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Preface

Here is all the invisible world, caught, defined and calculated.

In these books the Devil stands stripped of all his brute disguises.
Here are all your familiar spirits—your incubi and succubi;

your witches that go by land, by air, and by sea;

your wizards of the night and of the day.
—Arthur Miller, The Crucible

My students often seem to regard statistics as only slightly removed from sorcery
and witchcraft. Hence I begin with the words uttered by Reverend Hale in Arthur
Miller’s (1954) classic play. Like Hale’s books, this one also promises to demystify
the arcane—in this case, regression analysis.

Regression models, in some form or another, are ubiquitous in social data analy-
sis. Although classic linear regression assumes a continuous dependent variable, later
incarnations of the technique allowed the response to take on a variety of more
limited forms: binary, multinomial, truncated, censored, strictly integer, and others.
Increasingly, regression texts are incorporating some limited-dependent-variable
techniques—typically, binary response models—along with classic linear regression
in their coverage. However, other than in econometrics texts, it is rare to find regres-
sion models for the full spectrum of continuous and limited response variables treated
in one volume. This monograph aims to provide just such a treatment.

In particular, the first six chapters of the book parallel the coverage of the typ-
ical monograph on linear regression: an introduction to regression modeling
(Chapter 1), simple linear regression (Chapter 2), multiple linear regression
(Chapter 3), regression with categorical predictors (Chapter 4), regression with
nonlinear effects (Chapter 5), and finally, a consideration of advanced topics such
as generalized least squares, omitted-variable bias, influence diagnostics, collinear-
ity diagnostics, and alternatives to ordinary least squares for heavily collinear data
(Chapter 6). The second half, however, considers models for dependent variables
that are limited in one way or another. Examples of such data are event counts, cat-
egorical responses, truncated responses, or censored responses. The topic coverage
in the second half of the book is therefore: binary response models (Chapter 7),
multinomial response models (Chapter 8), censored and truncated regression
(Chapter 9), regression models for count data (Chapter 10), an introduction to survival

XV
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analysis (Chapter 11), and multistate, multiepisode, and interval-censored survival
models (Chapter 12).

The book is intended both as a reference for data analysts working primarily with
social data and as a graduate-level text for students in the social and behavioral sci-
ences. As a text it is most suited to a two-course sequence in regression. As an exam-
ple, I normally employ the material in Chapters 1 through 7 for a doctoral-level
course on regression analysis. This course focuses primarily on linear regression but
includes an introduction to binary response models. In a more advanced course on
regression with limited dependent variables, I use Chapters 2 through 4 to review the
multiple linear regression model, and then use Chapters 7 through 12 for the heart
of the course. On the other hand, a survey of regressionlike models using the gener-
alized linear model as the guiding framework might conceivably employ Chapters 1
through 5, and then 7 through 10. Other chapter combinations are also possible.

This book is not intended to be one’s first exposure to regression. It is assumed
that the reader has had a thorough introduction to probability theory, statistical infer-
ence, and applied bivariate statistics, along with an introduction to correlation and
regression. Having covered the material in, say, Agresti and Finlay (1997) or Knoke
et al. (2002), for example, would be good preparation for the current monograph.
The basics of probability and statistical inference are nevertheless reviewed in the
appendix to Chapter 1 in case the reader needs to refresh his or her understanding of
these topics. It is also assumed that the reader has a solid grasp of college-level alge-
bra. Beyond these requirements, no specialized mathematical or statistical skills are
required. Some differential calculus is employed here and there in the exposition,
and a smattering of matrix algebra appears—primarily in Chapter 6. Those unfamil-
iar with these topics will find a fairly thorough discussion of them in Appendix A.
This collection of math tutorials also discusses basic algebra, summation notation,
functions, and covariance algebra. These tutorials are self-contained sections that
can be referred to as necessary during the course of reading through the book.

The book’s emphasis tends to be on the estimation, interpretation, and evaluation
of theoretically driven models in the social sciences. Due to the variety of regression
models considered, coverage of specific techniques (e.g., linear regression) is neces-
sarily more selective than found in books devoted entirely to one type of model. In
particular, I have avoided discussion of exploratory model-building techniques, such
as stepwise regression, along with the extensive examination of model residuals.
Readers interested in these topics can find ample coverage in other works. Instead, the
focus is on the substantive and statistical plausibility of models, the correct interpre-
tation of model parameters, the global evaluation of model adequacy, and a variety of
inferential procedures of interest to those working with social data. As maximum
likelihood estimation is central to the models considered in Chapters 7 through 12, in
the second half of the book considerable emphasis is placed on the expression for the
likelihood function. This allows the reader to see how models are estimated, since
once the function is written, algorithms for parameter estimation are readily available.

My writing style is the product of an attempt to marry rigor with accessibility.
Rigor comes in the form of mathematical development in places where it is necessary
for conveying a deeper level of understanding. Accessibility is achieved (hopefully)
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by providing enough steps so that the math is clear, and by explaining the steps “in
English” whenever possible. It is also hoped that the reader with more modest math
skills will invest a little time and energy in the math tutorials in Appendix A. These
are designed to give the reader the tools needed to at least follow the mathematical
expositions in the text. As someone who developed mathematics skills rather late in
life, I appreciate the trepidation with which some readers approach mathematical
explication. Nonetheless, a complete understanding of this material is not possible
without some math. Ideally, the returns to the reader in terms of statistical compre-
hension will be worth the effort.

