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Preface 

Any type of statistical inquiry in business, government, or academics in 
which principles from some body of knowledge enter seriously into the 
analysis is likely to lead to a nonlinear statistical model. For instance, a 
model obtained as the solution of a differential equation arising in engineer- 
ing, chemistry, or physics is usually nonlinear. Other examples are eco- 
nomic models of consumer demand or of intertemporal consumption and 
investment. 

Much applied work using linear models represents a distortion of the 
underlying subject matter. In the past there was little else that one could do, 
given the restrictions imposed by the cost of computing equipment and the 
lack of an adequate statistical theory. But the availability of computing 
resources is no longer a problem, and advances in statistical and probability 
theory have occurred over the last fifteen years that effectively remove the 
restriction of inadequate theory. 

In this book, I have attempted to bring these advances together in one 
place, organize them, and relate them to applications, for the use of 
students as a text and for the use of those engaged in research as a 
reference. My hopes and goals in writing it will be achieved if i t  becomes 
possible for the reader to bring subject matter considerations directly to 
bear on data without distortion. 

The coverage is comprehensive. The three major categories of statistical 
models relating dependent variables to explanatory variables are covered: 
univariate regression models, multivariate regression models, and simulta- 
neous equations models. These models can have the classical regression 
structure where the independent variables are ancillary and the errors 
independent, or they can be dynamic, with lagged dependent variables 
permitted as explanatory variables and with serially correlated errors. The 
coverage is also comprehensive in the sense that the subject is treated at all 

vi i  
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levels: methods, theory, and computations. However, only material that I 
think is of practical value in making a statistical inference using a model 
that derives from subject matter considerations is included. 

The statistical methods are accessible to anyone with a good working 
knowledge of the theory and methods of linear statistical models as found 
in a text such as Searle’s Linear Models. It is important that Chapter 1 be 
read first. It lays the intuitive foundation. There the subject of univariate 
nonlinear regression is presented by relying on analogy with the theory and 
methods of linear models, on examples, and on Monte Car10 simulations. 
The topic lends itself to this treatment, as the role of the theory is to justify 
some intuitively obvious linear approximations derived from Taylor’s ex- 
pansions. One can get the main ideas across and save the theory for later. 
Generalized least squares can be applied in nonlinear regression just as in 
linear regression. Using this as a vehicle, the ideas, intuition, and statistical 
methods developed in Chapter 1 are extended to other situations, notably 
multivariate nonlinear regression in Chapter 5 and nonlinear simultaneous 
equations models in Chapter 6. These chapters include many numerical 
examples. 

Chapter 3 is a unified theory of statistical inference for nonlinear models 
with regression structure, and Chapter 7 is the same for dynamic models. 
Some useful specialization of the general theory is possible in the case of 
the univariate nonlinear regression model, and this is done in Chapter 4. 
Notation, assumptions, and theorems are isolated and clearly identified in 
the theoretical chapters so that the results can be reliably applied to new 
situations without need for a detailed reading of the mathematics. These 
results should be usable by anyone who is comfortable thinking of a 
random variable as a function defined on an abstract probability space and 
understands the notion of almost sure convergence. Aside from that, 
application of the theory does not rise above an advanced calculus level 
probability course. There are examples in these chapters to provide tem- 
plates. 

Reading the proofs requires a good understanding of measure theoretic 
probability theory, as would be imparted by a course out of Tucker’s 
Graduate Course in Probability, and a working knowledge of analysis, as in 
Royden’s Real Analysis. For the reader‘s convenience, references are con- 
fined to these two books as much as possible, but this material is standard 
and any similar textbook will serve. 

The material in Chapter 7 is at the frontier. This is the first time some of 
it will appear in print. As with anything new, much improvement is still 
possible. Regularity conditions are more onerous than need be, and there is 
a paucity of worked examples to determine which of them most need 
relaxing. I have included full details in the proofs, and have supplied the 
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details of proofs that seemed too terse in the original source, in hopes that 
readers can learn the ideas and methods of proof quickly and will move the 
field forward. 

