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Preface 

This book is intended for individuals seeking an understanding of 
Lebesgue measure and integration. As a consequence, it is not an 
encyclopedic reference, or a compendium, of the latest developments in 
this area of mathematics. Only the most fundamental concepts are 
presented: Lebesgue measure for R, Lebesgue integration for extended 
real-valued functions on R. No apologies are made for this approach, 
after all, it is the proper foundation for any general treatment of measure 
and integration. In fact, no claim to originality is made for any of the 
mathematics in this book, but we do accept full responsibility for any 
mistakes or blunders in its presentation. It is old mathematics after all 
(standard graduate fare for the last forty or fifty years), but particularly 
beautiful. It deserves a wider audience. Lebesgue measure and integra-
tion, presented properly, reveals mathematical creation in its highest 
form. Motivation has been the dominant concern, and understanding will 
be the final measure. 

Where to begin? As a concession to understanding the subtleties of 
measure, and the effort required for such, I have taken the least upper 
bound axiom as a starting point. (Besides, it would be difficult, if not 
impossible, to improve on Landau's (1960) book, Foundations of Analy-
sis.) The formal prerequisites are a basic calculus course and a course 
emphasizing what constitutes a proof, standard methods of proof, and 
the like. In reality, a curiosity for things mathematical and the "need to 
understand such," is both necessary and sufficient. 

The arrangement of topics is standard. The historical struggle to give a 

xi 



xii Preface 

rigorous definition of "area" and "area under a curve," resulting in 
Lebesgue measure and integration, is the subject of Chapter 1. (Tribute is 
paid to our mathematical ancestors by understanding and studying their 
results.) Mastery of this material is not necessary for subsequent chapters. 
After all, it is an "overview," written with the benefit of hindsight. The 
reader may return from time to time as she understands "measurable", 
"Borel", "Lebesgue Dominated Convergence," and so on. Mathematical 
concepts (undergraduate analysis) that are useful for the understanding 
of measure, measurable functions, and integration, are developed in 
Chapter 2. Chapter 3, measure theory, is the essence of this book. Here 
an elementary, but rigorous, treatment of Lebesgue measure, as a natural 
extension of "length of an interval" and as a subject of interest in and of 
itself, is presented. Set measurability is via Caratheodory's Condition. 
Measurable functions, motivated by the necessity of "measuring" inverse 
images of intervals as discussed by Lebesgue [Ma], are defined and 
developed in Chapter 4. The last chapter, Chapter 5, begins with the 
Riemann integral, developed from step functions. Replacing "step" with 
"simple" results in the Lebesgue integral for bounded functions on sets of 
finite measure. Some incisive observations and we have the celebrated 
convergence theorems that permit the interchange of "limit" and "inte-
gral", and justifies "Lebesgue" for those with such a need. (By the way, if 
at any time you are confused or lack a sense of direction, I apologize; for a 
solution, reread the master [Ma].) Finally, appendices A-E present other 
topics of beauty and inspiration to mathematicians, testament to the 
wonderful creativity of the human mind. 

This book may be used in many ways: especially as a text for an 
undergraduate analysis course, first-year graduate students in statistics or 
probability, and other applied areas; a self-study guide to elementary 
analysis or as a refresher for comprehensive examinations; a supplement 
to the traditional real analysis course taken by beginning graduate 
students in mathematics. 

I want to thank my good friend and colleague, Gene Meyer, for his 
countless hours of discussions and suggestions as to topics, and what 
would or would not be appropriate for a book of this nature. Accolades to 
Debora Naber. She had the arduous task of translating my handwriting 
into the final manuscript. I thank my parents, Glen and Helen Burk, 
whose constant encouragement has been a source of strength throughout 
my life. Finally, I thank my wonderful wife Janet, who somehow finds the 
time to encourage my dreams while rearing our five beautiful children— 
(Eric, Angela, Michael, Brandon, and Bryan.). 



Even now there is a very wavering grasp of the true position of mathe-
matics as an element in the history of thought. I will not go so far as to say 
that to construct a history of thought without profound study of the 
mathematical ideas of successive epochs is like omitting Hamlet from the 
play which is named after him. That would be claiming too much. But it is 
certainly analogous to cutting out the part of Ophelia. This simile is 
singularly exact. For Ophelia is quite essential to the play, she is very 
charming—and a little mad. Let us grant that the pursuit of mathematics is 
a divine madness of the human spirit, a refuge from the goading urgency of 
contingent happenings. 

