murkou decision process model. In it, the set of available actions, the rewards, and the 
transition probabilities depend only on the current state and action and not on states 
occupied and actions chosen in the past. The model is sufficiently broad to allow 
modeling most realistic sequential decision-making problems. 

We Address the following questions in this book. 

1. When does an optimal policy exist? 
2. When does it have a particular form? 
3. How do we determine or compute an optimal policy efficiently? 
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We will see that the choice of the optimality criterion and the form of the basic model 
elements has significant impact on the answers to these questions. 

Often you see these models referred to as dynamic programming models or 
dynamic programs. We reserve the expression “dynamic programming” to describe an 
approach for solving sequential decision models based on inductive computation. 

In the remainder of this chapter, we illustrate these concepts with significant and 
colorful applications from several disciplines. The Bibliographic Remarks section 
provides a brief historical review. 

1.2 INVENTORY MANAGEMENT 

Sequential decision models have been widely applied to inventory control problems 
and represent one of the earliest areas of application. The scope of these applications 
ranges from determining reorder points for a single product to controlling a complex 
multiproduct multicenter supply network. Some of the earliest and most noteworthy 
results in stochastic operations research concern the form of the optimal policy under 
various assumptions about the economic parameters. We describe an application of a 
model of this type. 

Through local dealerships, Canadian Tire, Inc. operates a chain of automotive 
supply stores throughout Canada. The 21 stores in the Pacific region are operated by 
a single management group. Backup inventory for these 21 stores is maintained at a 
central warchouse in Burnaby, British Columbia. It stocks roughly 29,000 products. 
Periodically, inventory is delivered from the central warehouse to each of its stores to 
maintain target stock levels. 

The timing of inventory replenishment varies with store size, At stores designated 
as “small,” the inventory position of each product is reviewed once a week. For each 
product the inventory position (stock on hand) at the time of review determines the 
quantity, if any, to order. Orders arrive in about three days. Associated with an order 
for a particular product is a fixed charge associated with the time spent locating the 
item in the warehouse and shelving the item at the store. In addition to the fixed 
charge for filling the order, there is a daily carrying charge for keeping an item in 
inventory at a store. Management policy also dictates that at least 97.5% of demand 
be satisfied from stock on hand. 

We now describe a sequential decision model for determining optimal reorder 
points and reorder levels for a single product at a single store. Decision epochs are 
the weekly review periods, and the system state is the product inventory at the store 
at the time of review. In a given state, actions correspond to the amount of stock to 
order from the warehouse for delivery at the store. Transition probabilities depend on 
the quantity ordered and the random customer demand for the product throughout 
the week. A decision rule specifies the quantity to be ordered as a function of the 
stock on hand at the time of review, and a policy consists of a sequence of such 
restocking functions. Management seeks a reordering policy which minimizes long-run 
average ordering and inventory carrying costs subject to the above constraint on the 
probability of being unable to satisfy customer demand. 

Desirable properties for optimal policies in this setting are that they be simplc to 
implement and not vary with time. Without the constraint on the probability of 
satisfying customer demand, the optimal policy may be shown to be of the following 
type: when the stock level falls below a certain threshold, order up to a target level; 
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otherwise do not order. With the inclusion of such a constraint, a policy of this form 
may not be optimal. 

The importance of effective inventory control to effective cost management cannot 
be overemphasized. Sir Graham Day, chairman of Britain’s Cadbury-Schweppes PLC 
notes (The Globe and Mail, October 20, 1992, p. C24): 

“I believe that the easiest money any business having any inventory can save lies 
with the minimization of that inventory.” 

The roots of sequential decision making lie in this discipline. The book by Arrow, 
Karlin, and Scarf (1958) provides a good overview of the foundations of mathematical 
inventory theory; Porteus (1991) provides a recent review. 

1.3 BUS ENGINE REPLACEMENT 

Markov decision process models have been applied to a wide range of equipment 
maintenance and replacement problems. In these settings, a decision maker periodi- 
cally inspects the condition of the equipment, and based on its age or condition 
decides on the extent of maintenance, if any, to carry out. Choices may vary from 
routine maintenance to replacement. Costs are associated with maintenance and 
operating the equipment in its current status. The objective is to balance these two 
cost components to minimize a measure of long-term operating costs. 

Howard (1960) provided a prototype for such models with his “automobile replace- 
ment problem.” In it, an individual periodically decides whether or not to trade in an 
automobile and, if so, with what age automobile to replace it. Subsequently, many 
variants of this model have been studied and analyzed. In this section and the next, 
we describe two applications of such models. 

Rust (1987) formulates and analyzes the following problem. Harold Zurcher, 
superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Com- 
pany, has the responsibility of keeping a fleet of buses in good working condition. One 
aspect of the job is deciding when to replace the bus engines. 