As to computations, one must either use a programming language, with 
or without the aid of a scientific subroutine library, or use a statistical 
package. Hand calculator computations are out of the question. Using a 
programming language to present the ideas seems ill advised. Discussion 
bogs down in detail that is just tedious accounting and has nothing to do 
with the subject proper. For pedagogical purposes, a statistical package is 
the better choice. Its code should be concise and readable, even to the 
uninitiated. I chose SASQD, and it seems to have served well. Computational 
examples consist of figures displaying a few lines of SAS code and the 
resulting output. For those who would rather use a programming language 
in applications, the algorithms are in the text, and anyone accustomed to 
using a programming language should have no trouble implementing them; 
the examples will be helpful in debugging. 

I have debts to acknowledge. The biggest is to my family. Hours-no, 
years-were spent writing that ought to have been spent with them. I owe a 
debt to my students Gerald0 S o w  and Jose Francisco Burguete. The 
theory for models with regression structure is their dissertation research. 
The theory for dynamic models was worked out while Halbert White and 
Jeffrey Wooldridge visited Raleigh in the summer of 1984, and much of it is 
theirs. I owe a special debt to my secretary, Janice Gaddy. She typed the 
manuscript cheerfully, promptly, and accurately. More importantly, she 
held every annoyance at bay. 

Support while writing this book was provided by National Science 
Foundation Grants SES 82-07362 and SES 85-07829, North Carolina 
Agricultural Experiment Station Projects NC03641, NC03879, and 
NC05593, and the PAMS Foundation. SAS Institute Inc. let me use its 
computing equipment and a prerelease version of PROC SYSNLIN for the 
computations in Chapter 6 and has, over the years, provided generous 
support to the Triangle Econometrics Workshop. Many ideas in this book 
have come from that workshop. 

A. RONALD GALLANT 
k-, I986 
Raleigh, North Carolina 
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C H A P T E R 1  

Univariate Nonhear 
Regression 

The nonlinear regression model with a univariate dependent variable is 
more frequently used in applications than any of the other methods 
discussed in this book. Moreover, these other methods are for the most part 
fairly straightforward extensions of the ideas of univariate nonlinear regres- 
sion. Accordingly, we shall take up this topic first and consider it in some 
detail. 

In this chapter, we shall present the theory and methods of univariate 
nonlinear regression by relying on analogy with the theory and methods of 
linear regression, on examples, and on Monte Carlo illustrations. The 
formal mathematical verifications are presented in subsequent chapters. The 
topic lends itself to this treatment because the role of the theory is to justify 
some intuitively obvious linear approximations derived from Taylor's ex- 
pansions. Thus one can get the main ideas across first and save the 
theoretical details until later. This is not to say that the theory is unim- 
portant. Intuition is not entirely reliable, and some surprises are uncovered 
by careful attention to regularity conditions and mathematical detail. 

1. INTRODUCTION 

One of the most common situations in statistical analysis is that of data 
which consist of observed, univariate responses y, known to be dependent 
on corresponding k-dimensional inputs x,. This situation may be repre- 
sented by the regression equations 

y , = / ( x , , e o )  + e, r = 1 ,2  ,..., n 

1 



2 UNIVARIATE NONLINEAR REGRESSION 

where f( x, 6 )  is the known response function, 6' is a p-dimensional vector 
of unknown parameters, and the e, represent unobservable observational or 
experimental errors. We write O0 to emphasize that it is the true, but 
unknown, value of the parameter vector 6 that is meant; 6 itself is used to 
denote instances when the parameter vector is treated as a variable-as, for 
instance, in differentiation. The errors are assumed to be independently and 
identically distributed with mean zero and unknown variance u2. The 
sequence of independent variables {x,}  is treated as a fixed known se- 
quence of constants, not random variables. If some components of the 
independent vectors were generated by a random process, then the analysis 
is conditional on that realization ( x , }  which obtained for the data at hand. 
See Section 2 of Chapter 3 for additional details on this point, and Section 
8 of Chapter 3 for a device that allows one to consider the random regressor 
setup as a special case in a fixed regressor theory. 