—Alfred North Whitehead 

Mathematics, rightly viewed, possesses not only truth, but supreme 
beauty—a beauty cold and austere, like that of sculpture, without 
appeal to any part of our weaker nature, without the gorgeous trappings 
of painting or music, yet sublimely pure, and capable of a stern perfection 
such as only the greatest art can show. The true spirit of delight, the 
exaltation, the sense of being more than man, which is the touchstone of the 
highest excellence, is to be found in mathematics as surely as in poetry. 
What is best in mathematics deserves not merely to be learned as a task, but 
to be assimilated as a part of daily thought, and brought again and again 
before the mind with ever-renewed encouragement. Real life is, to most 
men, a long second-best, a perpetual compromise between the real and the 
possible; but the world of pure reason knows no compromise, no practical 
limitations, no barrier to the creative activity embodying in splendid 
edifices the passionate aspiration after the perfect from which all great 
work springs. Remote from human passions, remote even from the pitiful 
facts of nature, the generations have gradually created an ordered cosmos, 
where pure thought can dwell as in its natural home, and where one, at 
least, of our nobler impulses can escape from the dreary exile of the natural 
world. 

—Bertrand Russell 
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1 
Historical Highlights 

Some of the major discoveries in quadratures that culminated with the 
Lebesgue-Young integral are presented in this chapter. Our purpose is 
twofold: 

1. We want to acknowledge our appreciation and gratitude to the 
thinkers of the past. It is hoped that the student will be motivated to 
continue these threads that distinguish civilization from barbarism. 

Neglect of mathematics works injury to all knowledge, since he who is 
ignorant of it cannot know the other sciences or the things of this world. 
And what is worse, men who are thus ignorant are unable to perceive their 
own ignorance and so do not seek a remedy. 

—Roger Bacon 

2. The student will see the process of mathematical creation and 
generalization as it applies to the development of the Lebesgue integral. 

Reason with a capital R = Sweet Reason, the newest and rarest thing in 
human life, the most delicate child of human history. 

—Edward Abbey 

If this material is too difficult on the first reading, relax. It will make 
sense after Chapter 5. 

1 



2 HISTORICAL HIGHLIGHTS 

1.1 REARRANGEMENTS 

The figures below demonstrate the general idea of "rearranging"; in the 
first example, a circle rearranged into a parallelogram. This method has 
been known for hundreds of years. 

2nr 



1.2 EUDOXUS (408-355 B.C.E.) AND THE METHOD OF EXHAUSTION 3 

(c) 

Trcr 

(d) 

a 

(e) "Scaling" 

(c) 

<i 

(TO2) 

1.2 EUDOXUS (408-355 B.C.E.) AND THE METHOD OF 
EXHAUSTION 

"Willingly would I burn to death like Phaeton, were this the price for 
reaching the sun and learning its shape, its size, and its substance." 

—Eudoxus 



4 HISTORICAL HIGHLIGHTS 

Eudoxus was responsible for the notion of approximating curved 
regions with polygonal regions: "truth" for polygonal regions implies 
"truth" for curved regions. This notion will be used to show that the areas 
of circles are to each other as the squares of their diameters, an obvious 
result for regular polygons. "Truth" was to be based on Eudoxus' Axiom: 

Two unequal magnitudes being set out, if from the greater there be 
subtracted a magnitude greater than its half, and from that which is left 
a magnitude greater than its half, and if this process be repeated con-
tinuously, there will be left some magnitude which will be less than the 
lesser magnitude set out. 

In modern terminology, let M and e > 0 be given with 0 < e < M. Then 
form:M,M-rM = (l- r)M, (1 - r)M - r(l - r)M = (1 - r)2Af,..., 
where 1/2 < r < 1. The axiom tells us that for n sufficiently large, say 
N, (1 - r)N M < e, a consequence of the set of natural numbers not 
being bounded above. 

Back to what we are trying to show: Let c, C be circles with areas a, A 
and diameters </, D, respectively. We want to show a/A = d2/D2, given 
that the result is true for polygons and given the Axiom of Eudoxus. 