Zurcher’s replacement problem may be formulated as a Markov decision process 
model as follows. Replacement decisions are made monthly and the system state 
represents the accumulated engine mileage since the last replacement. Costs include 
an age-dependent monthly operating cost and a replacement cost. The monthly 
operating costs include a routine operating and maintenance cost component and an 
unexpected failure cost component. The failure cost accounts for the probability of 
breakdown for a bus of a given age and costs associated with towing, repair, and lost 
goodwill. If Zurcher decides to replace an engine, then the company incures a (large) 
replacement cost and, subsequently, the routine maintenance and operating cost 
associated with the replacement engine. Transition probabilities describe changes in 
accumulated mileage and the chance of an unplanned failure for a bus engine of a 
particular age. For each engine, Zurcher seeks an age-dependent replacement policy 
to minimize expected total discounted or long-run average costs. 

The algorithms in Chaps. 4,6,  or 9 can be used to compute such an optimal policy 
for Harold Zurcher. However, the theory shows that, under reasonable assumptions, 
an optimal policy has a particularly simple and appealing form; at the first monthly 
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inspection at which the mileage exceeds a certain level, referred to as a control limit, 
the engine must be replaced; otherwise it is not. Rust examines whether Zurcher 
adopts such a policy using data from the Madison Metropolitan Bus Company. 

Operating, maintenance, and replacement costs vary with engine type. The table 
below summarizes Zurcher’s data on replacement costs and average mileage at 
replacement for two main engine types. 

Average 
Engine Type Replacement Cost Mileage at Replacement 

1979 GMC T8H203 $9499 199,733 
1975 GMC 5308A $75 13 257,336 

This data shows that, although the replacement cost for a 1979 engine exceeded that 
of a 1975 engine by $2000, Zurcher decided to replace the 1979 engines 57,600 miles 
and 14 months earlier than the 1975 engines. This suggests that routine maintenance 
and operating costs differ for these two engine types and that they increase faster with 
mileage in the 1979 engines. Rust’s analysis of the data suggests that these costs may 
be modeled by linear or “square-root” functions of age. 

Further data suggests that Zurcher’s decisions departed from a simple control limit 
policy. Between 1974 and 1985, 27 T8H203 engines and 33 5308A engines were 
replaced. The mileage at replacement varied from 124,800 to 273,400 for the T8H203 
engine and between 121,200 and 387,300 for the 530814 engine. Thus we might infer 
that Zurcher is making his decisions suboptimally. Rust adopts a different viewpoint. 
He hypothesizes that Zurcher’s decisions coincide with an qptimal policy of a Markov 
decision process model; however, Zurcher takes into account many measurements 
and intangibles that are not known by the problem solver. In his extensive paper, Rust 
(1987) provides an approach for accounting for these factors, estimating model 
parameters, and testing this hypothesis. He concludes that, after taking these unob- 
servables into account, Zurcher’s behavior is consistent with minimizing long-run 
averagc opcrating cost. 

1.4 HIGHWAY PAVEMENT MAINTENANCE 

The Arizona Department of Transportation (ADOT) manages a 7,400 mile road 
network. Up to the mid 1970s its primary activity was construction of new roadways. 
As the Arizona roadway system neared completion, and because of changing federal 
guidelines, ADOT’s emphasis shifted in the late 1970’s to maintaining existing roads. 
Between 1975 and 1979, highway preservation expenditures doubled from $25 million 
to $52 million, and evidence suggested that such an increase would continue. By this 
time it was evident to ADOT management that a systematic centralized procedure for 
allocation of these funds was needed. In 1978, in conjunction with Woodward-Clyde 
Consultants of San Francisco, ADOT developed a pavement rnanagcment system 
based on a Markov decision process model to improve allocation of its limited 
resources while ensuring that the quality of its roadways was preserved. In 1980, the 
first year of implementation, this system saved $14 million, nearly a third of Arizona’s 
maintenance budget, with no decline in road quality. Cost savings over the next four  
years were predictcd to be $101 million. Subsequently, this model was modified for 
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use in Kansas, Finland, and Saudi Arabia. Related models have been developed for 
bridge and pipeline management. In this section, we describe the Arizona pavement 
management model. We base our presentation on Golabi, Kulkarni, and Way (1982), 
and additional information provided by Golabi in a personal communication. 

The pavement management system relies on a dynamic long-term model to identify 
maintenance policies which minimize long-run average costs subject to constraints on 
road quality. To apply the model, the Arizona highway network was divided into 7,400 
one-mile sections and nine subnetworks on the basis of road type, traffic density, and 
regional environment. For each category, a dynamic model was developed that 
specified the conditions of road segments, maintenance actions that could be used 
under each condition, and the expected yearly deterioration or improvement in 
pavement conditions resulting from each such action. In addition, costs associated 
with each maintenance action were determined. Developing categories for system 
states, actions, costs, and the state-to-state dynamics under different actions was a 
nontrivial task requiring data, models of road conditions, statistical analysis, and 
subject matter expertise. 