Frequently, the effect of the independent variable x ,  on the dependent 
variable y, is adequately approximated by a response function which is 
linear in the parameters 

P 

i -  1 
f(x, e) = = C .pi. 

By exploiting various transformations of the independent and dependent 
variables, viz. 

the scope of models that are linear in the parameters can be extended 
considerably. But there is a limit to what can be adequately approximated 
by a linear model. At times a plot of the data or other data analytic 
considerations will indicate that a model which is not linear in its parame- 
ters will better represent the data. More frequently, nonlinear models arise 
in instances where a specific scientific discipline specifies the form that the 
data ought to follow, and this form is nonlinear. For example, a response 
function which arises from the solution of a differential equation might 
assume the form 

f ( x ,  6 )  = 6, + 8,eXe3. 

Another example is a set of responses that is known to be periodic in time 
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but with an unknown period. A response function for such data is 

f ( r ,  6 )  = 8, + 6 p s  e4t + 6,sin 641. 

A univariate linear regression model, for our purposes, is a model that 
can be put in the form 

P 

C P ~ ~ Y , )  = C q)itx,)di + 
i - 1  

A univariate nonlinear regression model is of the form 

but since the transformation rpo can be absorbed into the definition of the 
dependent variable, the model 

is sufficiently general. Under these definitions a linear model is a special 
case of the nonlinear model in the same sense that a central chi-square 
distribution is a special case of the noncentral chi-square distribution. This 
is somewhat an abuse of language, as one ought to say regression model 
and linear regression model rather than nonlinear regression model and 
(linear) regression model to refer to these two categories. But this usage is 
long established and it is senseless to seek change now. 

EXAMPLE 1. The example that we shall use most frequently in illustra- 
tion has the response function 

The vector-valued input or independent variable is 

and the vector-valued parameter is 
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TIlbk 1. Data Values for Example 1. 

t Y X l  x2 x3 
- 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
20 
29 
30 

0.98610 
1.03648 
0.96482 
1 .04184 
1.02324 

0.96263 
1.01026 
0.98861 
1 . O m 7  
0.96982 
1.01214 
0.66768 
0.65107 
0.98822 
0.98623 
0.69759 
0.99418 
1.01962 
0.691 63 
1.04256 
1.04343 
0.97628 
1.04969 
0.80219 
1.01046 
0.96196 
0 .ST656 
0.60811 
0.91840 

0 . 9 ~ 1 ~ 6  

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 

6.28 
9.86 
9.11 
8.43 
8.11 
1.82 
6.58 
6.02 
6.52 
3.76 
9.66 
1.31 
0.47 

4.07 
0.07 

4.61 
0.17 
6.99 
4.39 
0.39 
4.73 
9.42 
8.80 
3.02 

3.31 
4.51 
2.66 
0.00 
6.11 

0 . 7 1  

Source: Gallant (1975d). 

so that for this response function k = 3 and p -5 4. A set of observed 
responses and inputs for this model which will be used to illustrate the 
computations is given in Table 1. The inputs correspond to a one way 
" treatment-control" design that uses experimental material whose age 
(=I x3) affects the response exponentially. That is, the first observation 

x I  = (1,1,6.28)' 

represents experimental material with attained age x j  = 6.28 months that 
was (randomly) allocated to the treatment group and has expected response 
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Similarly, the second observation 

5 

xz = (0,1,9.86)' 

represents an allocation of material with attained age x 3  = 9.86 to the 
control group, with expected response 

f(x,, 8 ' )  = 6: + 6,0e9.@je5 

and so on. The parameter 0; is the treatment effect. The data of Table 1 are 
simulated. a 

EXAMPLE 2. Quite often, nonlinear models arise as solutions of a system 
of differentia1 equations. The following linear system has been used so often 
in the nonlinear regression literature (Box and Lucus, 1959; Guttman and 
Meter,  1965; Gallant, 1980) that it might be called the standard pedagogi- 
cal example. 

