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A Note from the Author 
 
    This book - a reprint of the original from 1978 - provides a systematic discussion of the 
basic principles of statistical inference. It was written at the time near the end of the forty 
years period where, starting with R. A. Fisher's seminal work, the debate about such 
principles was very active. Since then there have been no major developments, reflecting 
the fact that the core principles are accepted as valid and seem effectively exhaustive. 
These core principles are likelihood, sufficiency and ancillarity, and various aspects of 
these. 
    The theory is illustrated with numerous examples, of both theoretical and applied 
interest, some of them arising from concrete questions in other fields of science. 
    Extensive comments and references to the relevant literature are given in notes at the 
end of the separate chapters. 
    The account of the principles of statistical inference constitutes Part I of the book. Part 
II presents some technical material, needed in Part III for the exposition of the exact, as 
opposed to asymptotic, theory of exponential families, as it was known at the time. Some 
discussion is also given of transformation families, a subject that was still in its early 
stages then. The exact properties are related to the inference principles discussed in Part I. 
    Much of the later related work has been concerned with approximate versions of the 
core principles and of associated results, for instance about the distribution of the 
maximum likelihood estimator. A few references to related subsequent work are given 
below. 
    Exponential transformation models. (1982) Proc. Roy. Soc. London A 379, 41-65; 
coauthors Blæsild, P., Jemsen, J.L. and Jørgensen, B..; On a formula for the distribution 
of the maximum likelihood estimator. (1983) Biometrika 73, 307-322.; Likelihood 
Theory. Chapter 10 in D.V. Hinkley, N. Reid and Snell, E.J. Statistical Theory and 
Modelling. (1983) London; Chapman and Hall.; Inference on full and partial parameters, 
based on the standardized log likelihood ratio. (1983) Biometrika 73, 307-322.; 
Parametric Statistical Models and Likelihood. (1988). Springer Lecture Notes in 
Statistics. Heidelberg: Springer-Verlag; Inference and Asymptotics .London: Chapman 
and Hall.(1994); coauthor Cox, D.R; General exponential families. Encyclopedia of 
Statistical Sciences. (1997) Update Volume 1, 256-261. 
 

    October 2013 
    Ole E. Barndorff-Nielsen 



Preface 

This treatise brings together results on aspects of statistical information, notably 
concerning likelihood functions, plausibility functions, ancillarity, and 
sufficiency, and on exponential families of probability distributions. A brief 
outline of the contents and structure of the book is given in the beginning of the 
introductory chapter. 

Much of the material presented is of fairly recent origin, and some of it is new. 
The book constitutes a further development of my Sc.D. thesis from the 
University of Copenhagen (Barndorff-Nielsen 1973a) and includes results from a 
number of my later papers as well as from papers by many other authors. 
References to the literature are given partly in the text proper, partly in the Notes 
sections at the ends of Chapters 2-4 and 8-10. 

The roots of the book lie in the writings of R. A. Fisher both as concerns results 
and the general stance to statistical inference, and this stance has been a 
determining factor in the selection of topics. 

Figures 2.1 and 10.1 are reproduced from Barndorff-Nielsen (1976a and b) by 
permission of the Royal Statistical Society, and Figures 10.2 and 10.3 are 
reproduced from Barndorff-Nielsen (1973c) by permission of the Biometrika 
Trustees. The results from R. T. Rockafellar's book Convex Analysis (copyright 
© 1970 by Princeton University Press) quoted in Chapter 5 are reproduced by 
permission of Princeton University Press. 

In the work I have benefited greatly from discussions with colleagues and 
students. Adding to the acknowledgements in my Sc.D. thesis, I wish here 
particularly to express my warm gratitude to Preben Blaesild, David R. Cox, 
Jorgen G. Pedersen, Helge Gydesen, Geert Schou, and especially Anders H. 
Andersen for critical readings of the manuscript, to David G. Kendall for helpful 
and stimulating comments, and to Anne Reinert for unfailingly excellent and 
patient secretarial assistance. A substantial part of the manuscript was prepared 
in the period August 1974-January 1975 which I spent in Cambridge, at 
Churchill College and the Statistical Laboratory of the University. I am most 
grateful to my colleagues at the Department of Theoretical Statistics, Aarhus 
University, and the Statistical Laboratory, Cambridge University, and to the 
Fellows of Churchill for making this stay possible. 