A number of resources are available to help readers assimilate the material in the
book. First, there are approximately 275 end-of-chapter exercises in Chapters 2
through 12, plus another 63 in Appendix A. The Instructor’s Manual that accompa-
nies the book contains complete solutions to all the exercises. Additionally, 10
datasets are available so that readers can practice the techniques taught herein using
their favorite regression software. The datasets are incorporated into several of the
end-of-chapter exercises. The datasets can be downloaded through the Wiley Web
site, as discussed in Chapter 1 (see the section “Datasets Used in This Volume” in
Chapter 1 for further information).
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CHAPTER 1

Introduction to Regression Modeling

The last several decades in the social sciences have been characterized by the increas-
ing use of mathematical models of social behavior. The ready availability of quanti-
tative data on social phenomena, generated by large-scale social surveys, is certainly
a contributing factor in this development. Although models for social data vary
widely in complexity and sophistication, most can be considered to be variants of the
technique known as linear regression. Classic linear regression, however, was predi-
cated on the notion that the outcome variable being modeled was continuous in
nature. Many outcomes of interest, on the other hand, are limited in their measure-
ment in some way or another. In this monograph, I define a limited response variable
to be any outcome that is not continuous—or approximately continuous—throughout
its logical range. Such measures include a continuous response that is truncated or
censored, one that is categorical, and one that represents a count of some phenome-
non. Also included under this definition are measures of survival time in a given state,
as this type of response is also typically characterized by restrictions imposed by cen-
soring and/or truncation. Linear regression has been extended over the years to the
modeling of limited dependent variables, via the generalized linear model, discussed
below. The purpose of this book, therefore, is to present an integrated treatment of
regression modeling that weaves seamlessly through the various metrics that the
response variable can take. By collecting a variety of seemingly disparate techniques
under the regression umbrella, this book will hopefully render these methods easier
to assimilate.

CHAPTER OVERVIEW

In this chapter I introduce the concept of a statistical model: in particular, a linear
regression model. It turns out that linear regression models are special cases of what

Regression with Social Data: Modeling Continuous and Limited Response Variables,
By Alfred DeMaris
ISBN 0-471-22337-9  Copyright © 2004 John Wiley & Sons, Inc.



2 INTRODUCTION TO REGRESSION MODELING

is referred to as the generalized linear model (Gill, 2001; McCullagh and Nelder,
1989; Nelder and Wedderburn, 1972), which subsumes all the models discussed in
this book. The important components of such a model are therefore sketched out in
this chapter to foreshadow what is to follow in subsequent chapters. I then outline
three major components of model evaluation, which are considered throughout the
book for assessing model adequacy. Next, I consider the role of regression models
in causal inference. Whether or not acknowledged explicitly, regression modeling in
the social and behavioral sciences is frequently designed to illustrate causal dynam-
ics. I therefore devote some space to a discussion of recent developments in, and
controversies pertaining to, the use of regression models for causal inference. The
chapter concludes with a description of the data sets used for this volume, some of
which the reader may download to practice the techniques taught herein. Finally, the
chapter appendix contains a review of important statistical principles relied on
throughout the volume.

MATHEMATICAL AND STATISTICAL MODELS

In the social and behavioral sciences, a model is often a set of one or more equations
describing the processes that generated the observations on one or more response
variables. 1 use the term generated here in a causal sense, since that is what is typi-
cally implied in researchers’ models, as well as the language used to describe them.
(I shall have more to say about causal language shortly.) When coupled with a set of
assumptions about the manner in which observations were sampled from a larger
population, it becomes a statistical model. Like many “models” of real-world phe-
nomena, such models are not to be taken too literally. As others have observed, “All
models are wrong. Some are useful” [attributed to George Box in Gill (2001, p. 3)].
Nonetheless, to the extent that a model provides a broad outline of the dynamics
underlying behavioral phenomena, it can be useful for advancing knowledge.

Linear Regression Models

A linear regression model is an equation in which a random response, or outcome,
variable Y, is posited to be a linear function of a set of input, or explanatory vari-
ables, denoted X, X5, . . . . (These labels are, of course, purely arbitrary. The out-
come could just as well be denoted W, U, or n, and the explanatory variables—also
called regressors—could be labeled V, Z, or £.) To give this discussion substantive
flesh from the start, suppose that the “population” of interest is the population of all
persons over 18 years of age in the United States in 1998. Suppose further that Y is
a continuous measure of attitude toward abortion, with a higher score indicating a
more liberal, or unrestrictive, attitude. And let’s say that X, is marital status, where
“married” is coded 1, and “any other status” is coded 0. (Called dummy variables
these types of variables are explored in detail in Chapter 4.) Additionally, say that X,
is education, coded from 0 for “no formal schooling” to 20 for “four or more years
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of graduate study.” A regression model for attitude toward abortion for the ith obser-
vation sampled from the population based on these two regressors takes the form