We describe the management model for asphalt concrete highways; that for 
Portland cement concrete roadways had different states and actions. Decisions were 
made annually. The system state characterized the pavement condition of a one-mile 
segment by its roughness (three levels), its percentage of cracking (three levels), the 
change in cracking from the previous year (three levels), and an index which 
measured the time since the last maintenance operation and the nature of the 
operation (five levels). Consequently, a road segment could be described by one of 135 
(3 X 3 X 3 X 5) possible states, but, since some combinations were not possible, 120 
states were used. 

Actions corresponded to available pavement rehabilitation activities. These ranged 
from relatively inexpensive routine maintenance to costly actions such as thick 
resurfacing or recycling of the entire roadway. A list of possible actions and associated 
construction costs appear in Table 1.4.1 below. For each state, however, only about six 
of the actions were considered feasible. 

Costs consisted of the action-dependent construction costs (Table 1.4.1) and 
annual routine maintenance costs (Table 1.4.2). Annual routine maintenance costs 
varied with the road condition and rehabilitation action. When only routine mainte- 
nance was carried out, these costs varied with the roughness and degree of cracking of 
the road segment; when a seal coat was applied, these costs varied only with 
roughness; and if any other rehabilitation action was taken, maintenance costs were 
independent of previous road condition. These costs were determined through a 
regression model based on existing data. 

Transition probabilities specify the likelihood of yearly changes in road condition 
under the various maintenance actions. These were estimated using existing data, 
under the assumption that each dimension of the state description varied indepen- 
dently. Since in each state only a limited number of subsequent states could occur, 
most of the transition probabilities (97%) were zero. 

The performance criteria was cost minimization subject to constraints on the 
proportion of roads in acceptable and unacceptable states. For example, ADOT 
policy requires that at least 80% of high traffic roadways must have a roughness level 
not exceeding 165 inches/mile, while at most 5% of these roads could have roughness 
exceeding 256 inches/mile. Similar constraints applied to levels of cracking. 
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Table 1.4.1 Rehabilitation Actions and Construction Costs 

Construction Cost 
Action Index Action Description" $/Yd2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Routine Maintenance 
Seal Coat 
ACFC 
ACFC + AR 
ACFC + HS 
1.5 inch AC 
1.5 inch AC + AR 
1.5 inch AC + HS 
2.5 inch AC 
2.5 inch AC + AR 
2.5 inch AC + HS 
3.5 inch AC 
3.5 inch AC + AR 
3.5 inch AC + HS 
4.5 inch AC 
5.5 inch AC 
Recycling (equivalent to 6 inch AC) 

0 
0.55 
0.75 
2.05 
1.75 
1.575 
2.875 
2.575 
2.625 
3.925 
3.625 
3.675 
4.975 
4.675 
4.725 
5.775 
6.3 

~ 

'Abbreviations used in table: ACFC-Asphalt concrete fine coat, AR-Asphalt Rubber, 
HS-Heater Scarifier, AC-Asphalt concrete 

Table 1.4.2 Annual Routine Maintenance Costs 

Rehabilitation Cost State After Rehabilitation Action 

Roughness (in/mile) Percentage of Cracking Action' $/Yd2 

120(*45) 
120 ( * 45) 
120 ( f 45) 
120 (f45)  
210 ( I t 4 9  
210 (1 45) 
210 ( f 45) 

300 ( f 45) 
300 ( f 45) 
300(*45) 
300 ( f 4 5 )  

Any 

210 ( f 45) 

RM 
RM 
RM 
sc 
RM 
RM 
RM 
sc 
RM 
RM 
RM 
sc 
OT 

0.066 
0.158 
0.310 
0.036 
0.087 
0.179 
0.332 
0.057 
0.102 
0.193 
0.346 
0.071 
0.036 

"Action Abbreviations; RM-routine maintenance, SC-seal coat, OT-any other 
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This model is an example of a constrained average reward Markov decision process 
model and can be solved using the linear programming methodology in Chaps. 8 and 
9. This model was designed not only to yield a single solution but also to interactively 
examine the consequences of regulatory policies and budget changes. Examples of 
solutions are too lengthy to be presented here, but one aspect of the solution is worth 
noting. Because of the addition of constraints, the optimal policy may be randomized. 
This means that in some states, it may be optimal to use a chance mechanism to 
determine the course of action. For example, if the road segment is cracked, 40% of 
the time it should be resurfaced with one inch of asphalt concrete (AC) and 60% of 
the time with two inches of AC. This caused no difficulty because the model was 
applied to individual one-mile road segments so that this randomized policy could be 
implemented by repairing 40% of them with one inch of AC and 60% with two inches 
of AC. Also, in a few instances, the model recommended applying a different 
maintenance action to a road segment than to its two adjacent segments. In such 
cases the solution was modified to simplify implementation yet maintain the same 
level of overall cost and satisfy road quality constraints. 