Linear System 

Boundary Conditions 

~ ( x )  = 1 B(x) = C(x)  = 0 at time x = 0 

Parameter Space 

e, >- e2 2 o 
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Systems such as this arise in compartment analysis where the rate of flow 
of a substance from compartment A into compartment B is a constant 
proportion 6, of the amount A(%)  present in compartment A at time x .  
Similarly, the rate of flow from B to C is a constant proportion 8, of the 
amount B ( x )  present in compartment B at time x. The rate of change of 
the quantities within each compartment is described by the system of linear 
differential equations. In chemical kinetics, this model describes a reaction 
where substance A decomposes at a reaction rate of 8, to form substance 
B, which in turn decomposes at a rate 8, to form substance C. There are a 
great number of other instances where linear systems of differential equa- 
tions such as this arise. 
Following Guttman and Meeter (1%5), we shall use the solutions for 

B ( x )  and C ( x )  to construct two nonlinear models (see Table 2) which they 
assert “represent fairly well the extremes of near linearity and extreme 
nonlinearity.” These two models are set forth immediately below. The 
design points and parameter settings are those of Guttman and Meeter 
(1965). 

Model B 

8 0  = (1.4, .4)’ 

{ x , )  = {.25,.5,1,1.5,2,4,.25,.5,1,1.5,2,4) 

n = 12 

o 2  = (.025)’ 
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Model C 

n = 12 

u2 = ( .025)2 

TaMe2. Datavalues 
for Example 2. 

t Y X 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 

IlOd.18 

0.316122 
0.421291 
0.601986 
0.673076 
0.546661 
0.281609 
0.273234 
0,416292 
0.603(141 
0.621614 
0.615790 
0.276507 

l lokt  c 

0.137790 
0.409262 
0. 6 3 ~ 0 1 4  
0.736366 
0.786320 
0.693237 
0.163209 
0.372145 
0.699166 
0.749201 
0 .  a 6 1 6 6  
0 .  gosea 

0.26 
0.60 
1 .oo 
1.60 
2.00 
4.00 
0.26 
0.60 
1.00 
1 .so 
2.00 
4 .00  

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
6 
6 

7 
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A word regarding notation. All vectors, such as 8, are column vectors 
unless the contrary is indicated by 6’, which is a row vector. Strict 
adherence to this convention in notation leads to clutter, such as 

d = ( a ’ ,  b’, c‘)’. 

We shall usually let the primes be understood in these cases and write 

d = ( a ,  6 ,  c )  

instead. Transposition will be carefully indicated at instances where clarity 
seems to demand it. 

2. TAYLOR’S THEOREM AND MATI’ERS OF NOTATION 

In what follows, a matrix notation for certain concepts in differential 
calculus leads to a more compact and readable exposition. Suppose that 
s( 6 )  is a real valued function of a p-dimensional argument 8. The notation 
(a /a8 )s (8 )  denotes the gradient of s(8), 

1 

a p by 1 (column) vector with typical element ( a/aflj)s(8). Its transpose is 
denoted by 

Suppose that all second order derivatives of s(8) exist. They can be 
arranged in a p by p matrix, known as the Hessian matrix of the function 
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S(@), 

9 

If the second order derivatives of s(6) are continuous functions in 8, then 
the Hessian matrix is symmetric (Young's theorem). 

Let f ( S )  be an n by 1 (column) vector valued function of a p-dimen- 
sional argument 6. The Jacobian of 

is the n by p matrix 

a 
mf(9) = 

n P 

Let h'(6) be a 1 by n (row) vector valued function 

h v )  = [ h , ( e ) ,  h 2 ( e ) ,  . . ., h , ( 8 ) ] .  
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In this notation, the following rule governs matrix transposition: 

And the Hessian matrix of s(6) can be obtained by successive differentia- 
tion variously as 

a a  
* -aar;( -s(e)) (if symmetric) 

= & ( g s ( 8 ) ) '  (if symmetric). 