Yi=Bo+ B1Xi + BoXpn + & (1.D)

This is a linear equation, in the sense that Y is defined to be a weighted sum of con-
stants times explanatory variables (see Sections I and II of Appendix A for definitions
of functions, linear functions, and weighted sums). But—you might object—there’s
no variable multiplied by [ and no constant multiplying €;. Well, both are actually
present. The “variable” corresponding to [ is X, which equals 1 for all cases. This
factor is, therefore, easily omitted from the equation. The constant multiplier of ¢, is
simply assumed to be 1. Hence, this multiplier can also be omitted. The 3’s—f, B,
[B,—are the parameters of the equation: They are assumed to take on constant values
for each person in the population. The last term, €, is an equation disturbance, or error
term. It is a random variable that represents all factors affecting Y other than X; and
X,. Both the parameters and ¢ are unobserved in any given sample. That is, even
though we can observe the values of Y and the X’s for any sample of n cases from the
population, we cannot observe either the parameters or the error term. These factors,
however, can be estimated with the sample data. In fact, the major purpose of regres-
sion modeling is to estimate the 3’s and to use these to describe the relationship
between Y and the X’s in the population, as well as to make predictions about the
value of Y for cases with particular combinations of values of the X’s.

Model (1.1) is for individual observations. The model for the expected value, or
mean, or arithmetic average, of Y in the population, conditional on the X’s, is instead
simply

E(Y;| X1, Xin) = W = Bot+ BiXin + BoXin- (1.2)

The B’s quantify the manner in which the mean of Y is related to the explanatory
variables in the model. In particular, 3, indicates the expected, or average, difference
in Y in the population for those who are 1 unit apart in marital status—that is, for
marrieds versus everybody else in our substantive example. 3, indicates the expected
difference in Y in the population for those who have a year’s difference in formal
schooling. So, for example, in the prediction of one’s attitude toward abortion, if {3
is —1.5 and B, is 2.3, these would be interpreted as follows: Married persons’ atti-
tude toward abortion, on average, is 1.5 units lower than others’, holding education
constant. (The precise meaning of “holding other variables constant” will be taken
up in subsequent chapters.) Those with a year’s more formal schooling, on average,
are 2.3 units higher on attitude toward abortion than others, holding marital status
constant. Furthermore, if B, is 7.5, a married person with a college degree is esti-
mated to have mean abortion attitude equal to 7.5 — 1.5(1) + 2.3(16) = 42.8.

This “model” of attitude toward abortion is certainly an oversimplification of the set
of factors associated with such attitudes. But it is parsimonious, and its adequacy in
accounting for variation in attitude toward abortion can be evaluated (more about this
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later). To estimate the 3’s with sample data employing the most common technique—
ordinary least squares (OLS)—we make some additional assumptions about the equa-
tion errors. First, we assume that they are uncorrelated with one another. That is, there
is no tendency for a large error for the first observation, say, to presage a larger or
smaller error for the second observation than would occur by chance. If sampling is
random and the data are cross-sectional rather than longitudinal, this assumption is
usually pretty safe. Second, we assume that they have a mean of zero at each covari-
ate pattern, or combination of predictor values. As an example, being married and hav-
ing 16 years of education is one covariate pattern; being other-than-married with 12
years of education is another covariate pattern; and so on. Hence, this assumption is
that the mean of the errors at any covariate pattern is zero. Finally, we assume that the
variance of the error terms is the same at each covariate pattern. Given a random sam-
ple of n persons from the population, along with their measures on Y, X;, and X,, we
can proceed with an estimation of this equation and employ it to further our under-
standing of abortion attitudes.

Generalized Linear Model

A linear regression model is a special case of the generalized linear model (GLM).
A generalized linear model is a linear model for a transformed mean of a response
variable whose probability distribution is a member of the exponential family
(Agresti, 2002). What does this mean? Well, for starters, let’s apply this definition to
the regression model delineated in equation (1.2) and corresponding assumptions
above. The quantity L, in equation (1.2) is referred to as the conditional mean of the
response variable. It is the mean of the Y; conditional on a particular covariate pat-
tern. (The g; are, moreover, more properly called the conditional errors—the errors,
at each covariate pattern, in predicting the individual Y; using the conditional mean.)
The model is therefore a model for the mean of the response variable. It is also for
the transformed mean of Y, although the transformation employed here is the iden-
tity transformation, which is “transparent” to us. That is, if g(u;) indicates a trans-
formation of the mean using the function g(), then g(y;) in the classic regression
model is just p;. Also, in the classic regression model, it is assumed that the errors
are normally distributed. (This assumption is not essential if n is large, however.)
Because Y is a linear combination of the regressors plus the error term, and assum-
ing that the regressor values are fixed, or held constant, over repeated sampling, Y is
also normally distributed. The normal distribution is a member of the exponential
family of probability distributions.