In addition to producing significant cost reductions, the model showed that 

“ . . . corrective actions in the past were too conservative; it was common to 
resurface a road with five inches of asphalt concrete.. . . The policies recom- 
mended by the pavement management system.. . are less conservative; for exam- 
ple, a recommendation of three inches of overlay is rather rare and is reserved for 
the worst conditions. (Golabi, Kulkarni, and Way, 1982, p. 16).” 

Observations such as this are consistent with the findings of many operations research 
studies. For example, preliminary results in the inventory control study described in 
Sect. 1.2 suggest that current in store inventory levels are 50% too high. 

1.5 COMMUNICATIONS MODELS 

A wide range of computer, manufacturing, and communications systems can be 
modeled by networks of interrdlated queues (waiting lines) and servers. Efficient 
operation of these systems leads to a wide range of dynamic optimization problems. 
Control actions for these systems include rejecting arrivals, choosing routings, and 
varying service rates. These decisions are made frequently and must take into account 
the likelihood of future events to avoid congestion. 

These models are widely applied and have had significant impact as noted by the 
following article in The New York Times, May 12, 1992, p .  C2. 

“More Dial Mom Than Expected” 

Even greater numbers of people called their mothers on Mother’s Day than AT&T 
had expected. 

. . . A  call-routing computer technique enabled the American Telephone and 
Telegraph Company to complete more calls than last year, when it logged 93.4 
million calls. 
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On Sunday, there were about 1.5 million uncompleted calls, where customers got a 
recorded announcement advising them to call later, compared with 3.9 million last 
year. 

A new computer technique called real-time network routing helped AT&T 
shepherd a larger number of calls through the labyrinth of telephone computers 
known as switches. By creative zigzagging around the country, AT&T could 
direct calls so that they were more likely to avoid congestion, especially in suburbs, 
which do not have the high-capacity telephone lines that big cities do. 

We now describe a sequential decision process model for a particular communica- 
tion system. Many packet communications systems are configured so that multiple 
terminals generating low rate, bursty traffic and must share a single channel to 
communicate with each other or with a central hub (Fig. 1.5.1). 

This system architecture is typical of satellite broadcast networks where multiple 
earth stations communicate over the same radio frequency, and computer local area 
networks (LAN’s) where many computers send job requests to a central file server 
over a single coaxial cable. Since a single channel may only carry one stream of traffic, 
the problem arises as to how to coordinate the traffic from the terminals to make the 
most efficient use of the channel. 

The Slotted ALOHA Protocol is a popular and especially simple technique for 
providing such coordination. We describe the slotted ALOHA channel model and the 
mechanism by which it controls channel access. Stations communicate over a slotted 
ALOHA channel through equal-length packets of data. Time on the channel is 
divided into slots of the same length as the packets, and all terminals are synchro- 
nized so that packet transmissions always begin at the leading edge of a time slot and 
occupy exactly one slot. New packets are randomly generated at any idle terminal 
during a slot, and are transmitted in the following slot. If no other stations transmit a 
packet in that slot, the transmission is considered successful and the terminal returns 
to idle mode. If more than one terminal generates a packet, a collision occurs, the 
data become garbled, and the station goes into retransmission mode and must re- 
transmit the packet in a future slot. If a collision occurs and all involved terminals 
always retransmit in the next slot, collisions will continue endlessly. To avoid this 
situation, the slotted ALOHA protocol specifies that stations in retransmission mode 
transmit in the next slot with a specified retransmission probability, thus achieving a 
random backoff between retransmission attempts. When a terminal successfully 
retransmits the packet, it returns to idle mode and waits for a new packet to be 

SHARED CHANNEL , ,  TRANSMISSION 

PACKET QU(EIUIW?O TERMINNS 

Fimre 1.5.1 Multiple access channel confiiuralion. 
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generated. We see then that, although the slotted ALOHA protocol does not avoid 
collisions on the channel, the use of a random retransmission backoff provides a 
scheme for effective contention resolution among terminals. 

Since the message generating probability is fixed, the only means available to 
control channel access within this model is by regulating the retransmission probabil- 
ity. If it is held constant and the number of terminals in retransmission mode becomes 
large, the probability of a collision in the next slot will also become large. As the 
collisions become more frequent, newly arriving packets tend to become backlogged, 
increasing the number of terminals in retransmission mode. Thus, with a fixed 
retransmission probability, the system is prone to become highly congested, reducing 
the chance of a successful transmission to close to zero. This instability may be 
alleviated (for certain values of the packet generation probability) by taking into 
account the current number of terminals in retransmission mode when choosing a 
retransmission probability. 