Aarhus, May 1977 

VI 

O. B. -N. 
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CHAPTER 1 

Introduction 

1.1 INTRODUCTORY REMARKS AND OUTLINE 

The main kinds of task in statistics are the construction or choice of a statistical 
model for a given set of data, and the assessment and charting of statistical 
information in model and data. 

This book is concerned with certain questions of statistical information 
thought to be of interest for purposes of scientific inference. It also contains an 
account of the theory of exponential families of probability measures, with 
particular reference to those questions. Besides exponential families, the most 
important type of statistical models are the group families, i.e. families of 
probability measures generated by a unitary group of transformations on the 
sample space. However, only the most basic facts on group families will be 
referred to. (Some further introductory remarks on these two types of models are 
given in Section 1.3.) Another limitation is that asymptotic problems are not 
discussed, except for a few remarks. 

The reader is supposed to have a fairly broad, basic knowledge of statistical 
inference, and in particular to be familiar with the more conceptual aspects of 
likelihood and plausibility, such as are discussed in Birnbaum (1969) and 
Barndorff-Nielsen (1976b), respectively. 

Probability functions, likelihood functions, and plausibility functions are 
charts of different types of statistical information. They are the three prominent 
instances of the concept of ods functions, due to Barnard (1949). An ods function 
is a real function on the space of possible experimental outcomes or on the space 
of hypotheses, which expresses the relative 'credibility' of the points of the space in 
question. It is often convenient to work with the logarithms of such functions and 
these are termed lods functions. For the objectives of this treatise the interest in 
lods (or ods) functions lies mainly in the very concept which is instrumental in 
bringing to the fore the duality between the sample aspect and the parameter 
aspect of statistical models, and in constructing prediction functions. Thus, 
although the concept of lods function will be referred to at a number of places, the 
theoretical developments relating to lods functions and presented in Barnard 
(1949) are not of direct relevance in the present context and will only be indicated 
briefly (in Section 3.1). 

1 



2 Introduction 

Generally, only part of the statistical information contained in the model and 
the data is pertinent to a given question, and one is then faced with the problem of 
separating out that part. The key procedures for such separations are margining 
to a sufficient statistic and conditioning on an ancillary statistic. Basic here is the 
concept of nonformation, i.e. the concept that a certain submodel and the 
corresponding part of the data contain no (accessible) pertinent or relevant 
information in respect of the question of interest. 

A general treatment of the topics of statistical information indicated above is 
given in Part I, while the theory of exponential families is developed in Part III. 
Properties of convex sets and functions, in particular convex duality relations, are 
of great importance for the study of exponential families. Since much of convex 
analysis is of fairly recent origin and is not common knowledge, a compendious 
account of the relevant results is given in Part II, together with properties of 
unimodality and Laplace transforms. A reader primarily interested in lods 
functions and exponential families may concentrate on Chapters 2, 3, 8, and 9, 
just referring to Part II, which consists of Chapters 5-7, as need arises. Inferential 
separation, hereunder notably nonformation, ancillarity, and sufficiency, is 
discussed in Chapters 4 and 10. The chapters of Parts I and III contain 
Complements sections where miscellaneous results which did not fit into the 
mainstream of the text have been collected. 

Each known methodological approach, of any inclusiveness, to the questions 
of statistical inference is hampered by various difficulties of logical or epistemic 
character, and applications of these approaches must therefore be tempered by 
independent judgement. The merits of any one approach depend on the extent to 
which it yields sensible and useful answers as well as on the cogency of its 
fundamental ideas. 