Essentially, there are three components that specify a generalized linear model. First,
the random component identifies the response variable, Y, its mean, p, and its proba-
bility distribution. Second, the systematic component specifies a set of explanatory vari-
ables used in a linear function to predict the transformed mean of the response variable.
The systematic component, referred to as the linear predictor (Agresti, 2002), has the
form sz: o B Xi for the ith case, where the X’s are the explanatory variables and the ’s
are the parameters representing the variables’ “effects” on the mean of the response. In
the example of attitude toward abortion, Zfzo B Xix 1s just By + B X1 + BXpp. Third,
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the link function, g(u), specifies the transformation function for the mean of Y, which
the model equates to the systematic component.

The linear regression model is especially simple because the response variable is
continuous—at least theoretically—and the link function is the identity link. That is,
g(1) =, and hence the regression model is p; = E(Y)) = Zszo BiXi as we saw in
equation (1.2). An important characteristic about this equation is that the left- and
right-hand sides are equally unrestricted. That is, if Y is continuous, its theoretical
range is from minus to plus infinity, which implies a similar range for p. The right-
hand side is also free to take on any values in that range, since there are no restric-
tions on either the parameters or the values of the predictors. However, later in this
book we consider other regressionlike models in which the response variable is either
binary, nonnegative discrete, or otherwise limited in its range. The link function is
therefore designed to ensure that the response is converted into an unrestricted form,
to match the unrestricted nature of the linear predictor. Let’s consider how the GLM
framework extends to those situations.

First, we need to describe the exponential family of density functions. (Readers
unfamiliar with the concept of a density function may want to review that material
in the chapter appendix.) A density is a member of the exponential family if it can
be written in the form

f(y| W) = a(w) b(y)e’s™, (1.3)

where, as before, p is the mean of Y, a(p) is a function involving only p, and per-
haps constants, and b(y) is a function involving only Y, and perhaps constants
(Agresti, 2002). Once the density is written in this form, the link function that
equates the mean of Y to the linear combination of explanatory variables is g(p). As
an example, suppose that the response variable, Y, is binary, taking on values 1 if a
person has had sexual intercourse any time in the preceding month, and 0 other-
wise. Suppose further that we are interested in modeling having had sexual inter-
course in the preceding month as a function of several predictors, such as marital
status, education, age, religiosity, and so on. Such a response variable is said to
have the Bernoulli distribution with parameter m, and its density function (see the
chapter appendix) is

flyjm)=n"(1 - Tc)lfy.
For binary Y, E(Y) = =, so « is the mean of the response in this case. Now, since
(l—n)' V=1 -1 —-n)"

-7
(I=my

=Y
=( TE)(l—n)

— (1 _ n.)eyln[n/(lfn)]

=
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we see that the Bernoulli density is a member of the exponential family, with a(p) =
(1 —m), b(y)=1, and g(p) = In[r/(1 — m)]. Thus, In[n/(1 — w)] is the link function
for this model, and the model for the transformed mean becomes

T

K
In = Bi X
1_7'Cl‘ ];)

This type of model is called a logistic regression model. Notice that since m ranges
from O to 1, /(1 — w) ranges from O to infinity, and therefore In[r;/(1 — 7;)] ranges
from minus to plus infinity. The left-hand side of this model is thus an unrestricted
response, just as in the case of linear regression.

As a second example, suppose that the response on sexual frequency really is
recorded in terms of the number of separate acts of sexual intercourse that the per-
son has engaged in during the preceding month. This type of outcome is referred to
as a count variable, since it represents a count of events. It is a discrete variable
whose distribution is likely to be very right-skewed. We may want to utilize this
information to inform the regression. One appropriate density for this type of vari-
able is the Poisson density. Hence, if Y takes on values 0, 1, 2, . . . and n> 0, the
Poisson density is

y

e M
iy =
y:

To see that this is a member of the exponential family, we rewrite this density as
Y
e W _ e—uieylnu
y! oo

where a(p) =e ", b(y) = 1/y!, and g(n) = Inn. Therefore, In p is the link function,
and the model for the transformed mean becomes

K
Inp = > B X.
=0

This model is referred to as a Poisson regression model. Here, in that p ranges from
0 to infinity, In p ranges from minus to plus infinity. Once again, the left-hand side
of the model is an unrestricted response.

The advantage to the GLM approach is that the link function connects the lin-
ear predictor, Zf=0 B X, to the mean of the response variable rather than to the
response variable itself, so that the outcome can now take on a variety of nonnor-
mal forms. As Gill (2001, p. 31) states: “The link function connects the stochastic
[i.e., random] component which describes some response variable from a wide
variety of forms to all of the standard normal theory supporting the systematic
component through the mean function, g(it) . . . .” Once we assume a particular
density function for Y, we can then employ maximum likelihood estimation (see
the chapter appendix for an explanation of the maximum likelihood technique) to
estimate the parameters of the model. For the classic linear regression model with
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normally distributed errors (and thus a normally distributed response), maximum
likelihood (ML) and ordinary least squares (OLS) estimation are equivalent (OLS
estimation is covered in Chapter 2).