We now describe a Markov decision process model for this control problem. 
Decision epochs correspond to time slots, and the system state is the number of 
terminals in retransmission mode. Actions correspond to choosing a retransmission 
probability. The system generates a reward of one unit for each packet successfully 
transmitted, and transition probabilities combine the probabilities that new packets 
are generated in a time slot and a successful packet transmission occurs when the 
retransmission probability has been set at a particular level. The objective is to choose 
a retransmission probability-setting policy which maximizes the long-run average 
expected channel throughput (rate of successful packets per slot). 

Feinberg, Kogan, and Smirnov (1985) show that the optimal retransmission proba- 
bility is a monotonically decreasing function of the system state whenever the mean 
packet arrival rate (number of terminals times packet generation probability) is less 
than one. If this rate exceeds one, the system will become congested and other 
optimality criteria may be used. This control policy agrees with intuition in that the 
system will react to increasing congestion by decreasing retransmission probabilities 
and thus maintaining a reasonable probability of successful packet transmission. 

In practical applications, the number of stations in retransmission mode and the 
packet generation probability are rarely known. They must be estimated on the basis 
of the history of channel observations (idle, successful, and collision slots). In this 
case, incorporation of both state and parameter estimation into the Markov decision 
process model is necessary to find the optimal retransmission policy. We provide 
references for models of this type in the Afterword. 

1.6 MATE DESERTION IN COOPER’S HAWKS 

Markov decision process models are becoming increasingly popular in behavioral 
ecology. They have been used in a wide range of contexts to gain insight into factors 
influencing animal behavior. Examples include models of social and hunting behavior 
of lions (Clark, 1987; Mangel and Clark, 19881, site selection and number of eggs laid 
by apple maggots and medflys (Mangel, 1987), daily vertical migration of sockeye 
salmon and zooplankton (Levy and Clark, 1988; Mangel and Clark 1988), changes in 
mobility of spiders in different habitats (Gallespie and Caraco, 1987), and singing 
versus foraging tradeoffs in birds (Houston and McNamara, 1986). 
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The theory of natural selection suggests that organisms predisposed to behavioral 
characteristics that allow them to adapt most efficiently to their environment have the 
greatest chance of reproduction and survival. Since any organism alive today has a 
substantial evolutionary history, we might infer that this organism has adopted 
optimal or near-optimal survival strategies which can be observed in day-to-day 
activity. 

Models have been based on regarding the behavior of an organism as its reaction 
or response to its environment, conditional on its state of well being. Throughout its 
life, it makes behavioral choices which affect its chances of survival and successful 
reproduction. Investigators have used probabilistic sequential decision process models 
to determine state- and time-dependent strategies which maximizes a function of its 
survival and reproductive success probabilities and then compared model results to 
observed behavior. If there is “reasonable agreement,” then the derived optimal 
policy may provide insight into the behavioral strategy of the organism. 

We describe Kelly and Kennedy’s (1993) use of this methodology in their study of 
mate desertion in Cooper’s hawks (Acceipiler cooperii). Over a five-year period, they 
studied nesting behavior of several birds near Los Alamos National Laboratory in 
north-central New Mexico (Fig. 1.6.1.) They observed that more than 50% of the 
females deserted their nests before the young reached independence, and noted that 
the male of this species continued to feed the young regardless of whether or not a 
female was present. At issue was determining factors that influenced the female’s 
decision to desert and the female’s tradeoffs between her survival and that of her 
offspring. 

In the study, the physical conditions of both the nestlings (young birds) and the 
female were monitored, assisted by the use of radiotelemetry. Females were trapped 
and tagged early in the breeding season, providing an opportunity to assess the initial 
health of the females. Birds with greater body mass had larger energy reserves and 
were considered healthier. Rather than disturb the nestlings, their health was deter- 
mined by assuming that nestlings were initially healthy. A developmental model was 

Figure 1.6.1 
Kennedy.) 

A female Cooper’s hawk and her brood. (Photograph courtesy of Patricia L. 
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used to account for parental hunting behavior, captures, and nestling growth rates. 
Kelly and Kennedy developed a model for a single nesting season based on the 

assumption that behavioral choices of the female hawk maximized a weighted average 
of the probability of nestling survival and the probability of the female’s survival to 
the next breeding season. The sequential decision model was used to determine an 
optimal behavioral strategy. 

The nesting season was divided into four periods representing basic stages of 
development of the young. 

1. Early nestling period. 
2. Late nestling period. 
3. Early fledgling dependence period. 
4. Late fledgling dependence period. 

The end of the late fledgling period marked the point at which the brood reaches 
independence. 

The system state is a two-dimensional health index representing female and brood 
energy reserves. The states were constrained to lie between lower levels which 
represented the minimum physical condition for survival, and upper levels corre- 
sponding to limiting physical attributes of the birds. 

Three basic behavioral strategies were observed for the female. 