Assume a/A > d2/D2. Then we have a* < a so that 0 < a - a* and 
a j A = d2/D2. Let e < a - a*. Inscribe regular polygons of areas pni Pn in 
circles c, C and consider the areas a— pn, A — Pn: 

<*-Pn A-Pn 

Now, double the number of sides. What is the relationship between a - pn 

and a - p^ 

d-Pn a-P2n 



1.3 THE LUNE OF HIPPOCRATES (430 B.C.E.) 5 

Certainly a-p2n< l/2(fl - pn)- We are subtracting more than half at 
each stage of doubling the number of sides. From the Axiom of Eudoxus, 
we may determine N so that 

0<a-pN<e<a-a*, that is, 

we have a regular inscribed polygon of AT sides, where area/># > a*. But, 
pN/PN = d2/D2 and since a/A = d2/D2, we hwepN/PN = a*/A, that 
is, PN> A. This cannot be: PN is the area of an inscribed polygon to the 
circle Cof area>4. 

A similar argument shows that a/A cannot be less than d2/D2: 

double reductio ad absurdum. 

1.3 THE LUNE OF HIPPOCRATES (430 B.C.E.) 

Hippocrates, a merchant of Athens, was one of the earliest individuals to 
find the area of a plane figure (lune) bounded by curves (circular arcs). 
The crescent-shaped region whose area is to be determined is shown 
below. 

ABC and AFC are circular arcs with centers E and D9 respectively. 
Hippocrates showed that the area of the shaded region bounded by the 
circular arcs ABC and AFC is exactly the area of the shaded square whose 
side is the radius of the circle. The argument depends on the following 
assumption: 

(a) The areas of two circles are to each other as the squares of the radii: 

(3 
(a) 



6 HISTORICAL HIGHLIGHTS 

From this assumption we conclude that (b) the sectors of two circles 
with equal central angles are to each other as the squares of the radii: 

o 
(6) 

(c) The segments of two circles with equal central angles are to each 
other as the squares of the radii: 

o 
(c) 

Hippocrates' argument proceeds as follows: 

From (c), AX/AA = r2/(y/2r)2 = 1/2. Hence Al = \/2A4 and 
A2 = 1/2A4 and thus A\ + A2 = A4. 

The area of the lune = Ax+A2 + A3 
= A4 + A3 

= area of triangle 
= i(V2r)(v/2r) 
= r2 

= area of the square. 



1.4 ARCHIMEDES (267-212 B.C.E.) 7 

The reader may use similar reasoning on these "lunes": 

1. 

2. 

He is unworthy of the name of man who is ignorant of the fact that the 
diagonal of a square is incommensurable with its side. 

—Plato 

1.4 ARCHIMEDES (287-212 B.C.E.) 

It is not possible to find in all geometry more difficult and intricate 
questions, or more simple and lucid explanations. Some ascribe this to 
his natural genius,... 

—Plutarch 

This masterpiece of mathematical reasoning is due to one of the 
greatest intellects of all time, Archimedes of Syracuse. He shows that 
the area of the parabolic segment is 4/3 that of the inscribed triangle 
ACB. (The symbol A will denote "area of".) 



8 HISIuRICAL HIGHLIGHTS 

The argument proceeds as follows: the combined area of triangle ADC 
and BEC is one-fourth the area of triangle ACB9 that is, 

AADC + ABEC = \ AACB. 
4 

A , 

Repeating the process, trying to "exhaust" the area between the parabolic 
curve and the inscribed triangles, we have: 

The area of the parabolic segment = 

= AACB + J (AACB) +\(\ (AACB) J + 

= -AACB. 

We argue that 

AADC + ABEC = -AACB 
4 

for the parabola y = ax , a > 0. 



1.4 ARCHIMEDES (287-212 B.C.E.) 9 

The reader should show the tangent line at C is parallel to AB and that 
the vertical line through C bisects AB at P. We need to show 
ABEC = 1/4 ABC P. Complete the parallelogram: 

A \ 

n""~—~~̂ zi 
b 

P l ^ 

'"" C 

H i ^ - ^ ^ 

x / / I 

/ Lx ^-J 

- ^ F 

We note: 

1. ACEG = Afl£G (equal height and base) 

2. AHGB = \ABCP. 

Thus, we must show 

or that 

AC£G + ABEG = AHGB, 

ABEG = -AHGB. 