Model Evaluation

Models in the social sciences are useful only to the extent that they effectively encap-
sulate real-world processes. In this section we therefore consider ways of evaluating
model adequacy. The assessment of a model encompasses three major evaluative
dimensions. The first dimension is empirical consistency, or as many call it, good-
ness of fit. A model is empirically consistent if the response variable behaves the way
the model says that it should. In other words, a model is empirically consistent to the
extent that the response variable behaves in accordance with model assumptions and
follows the pattern dictated by the model’s structure. Moreover, if the model’s pre-
dictions for Y match the actual Y values quite closely, the model is empirically con-
sistent. The second dimension is discriminatory power, which is the extent to which
the structural part of the model is able to separate, or discriminate, different cases’
scores on the response from one another. Since separation, or dispersion, constitutes
variability in the response, discriminatory power is typically assessed by examining
how much of the variability in the response is due to the structural part of the model.
The third dimension is authenticity, also called model-reality consistency by Bollen
(1989). A model is authentic to the extent that it mirrors the true processes that gen-
erated the response.

To illustrate the differences in these dimensions, I draw on a particular variant of
regression modeling called a path model, essentially a model for a causal system in
which one or more response variables is a function of a set of predictors. A path
model is an example of what is referred to as a covariance structure model or struc-
tural equation model [see DeMaris (2002a) or Long (1983) for an introduction to
such models]. In this type of model, the goal is to account for the correlations (or
covariances) among the variables in the system, using the structural coefficients of
the model. For example, suppose that we have three continuous, standardized vari-
ables measured for a random sample of married adult respondents: Z; is the the
degree of physical aggression in the respondent’s marriage in the past year, Z, is the
frequency of verbal disagreements in the respondent’s marriage in the past year, and
Z5 is the frequency of verbal disagreements in the respondent’s parents’ marriage
when the respondent was a teenager. The sample correlations among these variables
are corr(Z,,Z,) = .45, corr(Z,,Z3) = .6125, and corr(Z,,Z;) = .2756. In path analysis,
these correlations are the observations that are to be accounted for by the model.

A path model can be specified using either a diagram or a series of equations.
Using the latter approach, suppose that a researcher arrives at the following OLS
sample estimates for a simple path model for Z;, Z,, and Z3:

Zz = 45(21) + €,
23 = S(Zl) + 25(22) + €s3.

(1.4)
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The model suggests that the frequency of verbal disagreements in the respondent’s
marriage in the past year is a function of the degree of physical aggression in the
respondent’s marriage in the past year, plus a random error term (e,). It also main-
tains that the frequency of verbal disagreements in the respondent’s parents’ mar-
riage when the respondent was a teenager is a function of the degree of physical
aggression in the respondent’s marriage in the past year and the frequency of verbal
disagreements in the respondent’s marriage in the past year, plus a random error term
(e3). (Okay, this doesn’t make much substantive sense, but that will be the point, as
the reader can see below.) It can (and, in fact, will) be shown that the sample corre-
lations among Z,, Z,, and Z; are functions of the model’s estimated parameters. The
total number of “observations” in path analysis consists of the number of nonredun-
dant correlations among the variables in the system. In the present example, that
number is three. There are also three parameters in the system: the three coefficients.
Whenever the number of correlations is the same as the number of parameters in the
system of equations, the model is saturated, or just-identified. In this case, the struc-
tural parameters will reproduce perfectly the correlations among the variables. When
there are fewer parameters than correlations to explain, the model is overidentified.
In that case, the model is a more parsimonious description of the correlations. The
model will no longer perfectly reproduce the correlations. But we can assess how
closely the model’s parameters will reproduce the correlations in order to gauge its
performance in “fitting” the data.

Let’s see how the correlations can be shown to be functions of the structural
parameters of the model. (Those unfamiliar with covariance algebra may want to
read Section III of Appendix A before continuing.) First, note that since the variables
are standardized, their covariances are also their correlations. Thus, corr(Z;,Z,) =
cov(Zy,2,) = cov(Z,, .A5Z,+ e,) = .45 Cov(Z,,Z;) + cov(Z,,e,) = .45 (since the
covariance of a variable with itself is its variance, which for standardized variables
equals 1, and the covariance between OLS residuals and regressors in the same equa-
tion is zero). Moreover, corr(Z;,Z;)=cov(Z,, .5Z, + .25Z,+ e3) = .5v(Z;) + .25
cov(Z,,Z,) = .6125; and corr(Z,,Z3) = cov(.45Z,+ ey, .57 + 257, + e3) = .45(.5)
v(Z)) +.45(.25) cov(Z,,Z,) = .2756. (Note that OLS residuals in different equations
are uncorrelated with each other.) We see that the correlations are reproduced exactly
from the model parameters, because the model is saturated.