1. Stay at the nest to protect the young. 
2. Hunt to supplement the food supplied by the male. 
3. Desert the nest. 

Decisions were assumed to have been made at the start of each of the above periods. 
From one developmental stage to the next, the change in energy reserves of both 

the female and the young depends on the female’s behavioral strategy and the 
amount of food captured, a random quantity. At the time of independence, the 
female’s and brood’s states of health depend on their initial energy reserves, 
the female’s behavior, and the availability of food. The respective health indices at the 
end of the decision making period determine the probability of survival of the female 
and of the brood to the subsequent nesting period. 

Using data estimated from the five-year study, results in the literature, and some 
intelligent guesswork, Kelly and Kennedy determined transition probabilities for the 
above model. They then solved the model to determine the optimal policy using 
inductive methods we describe in Chap. 4. Figure 1.6.2, which we adopt from their 
paper, shows the optimal policy under a specified degree of tradeoff between female 
and brood survival. 

The four graphs show the optimal behavioral action as a function of the health of 
the female and the brood at each of the four decision periods. The vertical axis 
represents the female’s health index and the horizontal axis represents the brood’s 
health index. Low values indicate states of low-energy reserve. 

Observe that, in all periods, if both the female’s and the brood’s health index 
exceed 4, the optimal strategy for the female is to stay at the nest and protect the 
young. At the other extreme, if the health index of both the female and the brood is 
at its lowest value, the optimal strategy for the female is to desert the nest. 
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PERIOD 
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Figure 1.6.2 Symbolic representation of optimal desertion strategy under a specific tradeoff 
parameter choice. Quantities on axes denote health indices. (Adapted from Kelly and Kennedy, 
1993.) 

There are other patterns to this optimal strategy. For a fixed value of the brood 
health index, as the female’s health index increases the optimal strategy changes from 
desert to hunt  to stay. Similarly, if the female’s health index is fixed, as the brood’s 
energy reserves increase the strategy changes from desert to hunt  to stay. Thus there 
is a form of monotonicity in the optimal strategy. One might conjecture that the 
behavioral strategy of the female will have this form under any parameter values. 
Observing such patterns can sometimes yield insight into theoretical results beyond a 
specific numerical scenario. In subsequent chapters, we will provide methods for 
identifying models in which optimal strategies have a particular form. 

Kelly and Kennedy (p. 360-361) conclude 

“The agreement of model predictions and observed strategies supported, but did 
not prove, the modelling hypotheses that: 

1. a female’s strategy during brood rearing maximizes the weighted average of the 
expected probability of survival of her current offspring and her future repro- 
ductive potential, and 

2. the female’s strategy choices were influenced by multiple factors including her 
state, the state of her brood, the risks to nestlings associated with each strategy, 
and the male’s and female’s foraging capabilities. 

dynamic state variable models are powerful tools for studying the complexities 
of animal behavior from an evolutionary standpoint because they lead to 
quantitative testable predictions about behavioral strategies.” 

1.7 SO WHO’S COUNTING 

Games of chance and strategy provide natural scttings for applying sequential 
decision models. Dubins and Savage (1965) in their monograph How to Gamble if You 
Must developed a model for gambling, not unlike the sequential decision model 
herein, and developed a rich mathematical theory for analyzing it. Their basic 
observation was that, even in an unfair game, some betting strategies might be better 
than others. Markov decision process models apply to such games of chance and also 
to a wide range of board and computer games. In this section we show how such a 
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TEAM 2 
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TEAM 1 

Figure 1.7.1 Spinner for “So Who’s Counting.” 

model can be used to determine an optimal strategy in a challenging yet easy to 
describe television game show. 

The mock game show But Who ’s Counting appeared on Square One, a mathemati- 
cally oriented educational television program on the U.S. public broadcasting net- 
work. The game is played as follows. There are two teams of players. At each of five 
consecutive rounds of the game, a spinner (Fig. 1.7.1) produces a number between 0 
and 9, each with equal probability. After each spin, the teams select an available digit 
of a five-digit number to place the number produced by the spinner. The team which 
generates the largest number wins the game. 

Figure 1.7.1 illustrates the status of the game immediately following the third spin. 
At the two previous spins, the numbers 2 and 7 had appeared. At this point in time, 
the order in which they previously appeared is immaterial. Team 1 placed the 7 in the 
1,OOOs place and the 2 in 1s place, while team 2 placed the 2 in the 100s place and the 
7 in the 10s place. Each team must now decide where to place the 5. What would you 
do in this case if you were on team l? On team 2? 

Now ignore the competitive aspect of this game and suppose you were in the game 
alone with the objective of obtaining the highest five-digit number. Reflect on what 
strategy you would use. If you observed a 9, surely you would want to get the best out 
of it, and, thus, place it in the highest digit available. However, what would you do if 
you had a 5 or a ti? 

We formulate the single-player game as a sequential decision problem. Decision 
epochs correspond to the instant immediately after the spinner identifies a number. 
We take as the system state the locations of the unoccupied digits and the number 
which has appeared on the spinner. Actions correspond to placing the number into 
one of the available digits and the reward equals the number times the place value for 
that digit. The objective is to choose a digit-placing strategy which maximizes the 
expected value of the five-digit number. 