The difficulties, of the kind mentioned, connected with likelihood, plausibility, 
ancillarity, and sufficiency have been discussed in Birnbaum (1969), 
Barndorff-Nielsen (1976b), and numerous other papers. Many of these papers 
will be referred to in the course of this treatise, but a comprehensive exposi-
tion of the arguments adduced will not be given. One of the difficulties, whose 
seriousness seems to have been overestimated, is that different applications 
of ancillarity and sufficiency, to the same model and data, may lead to different 
inferential conclusions (cf. Section 4.7(vi)). However, as has been stressed and well 
illustrated by Barnard (1974b), it is in general impossible to obtain unequivocal 
conclusions on the basis of statistical information. It is therefore not surprising 
that if uniqueness in conclusions is presupposed as a requirement of inference 
then paradoxical results turn up, such as is the case with Birnbaum's Theorem 
(Section 4.7(v)). 

1.2 SOME MATHEMATICAL PREREQUISITES 

Let M be a subset of a space 9JJ. The indicator of M is the function 1M defined by 
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ImM = 
1 for x e M 

0 for x e M' 
rc 

where Mc is the complement 9Ji\M of M. If 9JI is a product space, SD? = SR, x SJJ{2, 
and if xx e ^ then M is the section of M at xu i.e. MXl = {x2:(x1,x2)eM}. 
When 9Ji is a topological space the interior, closure, and boundary of M are 
denoted by int M, cl M, and bd M, respectively. Suppose 9Ji = Rk. The affine hull 
of M is written aff M, and dim M is the dimension of aff M. An affine subset of M is 
a set of the form M n L where L is an affine subspace of Rk. 

For any mapping / the notations domain / and range / will be used, 
respectively, for the domain of definition of / and the range of / , and / is said to be 
a mapping on domain / . 

If x is a real number then [x} will stand for x — 1 or x provided x is an integer 
and for [x], the integer part of x, otherwise. Furthermore, the notations 
N = {1,2,...}, N0 = {0,1,2,...}, and Z = {..., - 2 , - 1 , 0 , 1, 2,...} are adopted. 

All vectors are considered basically as row vectors, and the length of a vector x 
is indicated by ]x|. A set of vectors in Rk are said to be affinely independent 
provided their endpoints do not belong to an affine subspace of Rk. The transpose 
of a matrix A is denoted by A' and, for A quadratic, | A| is the determinant and tr A 
is the trace of A. The symbols I or Ir are used for the r x r unit matrix (r = 1,2,...). 
Occasionally an r x r symmetric matrix A with elements afj-, say, will be 

2 C + 1 ) 
interpreted either as a point in Rr or as the point in Ry 2 'whose coordinates are 
given by (aj l5 a22, • • •, arr, a12,..., aln a23, • • •, a2r, • • •, ir)- Let S be a positive 
definite matrix, set A = E^1, and let 

When indexed variables, as for example xh i = 1 ,...,m, or xy, i = 1 , . . . ,m; 
j = l,...,n, are considered the substitution of a dot for an index variable signifies 
summation over that variable. Furthermore, the vector (x l 5 . . . ,xm) will be 
denoted by x„., the vector (x ; i , . . . ,x i n) by x,*, etc. 

Consider a real-valued function / defined on a subset X of Rk. The notations 
Df = of j Ox and d2f/8x'dx are used for the gradient and the matrix of second 
order derivatives of / , respectively, while Df, where i = (iu.... ik) is a vector of 
non-negative integers, indicates a mixed derivative of f . (Thus Df = Dn 1,f.) In 
the case where a partition (x(1) , . . . , x(m)) of x(e X) is given then the ((, /)th matrix 
component of the corresponding partition of d2f/dx'dx is denoted by 
d2f /dx<i>'8xu>. Let h be a twice continuously differentiable mapping on an open 

be similar partitions of E and A. Then, as is well known, 

(1) &22 = ^22 — 
(1) 
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subset of Rk and onto X, also assumed open, and set 

dy1 dyx 

dx 

~dy" 

dh_ 

dy' 

djh 8K 

wk/ 

d2hk 

' dy'dy 

the Jacobian matrix of h. Moreover, set 

d2x _ d2h _ Id2ht 

dy'dy dy'dy \dy'dy' 

I f / i s twice continuously differentiable then, writ ing/for the composition fohoîf 
and h, one has 

(3) 7 
dx d2f dx' df d2x 

dy'dy dy' dx'dx dy dx dy'dy 

where • is a matrix multiplication symbol defined in the following way. For a 1 x k 
vector v = (vlr...,vk) and an m x nk matrix A = [Ax AJ , A; being m x n 
(i = 1 , . . . , k), the product v A is given by 

t^A = tfjAj + + vk\-

(Thus the operation • is a generalization of the ordinary inner product of two k-
dimensional vectors.) 