The structural coefficients also allow us to determine how much the model
accounts for variation in the response variables. The part of the variance of a
response variable that is accounted for by the model can be determined by consider-
ing the overall variance of each response. Recalling that the variance of a standard-
ized variable is 1, the variance in Z, can be decomposed into the proportion due to
the structural part of the model and the proportion due to error. Thus, we have
1 =V(Z,) = cov(Zy,Z,) = cov(45Z, + ey, A5Z,+ e,) = 45> v(Z;)) + v(ey) = .2025 +
v(e,). That is, 20.25% of the variation in Z, is due to the structural (as opposed to
the random) part of the model. Similarly, 1 = v(Z;) = cov(.5Z,+ .25Z,+ e;3, .5Z,+
257, + e3) = (.5)(.5) v(Z)) + (.5)(.25) cov(Z,Z,) + (.5)(.25) cov(Z,,2,) + (.25)(.25)
V(Z,) + v(e3) = 524+ (2)(.5)(.25)(.45) + 257+ v(e3) = .425 + v(e;). Here we see that
42.5% of the variation in Zj3 is due to the model.
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At this point, let’s consider the three aspects of model evaluation. First, notice
that the model is perfectly empirically consistent, since the data—the correlations—
“behave” exactly the way the model says they should; they are predicted perfectly by
the model. Discriminatory power, on the other hand, is only moderate; at most, 42.5%
of the variation in any response variable is accounted for by the model. Another way
of saying this is that we experience, at most, only a 42.5% improvement in the dis-
crimination of scores on the response variable when using—as opposed to ignoring—
the model, in predicting the responses. Finally, however, the model is completely
inauthentic, in a causal sense. To begin, the frequency of verbal disagreements in the
respondent’s parents’ marriage when respondents were teenagers cannot possibly be
caused by the subsequent tenor of respondents’ marriages. Additionally, physical
aggression tends to be preceded by verbal conflict rather than the converse. It is there-
fore unreasonable to suggest that it is physical aggression that leads to verbal conflict.
If anything, the occurrence of physical aggression should suppress the frequency of
subsequent verbal altercations, since partners would be fearful of a reoccurrence of
violence. From the foregoing it should be clear that empirical consistency, discrimi-
natory power, and authenticity are three separate although related criteria by which
models can be evaluated.

REGRESSION MODELS AND CAUSAL INFERENCE

Regression modeling of nonexperimental data for the purpose of making causal
inferences is ubiquitous in the social sciences. Sample regression coefficients are
typically thought of as estimates of the causal impacts of explanatory variables on
the outcome. Even though researchers may not acknowledge this explicitly, their use
of such language as impact or effect to describe a coefficient value often suggests a
causal interpretation. This practice is fraught with controversy [see, e.g., McKim and
Turner (1997) as well as the November 1998 and August 2001 issues of Sociological
Methods & Research for recent debates on this topic in sociology]. In this section of
the chapter I explore the controversy and provide some recommendations.

What Is a Cause?

Philosophers and others have debated the definition of cause for centuries without
ever coming to complete agreement on it. However, current common use of the term
implies that the application of a cause to some element changes its state or trajec-
tory, compared to what that would be without application of the cause. Beyond this
basic idea, however, there appear to be two primary “models” of causality in opera-
tion among social scientists. The regression or structural equation modeling per-
spective is that a variable X is a cause of Y if, all else equal, a change in X is followed
by a change in Y (Bollen, 1989). The implicit assumption is that a cause is synony-
mous with an intervention, which, when applied, changes the nature of the outcome,
on average. With nonexperimental data, the intervention has been executed by
nature. Nonetheless, the implication is that if X is truly a cause of Y, changing its
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value should change Y for the cases involved, compared to what its value would be
were X left unchanged. Should this reasoning be applied to equation (1.1), 3, would
be described as individuals’ average change in attitude toward abortion were we to
increase their schooling by one year.

A somewhat different perspective is encompassed by what is referred to as the
potential response model of causality (Pearl, 1998), attributed to Rubin (1974), and
therefore also referred to as the Rubin model. This viewpoint entails a counterfac-
tual, or contrary-to-fact, requirement for causality: X is a cause of Y if the value of Y
is different in the presence of X from what it would have been in the absence of X (or
under a different value for X). Although this sounds quite similar to the notion of
intervention articulated above, there are some subtle differences. First, let’s consider
the potential response model more formally. Suppose that X represents a treatment
with two values: ¢ for the treatment itself and ¢ for the absence of treatment. Define
Y, as the score on a response, Y, for the ith case if the case had been exposed to t, and
Y, as the response for the same case if that case had instead been exposed to c. Then
the true causal effect of X on Y for the ith case is ¥, — Y,.. Notice that this definition
of cause is counterfactual, since the ith case can be “freshly” exposed to either ¢ or
¢ but not to both. Repeated application of ¢ followed by 7 is not considered equiva-
lent. Similarly, the average causal effect for some population of cases is the average
of all true causal effects for all cases. That is, the average causal effect is E(Y, — Y,.)
over the population of cases. Neither the true causal effect nor the average causal
effect can ever be observed, in practice. Notice the difference between this model
and the intervention approach to causality discussed above. An intervention is an
observable operation. What’s more, it is indifferent to the case’s prior history: We
can change the case’s value from c to ¢ and observe what happens, on average, to Y.
The potential response model, in contrast, defines causality in a way that is impos-
sible to observe, since the values Y, and Y. presume that the case’s history has been
magically “erased” in each case before a particular level of X is applied.