We can use the methods of Chap. 4 directly to derive an optimal policy. It has the 
property that the decision into which unoccupied digit to place the observed number 
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Table 1.7.1 Optimal Policy for “But Who’s Counting.” 

Observed Optimal Digit Locations 

Number Spin 1 Spin 2 Spin 3 Spin 4 Spin 5 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

5 
5 
5 
4 
3 
3 
2 
1 
1 
1 

4 
4 
4 
3 
3 
2 
2 
1 
1 
1 

3 
3 
3 
3 
2 
2 
1 
1 
1 
1 

2 
2 
2 
2 
2 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

should be based on the number of unoccupied positions remaining, and not on their 
place values or the values of the previously placed digits. This observation enables us 
to summarize succinctly the optimal policy as in Table 1.7.1. 

In this table, the entries represent the location of the unoccupied digit (counting 
from the left) into which to place the observed number. For example, consider the 
decision faced by a player on team 1 in Fig. 1.7.1 after observing a 5 on spin 3. Table 
1.7.1 prescribes that the 5 should be placed in the 100’s position. To proceed 
optimally, a player on team 2 should place the 5 in the 1000’s position. 

Furthermore, using methods in Chap. 4, we can show that using this policy yields 
an expected score of 78,734.12, compared to that of a random-digit choice policy 
which would result in an expected score of 49,999.5. Of course, in a particular game, 
this strategy may not always yield the greatest score, but in the long run, it will do best 
on average. 

This problem is a special case of a sequential assignment problem. Ross ( I  983, 
p. 124) provides a clever approach for solving these problems in general. He 
establishes existence of and gives a method for computing a set of critical levels which 
in this context determine the optimal placement of the number. If the number is 
above the highest critical level, then it should be placed in the leftmost digit available. 
If it is between the highest and second highest, it should be placed in the second-left- 
most unoccupied digit, and so on. His approach shows that the optimal policy would 
still be the same if we had any other increasing values for the contribution of digits to 
the total reward instead of 1, 10, 100, 1000, or 10,OOO. 

It is not hard to think of variations of this problem. We may view it from a game 
theoretic point of view in which the objective is to derive a strategy which maximizes 
the probability of winning the game, or we may consider a single-person game in 
which the numbers have unequal probabilities. 

HISTORICAL BACKGROUND 

The books by Bellman (1957) and Howard (1960) popularized the study of sequential 
decision processes; however, this subject had earlier roots. Certainly some of the basic 
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concepts date back to the calculus of variations problems of the 17th century. Cayley’s 
paper (Cayley, 18751, which did not resurface until the 1960s, proposed an interesting 
problem which contains many of the key ingredients of a stochastic sequential 
decision problem. We describe and analyze this problem in detail in Chaps. 3 and 4. 

The modern study of stochastic sequential decision problems began with Wald’s 
work on sequential statistical problems during the Second World War. Wald em- 
barked on this research in the early 1940’s, but did not publish in until later because 
of wartime security requirements. His book (1947) presents the essence of this theory. 

Pierre Masst, director of, 17 French electric companies and minister in charge of 
French electrical planning, introduced many of the basic concepts in his extensive 
analysis of water resource management models (1946). Statistician Lucien Le Cam 
(1990), reflecting on his early days at Electricit6 de France, noted 

“Mass6 had developed a lot of mathematics about programming for the future. 
What had become known in this country (the United States) as “dynamic program- 
ming,’’ invented by Richard Bellman, was very much alive in MassC’s work, long 
before Bellman had a go at it.” 

A description of MassC’s reservoir management model appears in Gessford and 
Karlin (1958). 

Arrow (1958, p. 131, in his colorful description of the economic roots of the 
dynamic stochastic inventory model, comments 

“ . . . it was Wald’s work (rather than MassC’s, which was unknown in this country 
at the time) which directly led to later work in multi-period inventory.” 

A precise time line with proper antecedants is difficult to construct. Heyman and 
Sobel (1984, p. 192) note 

“The modern foundations were laid between 1949 and 1953 by people who spent 
at least part of that period as staff members at the RAND Corporation in Santa 
Monica, California. Dates of. actual publication are not reliable guides to the order 
in which ideas were discovered during this period.” 

Investigators associated with this path breaking work include Arrow, Bellman, 
Blackwell, Dvoretsky, Girschik, Isaacs, Karlin, Kiefer, LaSalle, Robbins, Shapley, and 
Wolfowitz. Their work on games (Bellman and Blackwell, 1949; Bellman and LaSalle, 
1949; Shapley, 1953), stochastic inventory models (Arrow, Harris, and Marschak,l951; 
Dvoretsky, Kiefer, and Wolfowitz, 1952), pursuit problems (Isaacs, 1955, 1965) and 
sequential statistical problems (Arrow, Blackwell, and Girshick, 1949; Robbins, 1952; 
Kiefer, 1953) laid the groundwork for subsequent developments. 