One has a product rule and a chain rule. They read as follows. If f ( 8 )  and 
h'(t9) are as above, then (Problem 1) 

Let g ( p )  be a p by 1 (column) vector valued function of an r-dimensional 
argument p. and let f(e) be as above: Then (Problem 2) 
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The set of nonlinear regression equations 

y , = f ( x , , e O ) + e ,  t = 1 , 2  ,..., n 

may be written in a convenient vector form 

y = f ( O 0 )  + e 

by adopting conventions analogous to those employed in linear regression; 
namely 

1 

The sum of squared deviations 

n 

of the observed y, from the predicted value j( x, ,  8) corresponding to a trial 
value of the parameter 8 becomes 

in this vector notation. 
The estimators employed in nonlinear regression can be characterized as 

linear and quadratic forms in the vector e which are similar in appearance 
to those that appear in linear regression to within an error of approximation 
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that becomes negligible in large samples. Let 

that is, F(B) is the matrix with typical element ( a / a f $ ) f ( x , ,  8),  where t is 
the row index and j is the column index. The matrix F(Oo) plays the same 
role in these linear and quadratic forms as the design matrix X in the linear 
regression: 

“ y  ” = X ,  + e. 

The appropriate analogy is obtained by setting “y” = y - f ( 6 ’ )  + F(8’)e’ 
and setting X = F((eo). Malinvaud (1970% Chapter 9) terms this equation 
the “linear pseudo-model.” For simplicity we shall write F for the matrix 
F(B) when it is evaluated at 6 = 8’: 

Let us illustrate this notation with Example 1. 

EXAMPLE 1 (Continued). Direct application of the definitions of y 
and f ( e )  yields 

Y =  

u: 

f ( 6 )  = 

30 

0.98610 
1.03848 
0.95482 
1.04184 

0.50811 
0.91840 1 

1 
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Since 

a a 
-/(x, e) = w ( ~ l ~ ,  + e,x, + e4e+3) = X~ a 4  

-f( X, 6 )  = -( B,X, + e,x, + 84ee~x3) = x 2  as, 

a% 

wf( X, e) = 

a a 

- - - f ( x ,  a 6 )  = ;i8;(b,x, a + B,x, + 64ee3x3) = 64~3ee3xl 

a a ( elx, + eZx, + e4eB3x3) = ee3x3 
4 

the Jacobian of f ( 6 )  is 

1 1  

0 1  

1 1  

0 1  
. .  . .  . .  
1 1  

0 1  

13 

0 

4 

Taylor's theorem, as we shall use it, reads as follows: 

TAYLOR'S THEOREM. Let s(0) be a real valued function defined over 
8. Let 0 be an open, convex subset of p-dimensional Euclidean space W j'. 

Let B 0  be some point in €3. 
If s ( 6 )  is once continuously differentiable on 8, then 

or, in vector notation, 
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If s(8) is twice continuously differentiable on 8, then 

or, in vector notation, 

s(e)  = S ( e 0 )  + ( % S ( e o ) ) ’ ( e  d - e o )  

+ t ( 8  - W’( r n ” ( B ) j ( O  d Z  - 8O) 

for some 8= XB0 + (1 - h)8 where 0 s h s 1. 

Applying Taylor’s theorem to f ( x ,  O ) ,  we have 

0 

implicitly assuming that f(x, 8) is twice continuously differentiable on 
some open, convex set 8. Note that e’ is a function of both x and 8, 
6 = 6 ( x ,  8). Applying this formula row by row to the vector f ( O ) ,  we have 
the approximation 

where a typical row of A is 

alternatively 

f( 8 )  = f( e o )  + F( eo)( 8 - 8 O )  + R (  8 - 8 O ) .  



TAYLOR'S THEOREM AND MAITERS OF NOTATION 

Using the previous formulas, 

15 

The least squares estimator is the value 8 that minimizes SSE(6) over the 
parameter space 8. If S S E ( B )  is once continuously differentiable on some 
open set €9' with B E 8' c 8, then 6 satisfies the "normal equations" 

This is because (a/aB)SSE(d) = 0 at any local optimum. In linear regres- 
sion, 

y = X f l + e  

least squares residuals ê  computed as 

are orthogonal to the columns of X, viz., 

X V  = 0. 

In nonlinear regression, least squares residuals are orthogonal to the col- 
umns of the Jacobian of f(8) evaluated at 8 = d, viz., 

" [ u  - /<41 = 0. 