Measure-theoretic questions concerning null sets, measurability of mappings, 
etc., will largely be bypassed. (Section 4.2, however, forms something of an 
exception to this.) The mathematical gaps left thereby may be filled out by 
standard reasoning. 

Lebesgue measure will be denoted by A, counting measure by v. (The domains 
of these measures vary from case to case but it will be apparent from the context 
what the domain is.) 

Let H be a class of transformations on a space X, i.e. the elements of H are one-
to-one mappings of X onto itself. The class H is unitary, respectively transitive, if 
for every pair of points x and x in X the equation x = h(x) has at most, respectively 
at least, one solution h in H. In the case where H is transitive, the set 
H(x) = {h(x):heH} is equal to X. A measure /i on a c-algebra 31 of X is 
transformation invariant under H if ph = ¡i for every heH, where fih is defined by 
fih(A) = f4.h~1(A)), Ae$I. Suppose H is a group under the operation o of 
composition of mappings. Then H(x) is called the orbit of x and the orbits form a 
partition of X. If, in addition, H is unitary then each orbit can be brought into one-
to-one correspondence with H, and thus X can be represented as a product space 
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U x 93 of points (u, v) such that u determines the orbit and v the position on that 
orbit of the point x in X corresponding to (u, v). As is well known (see e.g. Nachbin 
1965), if H is a locally compact, topological group then there exist left invariant as 
well as right invariant measures on H. For H unitary and transitive, these 
measures can, by the above identification of X and H, also be viewed as 
transformation invariant measures on X. 

The sample spaces to be considered are exclusively Euclidean, i.e. they are Borel 
subsets of Euclidean spaces, and the associated a-algebras of events are the 
classes of Borel subsets of the sample spaces. Moreover, all random variables and 
statistics take values in Euclidean spaces. Generally, the letter X will be used to 
denote the sample space, and x is a point in X. 

Ordinarily, the same notation—a lower case italic letter—will be used for a 
random variable or statistic and for its value, the appropriate interpretation being 
determined by the context. In cases where clarity demands a distinction the 
mapping is denoted by the capital version of the letter. 

Let X ( c Rk) be a sample space, 31 the c-algebra of Borel subsets of X, and B̂ a 
family of probability measures on X. The triplet (X, 91, B̂) is termed a statistical 
field. Let P be a member of B̂ and let t (also T) be a statistic. 

The marginal distribution of t under P has probability measure Pt given by 
Pt(B) = P(t'1(B)) for Borel sets B. Further, EPt and VPt stand for the mean value 
(vector) and the variance (matrix) of t. For an event A with P(A) > 0 the 
conditional probability measure given A is denoted by P(-\A) or PA. If © is a sub-
cr-algebra of 21 then Pa denotes the restriction of P to © and P® is the Markov 
kernel of the conditional distribution given 93 under P. The conditional mean 
value given © under P of a random variable y is written Efy. When S is the a-
algebra generated by a statistic t the notations P„ P1 or P(-|i), and E'Py are 
normally used instead of PB, P®, and Efy. For any measure ¡i on X, let ¡i{n) indicate 
the measure on the product space X" which is the «-fold product of fi with itself, 
and let //*"' be the n-fold convolution of ¡i (provided it exists). Set — {Pt:P 
e ^ } , ^ ' - {P'rPe*P}, ^ ( n ) : P e ^ } , e t c . 

If P and Q are two probability measures on X having common support then 

(4) dfl _ dP 

dQ, ~ dQ 

and 

(5) dP(-\t) = dP/dQ 

dQi-\t) dptldQ,' 

A distribution on Rk is singular if its affine support (i.e. the affine hull of its 
support) is a proper subset of Rk. Let u and v be statistics. The conditional 
distribution of u given v and under P is singular provided that the marginal 
distribution of u under the conditional probability measure given v is singular 
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with probability 1, i.e. 