Bellman in numerous papers identified common ingredients to these problems and 
through his work on functional equations, dynamic programming, and the principle of 
optimality, became the first major player. Bellman (1954) contains a concise presenta- 
tion of many of his main ideas and a good bibliography of early work. His 1957 book 
contains numerous references to his own and other early research and is must reading 
for all investigators in the field. Karlin (1955) recognized and began studying the rich 
mathematical foundations of this subject. 
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Model Formulation 

This chapter introduces the basic components of a Markov decision proccss and 
discusses some mathematical and notational subtleties. Chapters 1 and 3 contain 
many examples of Markov decision processes. We encourage you to refer to those 
examples often to gain a clear understanding of the Markov decision process model. 
Section 2.2 illustrates these concepts and their interrelationship in the context of a 
one-period model. 

A Markov decision process model consists of five elements: decision epochs, states, 
actions, transition probabilities, and rewards. We describe these in detail below. 

2.1 PROBLEM DEFINITION AND NOTATION 

A decision maker, agent, or controller (who we refcr to as he with no sexist overtones 
intended) is faced with the problem, or some might say, the opportunity, of influenc- 
ing the behavior of a probabilistic system as it evolves through time. He does this by 
making decisions or choosing actions. His goal is to choose a sequence of actions 
which causes the system to perform optimally with respect to some predetermined 
performance criterion. Since the system we model is ongoing, the state of the system 
prior to tomorrow's decision depends on today's decision. Consequently, decisions 
must not be made myopically, but must anticipate the opportunities and costs (or 
rewards) associated with future system states. 

2.1.1 Decision Epochs and Periods 

Decisions are made at points of time referred to as decision epochs. Let T denote the 
set of decision epochs. This subset of the non-negative real line may be classified in 
two ways: as either a discrete set or a continuum, and as either a finite or an infinite 
set. When discrete, decisions are made at all decision epochs. When a continuum, 
decisions may be made at 

1. all decision epochs (continuously), 
2. random points of time when certain events occur, such as arrivals to a queueing 

3. opportune times chosen by the decision maker. 
system, or 

17 
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Period 1 ’ Period 2 ’ Period N- 1 
Figure 2.1.1 Decision Epochs and Periods. 

When decisions are made continuously, the sequential decision problems are best 
analyzed u&g control theory methods based on dynamic system equations. 

In discrete time problems, time is divided into periods or stages. We formulate 
models so that a decision epoch corresponds to the beginning of a period (see Fig. 
2.1.1). The set of decision epochs is either finite, in which case T = (1,2,. . . , N )  for 
some integer N < 00, or infinite, in which case T = {1,2, ... 1. We write T = 
(1,2,. . . , N ) ,  N s 00 to include both cases. When T is an interval, we denote it by 
either T = [0, N ]  or T = [O, 00). Elements of T (decision epochs) will be denoted by t 
and usually referred to as “time t.” When N is finite, the decision problem will be 
called a finite horizon problem; otherwise it will be called an infinite horizon problem. 
Most of this book will focus on infinite horizon models. We adopt the convention that, 
in finite horizon problems, decisions are not made at decision epoch N we include it 
for evaluation of the final system state. Consequently, the last decision is made at 
decision epoch N-1. Frequently we refer to this as an N-1 period problem. 

The primary focus of this book will be models with discrete T .  A partic- 
ular continuous time model (a semi-Markov decision process) will be discussed 
(Chapter 11). 

2.1.2 State and Action Sets 

At each decision epoch, the system occupies a sfate. We denote the set of possible 
system states by S. If, at some decision epoch, the decision maker observes the system 
in state s E S, he may choose action a from the set of allowable actions in state s, A,. 
Let A = U S E  ,A, (Fig. 2.1.2.) Note we assume that S and A, do not vary with t .  We 
expand on this point below. 

The sets S and A, may each be either 

1. arbitrary finite sets, 
2. arbitrary countably infinite sets, 
3. compact subsets of finite dimensional Euclidean space, or 
4. non-empty Borel subsets of complete, separable metric spaces. 

In nondiscrete settings, many subtle mathematical issues arise which, while interest- 
ing, detract from the main ideas of Markov decision process theory. We expand on 
such issues in Section 2.3 and other sections of this book. These more technical 
sections will be indicated by asterisks. Otherwise, we assume that S and A, are 
discrete (finite or countably infinite) unless explicitly noted. 

Actions may be chosen either randomly or deterministically. Denote by 9 ( A , )  the 
collection of probability distributions on (Borel) subsets of A, and by 9 ( A )  the set of 
probability distributions on (Bore0 subsets of A. (We may regard q ( * )  E ~ ( A , )  as an 