PROBLEMS 

1. (Product rule.) Show that 
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by computing ( a/aei)E;,,h,(e)/k(~) for i = 1,2,. . . , p to obtain 

Note that ( a/ae')fk(e) is the k th row of (d /ae ' ) f ( e ) .  
2. (Chain rule.) Show that 

3. STATISTICAL PROPERTIES OF LEAST SQUARES 
ESTIMATORS 

The least squares estimator of the unknown parameter f?O in the nonlinear 
model 

y = f ( B O )  + e 

is the p by 1 vector 8 that minimizes 

SSE(8) - Iv - f (e ) l"v  - f(@)I = IlY - f (e )  11'. 
The estimate of the variance of the errors e ,  corresponding to the least 
squares estimator B is 

SSE( 8)  
" - P  

$ 2 ,  -* 

In Chapter 4 we shall show that 

($1 8 = 8 O  + (F'F)-'F'e + op 

where, recall, F - F(6O) - ( d / d e ' ) / ( e o )  is the matrix with typical row 
( a / a 6 ' ) / ( x f ,  eo). The notation op(a,) denotes a (possibly) matrix valued 
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random variable Xn = o,,(a,) with the property that each element XI,, 
satisfies 

for any z > 0; {a,) is some uence of real numbers, the most frequent 
choices being u, = 1, u,  = 1/ ?- n ,  and Q ,  = I / n .  

These equations suggest that a good approximation to the joint distribu- 
tion of (8, s2)  can be obtained by simply ignoring the terms op(l/ 6) and 
op( l /n ) .  Noting the similarity of the equations 

with the equations that arise in linear models theory and assuming normal 
errors, we have approximately that b has the p-dimensional multivari- 
ate normal distribution with mean 6 O  and variance-covariance matrix 
a2( F ' F )  - 1. 

B - NJ 8 0 ,  a 2 ( ~ ~ ~ ) - 1 ]  ; 

(n - p)r2/u2 has the chi-square distribution with n - p degrees of free- 
dom, 

and s 2  and b are independent, so that the joint distribution of (4. s 2 )  is the 
product of the marginal distributions. In applications, ( F ' F ) - '  must be 
approximated by the matrix 

c = [ F ' ( g ) F ( B ) ] - ' .  

The alternative to this method of obtaining an approximation to the 
distribution of &-characterization coupled with a normality assump- 
tion-is to use conventional asymptotic arguments. One finds that 8 
converges almost surely to eo, s 2  converges dmost surely to u 2 ,  
( l / n ) F ' ( b ) F ( b )  converges almost surely to a matrix Q, and fi(8 - 6 ' )  is 
asymptotically distributed as the p-variate normal with mean zero and 
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variancecovariance matrix (I 'Q - ', 
6(1 - e o )  ~ ~ ( 0 ,  u z ~ - l ) .  

The normality assumption is not needed. Let 

1 
Q = - - F ~ ( @ F ( ~ ) .  n 

Following the characterization-normality approach it is natural to write 

I A i v p ( e o ,  SzcI) (= Np[eo, S2(l/n)&']) 

Following the asymptotic normality approach, it is natural to write 

J;;(& - 8 0 )  N,(o, s2Q-1) (= N,(o, s*ncI)) 

-natural perhaps even to drop the degrees of freedom correction and use 

d 2  5 -SSE(I) n 
1 

to estimate u 2  instead of s2. The practical difficulty with this is that one 
can never be sure of the scaling factors in computer output. Natural 
combinations to report are: 

and so on. The documentation usually leaves some doubt in the reader's 
mind as to what is actually printed. Probably, the best strategy is to run the 
program using Example 1 and resolve the issue by comparison with the 
results reported in the next section. 

As in linear regression, the practical importance of these distributional 
properties is their use to set confidence intervals on the unknown parame- 
ters 8: (i = 1,2, .. ., p) and to t e t  hypotheses. For example, a 95% 
confidence interval may be found for 6: from the .025 critical value t,025 of 
the r-distribution with n - p degrees of freedom as 
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Similarly, the hypothesis H: 8; = 8: may be tested against the alternative 
A : 8; # 8i. at the 5% level of significance by comparing 

with CI,, denotes the ith diagonal 
element of the matrix C?. The next few paragraphs are an attempt to convey 
an intuitive feel for the nature of the regularity conditions used to obtain 
these results; the reader is reminded once again that they are presented with 
complete rigor in Chapter 4. 