P{Pu(-\v) is singular} = 1. 

The probability measure P is said to be of discrete type if the support S of P has 
no accumulation points, of c-discrete type if S equals the intersection of the set Zk 

and some convex set, and of continuous type if P is absolutely continuous with 
respect to Lebesgue measure X on X. The same terms are applied to ^3 provided 
each member of ^3 has the property in question. 

A function ij/ defined on and taking values in some Euclidean space is called a 
parameter function. As with random variables and statistics, the same notation i¡/ 
will generally be used for the function and its value, but when it seems necessary to 
distinguish explicitly the function is indicated by i!>(•). Suppose B̂ is given as an 
indexed set, ^3 = {Pra: co e Q}, then ^ is called parametrized provided £2 is a subset 
of a Euclidean space and the mapping co -> Pm is one-to-one. Any parameter 
function ijj on may be viewed as a function of co, and its values will be denoted, 
freely, by ij/(co) as well as by i¡/ or tp(Pa). Similarly for other kinds of mappings. 

The family ^ is said to be generated by a class H of transformations on X if for 
some member P of ^3 one has B̂ = {Ph:h eH}. In the case where H is a unitary 
group the family B̂ will be called a group family. Suppose that 8̂ is a group family 
and that u is a statistic which is constant on the orbits under H but takes different 
values on different orbits (thus u is a maximal invariant). Then u is said to index 
the orbits, and the marginal distribution of u is the same under all the elements of 
^3. It is also to be noticed that if Sp is a transitive group family (i.e. a group family 
with H transitive) and if /i is a left or right invariant measure on X which, when 
interpreted as a transformation invariant measure on X, dominates then the 
family p of probability functions or densities of ^3 relative to fi is of the form 

(6) p = {p(h-H-)):heH} 

where p = dP/dp.. 
For the discussions in Parts I and III (except Section 3.1) it is presupposed that 

a statistical model, with sample space X and family of probability measures ^3, has 
been formulated. Unless explicitly stated otherwise, it is moreover supposed that 
Sp is parametrized, 8̂ = {Pra:<yeQ}, and determined by a family of probability 
functions p = {p(-;a)): coeQ}, i.e. p{-; co) is the density of Pm with respect to a 
certain <j-finite measure n which dominates ^8. For discrete-type distributions this 
dominating measure is always taken to be counting measure, so that p(x; co) is the 
probability of x. (In subsequent chapters certain topics in plausibility inference 
will be considered. Whenever this is the case, it is—for non-discrete 
distributions—presupposed that sup* p(x\ co) < oo for every co e £1) In the case p 
is of the form (6), for some probability function p with respect to n and some class 
H of transformations on X, then p is said to be generated by H. The points x in X 
for which p(x; co) > 0 for some coeil are called realizable, and the realizable 
values of a statistic are the values corresponding to realizable sample points x. 
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Viewed as a function on X x i2, p(-; •) is referred to as the model function. The 
notation p(u; o>\t) is used for the value of the conditional probability function of a 
statistic u given t and under o>. 

From the previous discussion it is apparent that if the parametrized family 
^J = {P m eQ} is a group family under a group H of transformations on the 
sample X then, under mild regularity assumptions, X can be viewed as a product 
space U x 93, the spaces 93, H, and £i may be identified, and ip has a model 
function of the form 

p(x; a>) = p(u)p(co~ V)|u) 

in an obvious notation. 
The r-dimensional normal distribution with mean (vector) £ and variance 

(matrix) E will be indicated by Nr(L 2), and will stand for the class of these 
distributions. (The index r will be suppressed when r = 1.) The precision (matrix) 
A for Nr(£, E) is the inverse of the variance, i.e. A = E~ \ The probability measure 
of Nr(£, E) will be denoted by PitX) or J°(ii4) according as the parametrization of 9tr 

by (£, E) or by (£, A) is the one of interest. 
The symbol • designates the end of proofs and examples. 