This will be accomplished by showing FE = 1/4FH = 1/4QB. Since 

FE = a((Xc + XB)/2)2-

= l-a(XB-Xc)
2, 

aX2
c + 2aXcx^(XB-Xc) 

and 

QB = aX\ - [aXl + 2aXc{XB - Xc)] 

= a(XB-Xc)\ 

we are done. 



10 HISTORICAL HIGHLIGHTS 

. . . there was far more imagination in the head of Archimedes than in that 
of Homer. 

—Voltaire 

Archimedes will be remembered when Aeschylus is forgotten because 
languages die and mathematical ideas do not. 

—G.H. Hardy 

The reader may show that the area of the parabolic segment is 2/3 the 
area of the circumscribed triangle ADB formed by the tangent lines to the 
parabola at A and B with base AB(EC = CD). 

1.5 PIERRE FERMAT (1601-1665): J? x^dx = bP/q+A/{p/q +1) 

It appears that Fermat, the true inventor of the differential calculus,... 
—Laplace 

The Italian mathematician Cavalieri demonstrated (1630's) that 

h n+\ 

for n = 1,2,..., 9. But it was Fermat who was able to show 

rb bP/q+\ 

I ** = 7+P 
where p/q is a positive rational number. 

Fermat divided the interval [0, b) into an infinite sequence of subinter-
vals with endpoints (heretofore a finite number of subintervals of equal 



1.5 PIERRE FERMAT (1601-1665) 11 

width) brn, 0 < r < 1, and erected a rectangle of height {brn)p,q over the 
subinterval [brn+\brn] (see below). 

n+16 rnb . . . rfc 

Let Sr denote the sum of the areas of the exterior rectangles. We have 

Sr = (b - br)b* + {br - br2)(brf< + • • • + (6r" - brn+l)(brnf« + ■ • • 

Z>?+,( l - r ) 

0 - - + 1 ) 

- A ? + 1 -LT» 

= tf+». 

'l - (ri)*] 

(1-ri) 

( l+ri + 

( l+ri + -

0-ri) 
[l - (rJr*] 

izi \ 

l-r « J 
•• + r « j 

as r-» 1 

. a master of masters. 
-E.T. Bell 
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1.6 GOTTFRIED LEIBNITZ (1646-1716), ISSAC NEWTON 
(1642-1723) 

Taking mathematics from the beginning of the world to the time of 
Newton, what he has done is much the better half. 

—Gottfried Leibnitz 

Nature and Nature's laws lav hid in night; God said, "Let Newton be!" and 
all was light. 

—Alexander Pope 

The capital discovery that differentiation and integration are inverse 
operations belongs to Newton and Leibnitz. 

—Sophus Lie 

During the seventeenth and eighteenth centuries the integral was 
thought of in a descriptive sense, as an antiderivative, due to the beautiful 
Fundamental Theorem of Calculus (FTC), as developed by Leibnitz and 
Newton. The ease of this method for specific functions probably induced 
a sense of euphoria, as generations of calculus students can attest to after 
struggling through Riemann sums. A particular function/ on [a, b] was 
integrated by finding an antiderivative F so that Ff =f or by finding a 
power series expansion and using the FTC to integrate termwise. The 
Leibnitz-Newton integral of / was F(b) - F(a), that is, 

jb
af{x)dx = F{b)-F{a), 

where Ff = / . 
We give an argument of Leibnitz and a result of Newton to illustrate 

the power of these geniuses. 

T •,- • 7T , 1 1 1 

Leibnitz : T = l - - + - - - H . 
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Take the quarter circle (x - l)2 + y2 = 1, 0 < x < 1, whose area is 7r/4: 

Leibnitz determines the area of the circular sector 

by dividing it into infinitesimal triangles OAB, A and B two close points 
on the circle, and summing. So, how to estimate the area of OAB, 
henceforth AOAB. Construct the tangent to the circle at A, with a 
perpendicular at C passing through the origin. Then AOAB a* 
\/2ABxOC. By similar triangles, AB/dx = z/OC, so AOAB = 
\jlzdx. Observe 

x = 1 - cos <t> = 2 sin - and z = tan —, that is, 