The sequence of input vectors (x,) must behave properly as n tends to 
infinity. Proper behavior is obtained when the components x,, of x, are 
chosen either by random sampling from some distribution or (possibly 
disproportionate) replication of a fixed set of points. In the latter case, some 
set of points a,, u,, . . . , uT-l  is chosen and the inputs assigned according 
to x,, = u,  mod T’ Disproportionality is accomplished by allowing some of 
the a, to be equal. More general schemes than these are permitted-see 
Section 2 of Chapter 3 for full details-but this is enough to gain a feel for 
the sort of stability that (x,} ought to exhibit. Consider, for instance, the 
data generating scheme of Example 1. 

and rejecting H when IF,[ > 

EXAMPLE 1 (Continued). The first two coordinates xi,, x2, of x, = 
(x~ , ,  x2,, xj,)’ consist of replication of a fixed set of design points de- 
termined by the design structure: 

(xl, x2) ,  = (1 , l )  if r isodd 

(xl, x2), = (0,l) if t is even 

That is, 

with 

4 0  = to, 1) 
a, = ( 1 , l ) .  
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The covariate x3, is the age of the experimental material and is conceptu- 
ally a random sample from the age distribution of the population due to the 
random allocation of experimental units to treatments. In the simulated 
data of Table 1, x3, was generated by random selection from the uniform 
distribution on the interval [0,10]. In a practical application one would 
probably not know the age distribution of the experimental material but 
would be prepared to assume that x3 was distributed according to a 
continuous distribution function that has a density p 3 ( x )  which is positive 
everywhere on some known interval [0, b], there being some doubt as to 

0 how much probability mass was to the right of b. 

The response function f ( x , 8 )  must be continuous in the argument 
(x, 8); that is, if limi_,oo(x,, 6,)  = (x* ,  8 * )  (in Euclidean norm on R k " p )  

then Lim,,,f(x,, 8,) = f ( x * ,  8*). The first partial derivatives (6'/6'8,) 
f ( x , 8 )  must be continuous in (x,6), and the second partial derivatives 
( az/a8,  af?,)f(x, 0) must be continuous in (x, 6) .  These smoothness re- 
quirements are due to the heavy use of Taylor's theorem in Chapter 3. Some 
relaxation of the second derivative requirement is possible (Gallant, 1973). 
Quite probably, further relaxation is possible (Huber, 1982). 

There remain two further restrictions on the limiting behavior of the 
response function and its derivatives which roughly correspond to estima- 
bility considerations in linear models. The first is that 

has a unique minimum at 8 = d o ,  and the second is that the matrix 

1 
Q =  lirn ,Fr(eo)F(eo)  

n - o o  

be non-singular. We term these the identlfcation condition and the rank 
quolijication respectively. When random sampling is involved, Kolmogorov's 
strong law of large numbers is used to obtain the limit, as we illustrate with 
Example 1 below. These two conditions are tedious to verify in applica- 
tions, and few would bother to do so. However, these conditions indirectly 
impose restrictions on the inputs x, and parameter 8' that are often easy to 
spot by inspection. Although d o  is unknown in an estimation situation, 
when testing hypotheses one should check whether the null hypothesis 
violates these assumptions. If this happens, methods to circumvent the 
difficulty are given in the next chapter. For Example 1, either H : 8: = 0 or 
H : 6," = 0 will violate the rank qualification and the identification condi- 
tion, as we next show. 
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EXAMPLE 1 (Continued). We shall first consider how the problems 
with H:  8: = 0 and H: 8$ = 0 can be detected by inspection, next con- 
sider how limits are to be computed, and last how one verifies that 
s ( 6 )  = l i rnn+m( l /n )~ - J f (x l ,  8) - f(xl, 8')]' has a unique minimum at 
8 = 8 O .  