1.3 PARAMETRIC MODELS 

The statistical models considered in this tract are nearly all parametric and 
determined by a model function p(x; m). Rather more attention than is usual will 
be given to the parametric aspect of the models, i.e. to the variation domains of the 
parameters and subparameters involved and to the structure of p(x: co) as a 
function of co. Thus the observation aspect and the parameter aspect are treated 
on a fairly equal footing. There are several reasons for this. The most substantial 
is that the logic of inferential separation cannot be built without certain precise 
specifications of the role of the parameters. Secondly, it is natural in connection 
with a comparative discussion of likelihood functions and plausibility functions 
to give an exposition of Barnard's theory of lods functions, and in a considerable 
and fundamental portion of that theory observations and parameters occur in a 
formally equivalent, or completely dual, way. Finally, the stressing of the 
similarity or duality of the observation and parameter aspects, as far as is 
statistically meaningful, leads to a certain unification and complementation of 
the theoretical developments. 

There are two main classes of parametric models: the exponential families and 
the group families. The exponential families, the exact theory of which is a main 
topic of this book, are determined by model functions of form 

p(x; co) = a(a>)b(x)e0'' 

where 6 is a /c-dimensional parameter (function) and t is a /c-dimensional statistic. 
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Group families typically have model functions which may be written 

p(x; (o) = p(u)p(co ~ *(u)|w), 

as explained in Section 1.1. A theory of group families—the theory of structural 
inference—has been developed by Fraser (1968,1976) (see also Dawid, Stone and 
Zidek 1973) from Fisher's ideas on fiducial inference. Although the core of 
fiducial/structural inference is a notion of induced probability distributions for 
parameters which few persons have found acceptable, the theory comprises many 
results that are highly useful in the handling of group families along more 
conventional lines. 

The overlap between the two classes of families is very little; thus in the case co is 
one-dimensional, the only notable instances of families which belong to both 
classes appear to be provided by the normal distributions with a known variance 
and the gamma distributions with a known shape parameter (cf. Lindley 1958, 
Pfanzagl 1972, and Hipp 1975). Moreover, essential distinctions exist between the 
mathematical-statistical analyses which are appropriate for each of the two 
classes. It is remarkable indeed that both classes and the basic difference in their 
nature were first indicated in a single paper by Fisher (1934). 

Each class covers a multitude of important statistical models and allows for a 
powerful general theory. This strongly motivates studying these classes per se and 
choosing the model for a given data set from one of the two classes, when feasible. 
Once this is realized, it seems of secondary interest only that one may be led to 
consider, for instance, exponential families by arguing from various viewpoints of 
a principled character, such as sufficiency, maximum likelihood, statistical 
mechanics, etc. (see the references in Section 8.4), especially since each of these 
viewpoints and its consequences only encompass a fraction of what is of 
importance in statistics. 



PART 
I 

Lods Functions and Inferential Separation 

Log-probability functions, log-likelihood functions and log-plausibility fun-
ctions are the three main instances of lods functions. It is an essential feature of the 
theory of lods functions that it incorporates a considerable part of the statistically 
relevant duality relations which exist between the sample aspect and the 
parameter aspect of statistical models. 

Separate inference is inference on a parameter of interest from a part of the 
original model and data. Margining to a sufficient statistic and conditioning on 
an ancillary statistic are key procedures for inferential separation. 





CHAPTER 2 

Likelihood and Plausibility 

In this short chapter important basic properties of likelihood functions and 
plausibility functions are discussed, with particular reference to similarities and 
differences between these two kinds of function. As a preliminary, the definition 
and some properties of universality are presented. Universality will also be of 
significance in the discussions, in subsequent chapters, of prediction, inferential 
separation, and unimodality. 

2.1 UNIVERSALITY 

The concept of universality is of significance in the discussions, given later in the 
book, on plausibility, M-ancillarity, prediction and unimodality. 

The probability function co) is said to have a point x as mode point if 

p(x;co) = sup p(x;co). 
X 

and the set of mode points of p(-; co) will be denoted by x(co). More generally, x 
will be called a mode point for the family p provided that for all e > 0 there exists 
an co 6 Q such that 

(1) (1 + s) p(x; co) > sup p(x; co). 
X 

With this designation universality of the family p is defined as the property that 
every realizable x is a mode point for p. If, in fact, every realizable x is a mode 
point for some member of p then p is called strictly universal. 