Nonetheless, according to the potential response model, the average causal effect
can be estimated in an unbiased fashion if there is random assignment to the cause.
Unfortunately, this pretty much rules out making causal inferences from nonexperi-
mental data. However, others acknowledge the possibility of making the assumption
of “conditional random assignment” to the cause in observational data, provided that
this assumption is theoretically tenable (Sobel, 1998). Still, hard-core adherents to
the potential response framework would deny the causal status of most of the inter-
esting variables in the social sciences because they are not capable of being assigned
randomly. Holland and Rubin, for example, have made up a motto that expresses this
quite succinctly: “No causation without manipulation” (Holland, 1986, p. 959). In
other words, only “treatments” that can be assigned randomly to any case at will are
considered candidates for exhibiting causal effects. All other attributes of cases, such
as gender and race, cannot be causes from this perspective. I agree with others (e.g.,
Bollen, 1989) who take exception to this restrictive conception of causality, despite
the intuitive appeal of counterfactual reasoning. Regardless of whether it can be ran-
domly assigned, any attribute that exposes one to differential treatment by one’s
environment ought to be considered causal.
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When Does a Regression Coefficient Have a Causal Interpretation?

Assuming that we could agree on the definition of a cause, perhaps a more pressing
question is: When can a regression coefficient be given a causal interpretation? With
nonexperimental data, of course, random assignment to the cause is not possible. In
lieu of this, several scholars insist that a fundamental requirement for a causal inter-
pretation to be given to the sample estimate of 3 in ¥ = X + ¢ is that Cov(X,g) =0,
or that the equation disturbance, ¢, is uncorrelated with the causal variable. This has
been referred to variously as the pseudoisolation assumption (Bollen 1989), the
causal assumption (Clogg and Haritou, 1997), or the orthogonality condition (Pearl,
1998). Let us see why this important condition is necessary to causal inferences.
Suppose, indeed, that you wish to estimate the model ¥ = X + € using sample data
and you believe that the association of X with Y is causal, that is, X causes Y.
Suppose, however, that, in truth, a latent variable, &, affects both X and Y. Hence, the
true model is X=v,&+v, with Cov(§,v)=0, and Y=BX+ 7y, +¢', where
Cov(X,e") = Cov(&,g") = 0. [We assume that all variables are centered (i.e., deviated
from their means), obviating the need for intercept terms.] Notice, then, that € is
really equal to y,& + €. Also, note that Cov(X,&) = Cov(§, v,& + v) =y V(§). Thus,
Cov(X,e) = Cov(X, 1,& + &) =, Cov(X,E) = 7,72 V(E). So if Cov(X,¢) is zero, this
ensures that one or all of y;, y,, and V(&) equal zero; and this means either that & is
a constant for every case, in which case it has no real influence on X or Y, or that &
has no influence on X, or that & has no influence on Y. In any of these cases, b from
the sample regression is a consistent estimator of 3 (see the chapter appendix for a
discussion of consistency). Otherwise, the sample estimator of f3 is

_ cov(X,Y)
v(X)

b

and the probability limit of b is

P hrn' cov(X.¥) (by the Slutsky theorem), which =
plim v(X)

Cov(X,Y)
2

X

plim b =

(since sample estimators of variance and covariance—denoted by lowercase “cov”
and “v’—are consistent for their population counterparts—denoted by uppercase
“Cov” and “V”), where o2 denotes the population variance of X and

Cov(X.)Y) _ Cov(X,BX+7y,E+¢)

o ol

_ Bo?,+y, Cov(X, E)
o

= B+'Y2y;72‘/(§)
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Hence, b is consistent for B + v,y; V(€)/c2, which is, in general, not the same as .
In fact, if B in the true model is really zero, the value of b may mistakenly attribute
the impact of € on X, represented by y;, and the impact of & on Y, represented by v,
to a causal effect of X on Y. For this reason, the orthogonality condition is necessary
for attributing a causal interpretation to b.

Unfortunately, to assume that the orthogonality condition holds is a great leap of
faith. Clogg and Haritou (1997) point out that there is no statistical technique, using
the data under scrutiny, for determining whether or not the orthogonality condition
obtains. So in practice, researchers often add one or more control variables to the
model, inferring that the estimate of X’s effect in the model with the “proper vari-
ables” controlled is unbiased for the “causal effect” In the words of Clogg and
Haritou (1997, p. 84): “Partial regression coeflicients or analogous quantities are
assumed to be the same as causal effects when the right controls (additional predic-
tors) are included in the model.” However, adding variables that are not causes of Y
to the equation can lead to a failure of the orthogonality condition in the expanded
model. This can then result in what Clogg and Haritou (1997) call included-variable
bias. That is, the estimate of X’s effect in the expanded model is biased for the causal
effect, due to inclusion of an extraneous variable.