Consider the case H : 8; = 0, leaving the case H : e,," = 0 to Problem 1. 
If 8: = 0 then 

1' 
1 
1 

1 .  

i 
1, 

F ( # )  has two columns of ones and is thus singular. Now this fact can be 
noted at sight in applications; there is no need for any analysis. It is t h ~ s  
kind of easily checked violation of the regularity conditions that one should 
guard against. Let us verify that the singularity carries over to the limit. Let 

The regularity conditions of Chapter 4 guarantee that limn ,Qn(f?) exists, 
and we shall show it directly below. Put A' =i (0,1,0, - 1). Then 

Since it is zero for every n, X'[lim,,,,Q,(8)~el~o]h = 0 by continuity of 
A'AX in A.  

Recall that { xj,) is independently and identically distributed according 
to the density p3(x3). Since it is an age distribution, there is some (possibly 
unknown) maximum attained age c that is biologically possible. Then for 
any continuous function g ( x )  we must have l:}g(x)lp3(x) dx < 00, so that 
by Kolmogorov's strong law of large numbers (Tucker, 1967) 
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Applying these facts to the treatment group, we have 

Applying them to the control group, we have 

Then 

Suppose we let Fiz(x, ,  x,) be the distribution function corresponding to 
the discrete density 

and we let F3(x,)  be the distribution function corresponding to p 3 ( x ) .  Let 
1 4 x 1  = F12(x1, x2)4(x3). Then 
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where the integral on the left is a Lebesgue-Stieltjes integral (Royden, 1968, 
Chapter 12; Tucker, 1967, Section 2.2). In this notation the limit can be 
given an integral representation 

These are the ideas behind Section 2 of Chapter 3. The advantage of the 
integral representation is that familiar results from integration theory can 
be used to deduce properties of Limits. As an example: What is required of 
f(x, 6) such that 

We find later that the existence of b ( x )  with K8/ae)/(x, e)l I; b ( x )  and 
/b(  x ) d p ( x )  < a0 is enough, given continuity of ( a / M ) f (  x, e). 

Our last task is to verify that 

has a unique minimum. Since s(8) 2 0 in general and s(eo) = 0, the 
question is: Does s(0) = 0 imply that 0 = O0? One first notes that 8: = 0 
or 8: 5 0 must be  led out, as in the former case any 8 with 8, = 0 and 
t9, + 84 = 8: + 02 will have s(e) = 0, and in the latter case any B with 
8, = 8:. 0, = 02, 0, = 0 will have s(B) = 0. Then assume that 8: + 0 and 
62 # 0, and recall that p , ( x )  > 0 on [0, c]. Now s(8) = 0 implies 

Differentiating, we have 
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Putting x = 0, we have 6364 = 6,08,", whence 

which implies 6, = 6:. We now have that 

s(e) = 0, 6,0+0,  8,"+ o a 83 = 63", 8,= 8,". 

But if 8, = 6:, 64 = 840, and 4 6 )  = 0, then 

which implies 6, = 6; and 6, = 6;. In summary 

As seen from Example 1, checking the identification condition and rank 
qualification is a tedious chore to be put to whenever one uses nonlinear 
methods. Uniqueness depends on the interaction of f ( x ,  6 )  and p ( x ) ,  and 
verification is ad hoc. Similarly for the rank qualification (Problem 2). As a 
practical matter, one should be on guard against obvious problems and can 
usually trust that numerical difficulties in computing 8 will serve as a 
sufficient warning against subtle problems, as seen in the next section. 

An appropriate question is how accurate are probability statements 
based on the asymptotic properties of nonlinear least squares estimators in 
applications. Specifically one might ask: How accurate are probability 
statements obtained by using the critical points of the r-distribution with 
n - p degrees of freedom to approximate the sampling distribution of 

Monte Carlo evidence on this point is presented below using Example 1. 
We shall accumulate such information as we progress. 

EXAMPLE I (Continued). Table 3 shows the empirical distribution of f, 
computed from 5000 Monte Carlo trials evaluated at the critical points of 
the r-distribution. The responses were generated using the inputs of Table 1 