For convenience in formulation, universality and strict universality will 
occasionally be spoken of as if they were possible properties of the family of 
probability measures rather than of p. Thus, for instance, is universal' will 
mean that the family p of probability functions determining is universal. 

A family p for which supxp(x; co) is independent of co will be said to have 
constant mode size. 

Most of the standard families of densities are universal, and many examples of 
universal families will be mentioned later on. Clearly, one has: 

Lemma 2.1. Let H be a class of transformations on X. Suppose H is transitive and 
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that for some a>0eCl 

V = {p(h-1(-y,a>0y.heH}. 

Then p is universal with constant mode size. 

As a simple consequence of the definition of mode point one finds: 

Theorem 2.1. Let t be a statistic and let 

P(x; co) = p(t\ co)p(x; co\t) 

be the factorization of the probability function of x into the marginal probability 
function for t and the conditional probability function for x given t. 

Suppose x0 is a mode point of p and set t0 = t(x0). Then x0 is a mode point of the 
family of conditional probability functions 

{p(-; a>|t0): coeQ}. 

Corollary 2.1. If p is universal then for any given value of t the family of conditional 
probability functions 

{p(-;co|i):coefi} 

is also universal. 
Furthermore, it is trivial that if p has only a single member p, say, then p is 

universal if and only if p is constant, i.e. the density is uniform. 

The family p will be said to distinguish between the values of x if for every pair x' 
and x" of values of x there exists an co e Q such that 

p(x'; co) ^ p(x"; co). 

If p is universal and distinguishes between the values of x then, under very mild 
regularity conditions, x is minimal sufficient. To see this, let x' and x" be realizable 
points of X and suppose that 

c'p(x'; co) = c"p(x"; co) for every coed 

where c' and c" are constants (which may depend, respectively, on x' and x"). By 
the universality of p, the ratio c"/c' must be 1, and this implies x' = x" since p 
distinguishes between values of x. In other words, the partition of X induced by 
the likelihood function is (equivalent to) the full partition into single points; the 
result now follows from Corollary 4.3. 

2.2 LIKELIHOOD FUNCTIONS AND PLAUSIBILITY FUNCTIONS 

A brief, comparative discussion of basic properties of likelihood and plausibility 
functions is given here. 

Both likelihood and plausibility functions are considered as determined only 
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up to a factor which does not depend on the parameter of the model. However, 
unless otherwise stated, the notations L and n will stand for the particular 
choices 

L(co) = L(co; x) = p(x; co) 

TI(co) = /7(co; x) = p(x; co)/ sup p(x; co) 
X 

of the likelihood and plausibility functions, based on an observation x. 
It is important to note that L and /7 differ only by a factor 

s(co) = sup p(x;co) 
X 

which is independent of x. 
This implies that ln77(co;x), as well as In L(co; x), is a b-lods function 

corresponding to the f-lods function lnp(x; co)—in the terminology of Barnard's 
(1949) fundamental theory of lods. Some important common properties of 
likelihood and plausibility functions may be derived naturally in the theory of 
lods functions (see Section 3.2). 

The normed likelihood and plausibility functions will be denoted by L and 77, 
i.e. 

L(co) = L(co)/sup L(co) 
(O 

n(co) = /7(w)/sup n(o)). 
CO 

Clearly, 

sup /7(co; x) = 1 Cl> 

if and only if x is a mode point of p. Hence, 77= II for every x if and only if p is 
universal. 

For any family p such that supmp(x; co) < co for every x one has 

L(co; x) = s(co)r(x)n(co; x) 

where 

r(x) = sup 77(co; x)/sup p(x; co). 
03 CJ 

If L and /7are equal for a given value of x then s(co) must be independent of co on 
the set {co:p(x; co) > 0} which means that p has constant mode size on that set. 
On the other hand, constant mode size of p obviously implies that L = 77 for 
every x. In particular, L and 7? are thus equal for every x if p is generated by a 
transitive set of transformations. 

The set of maximum points of the likelihood or plausibility function constitute 
respectively the maximum likelihood estimate co(x) and the maximum plausi-
bility estimate cb(x) of the parameter co, i.e. 