Let’s see how this works. Suppose that the true causal model for Yis Y =X +¢
and that the orthogonality condition, Cov(X,e) = 0, holds. But you estimate ¥ = X +
YZ + v, where Z is a “predictor” of Y but not a causal influence (e.g., as weight is a
predictor of height). For this equation to be valid for causal inference, the necessary
causal assumption is Cov(X,v) = Cov(Z,v) = 0. Now ¢ is actually yZ + v (the distur-
bance always contains all predictors of Y that are left out of the current equation). So,
since Cov(X,e) =0, we have that Cov(X, yZ+ v) =vyCov(X,Z) + Cov(X,0) =0, or
that Cov(X,0) = —yCov(X,Z). Provided that neither y nor Cov(X,Z) is zero, the
orthogonality condition fails for the estimated model. Hence, the estimate of 3 from
that model is biased for the true causal effect.

Recommendations

In light of the foregoing considerations, one might ask whether we should abandon
causal language altogether when dealing with nonexperimental data, as has been sug-
gested by some scholars (e.g., Sobel, 1998). Freedman (1997a,b) is especially critical
of drawing causal inferences from observational data, since all that can be “discov-
ered,” regardless of the statistical candlepower used, is association. Causation has to
be assumed into the structure from the beginning. Or, as Freedman (1997b, p. 182)
says: “If you want to pull a [causal] rabbit out of the hat, you have to put a rabbit into
the hat.” In my view, this point is well taken; but it does not preclude using regression
for causal inference. What it means, instead, is that prior knowledge of the causal sta-
tus of one’s regressors is a prerequisite for endowing regression coefficients with a
causal interpretation, as acknowledged by Pearl (1998). That is, concluding that, say,
B # 0 in the equation Y = BX + ¢ doesn’t demonstrate that X is a cause of Y. But if X
is a cause of Y, we should find that [ is nonzero in this equation, assuming that all rel-
evant confounds have been controlled. That is, a nonzero 3 is at least consistent with
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a causal effect of X on Y. It remains for us to marshal theoretical and/or additional
empirical—preferably experimental—grounds for attributing to X causal status in its
association with Y. In other words, I think it is quite reasonable to talk of regression
parameters as “effects” of explanatory variables on the response, provided that there
is a flavor of tentativeness to such language.

Perhaps the proper attitude toward causal inference using regression is best
expressed in the following quotes. Clogg and Haritou (1997) recommended that
researchers routinely run several regressions that include the focus variable plus all
possible combinations of potential confounds and assess the stability of the focus
variable’s effect across all regressions. They then say (p. 110): “The causal questions
that social researchers ask are important ones that we ought to try to answer. If they
can only be answered in the context of nonexperimental data, then a method that
conveys the uncertainty inherent in the enterprise ought to be sought. We believe that
the uncertainty in causal assumptions, not the uncertainty in statistical assumptions
and certainly not sampling error, is the most important fact of this enterprise.”

Sobel’s (1998, p. 346) advice is in the same vein: “[s]ociologists might follow the
example of epidemiologists. Here, when an association is found in an observational
study that might plausibly suggest causation, the findings are treated as preliminary
and tentative. The next step, when possible, is to conduct the randomized study that
will more definitively answer the causal question of interest.”

In sum, causal modeling via regression, using nonexperimental data, can be a use-
ful enterprise provided we bear in mind that several strong assumptions are required
to sustain it. First, regardless of the sophistication of our methods, statistical tech-
niques only allow us to examine associations among variables. Thus, the most con-
servative approach to interpreting  in Y= [X + ¢ is to say that B represents the
expected difference in Y for those who are 1 unit apart in X. To say that 3 reflects the
expected change in Y were we to increase X by 1 unit imparts a uniquely causal inter-
pretation to the X—Y association revealed by the regression. Whether such an inter-
pretation is justified requires additional information, in the form of theory and/or
experimental work. At the least, we must assume that Cov(X,¢) is zero. This means
that no other variable, observed or unobserved, confounds the relationship between X
and Y, as in the case of § above. As no empirical means exists for checking on this
assumption, it is an act of faith. At most we will be able to argue that our findings are
consistent with a causal effect of X on Y. But only the triangulation of various bits of
evidence from many sources, over time, can establish this relation with any authority.

DATASETS USED IN THIS VOLUME

Several datasets are used for examples and exercises throughout the book. Ten of the
datasets—those needed for the exercises—can be downloaded from the FTP site
for this book at http://www.wiley.com. The datasets are in the form of raw data files,
easily readable by statistical software programs such as SAS, SPSS, and STATA. Also
included at the site are full codebooks in M'S Word, listing all variable names and their
descriptive labels as well as their order on the data records. Two of the datasets
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(students and GSS98, described below) contain missing values that must be imputed
by the reader, as instructed in the exercises. All dataset names below in bold face type
indicate data that are available for downloading. The following are brief descriptions
of the datasets (names of all downloadable data files and associated codebooks are
given in parentheses).

National Survey of Families and Households Datasets

The National Survey of Families and Households (NSFH) is a two-wave panel study
of a national probability sample of households in the coterminous United States con-
ducted between 1987 and 1994. Wave 1 of the NSFH, completed in 1988, inter-
viewed 13,007 respondents aged 19 and over living in households in the United
States. Certain targeted groups were oversampled: cohabitors, recently married cou-
ples, minorities, step-parent families, and one-parent families. For respondents who
were cohabiting or married, a shorter, self-administered questionnaire was also given
to the partner. The NSFH collected considerable demographic and family informa-
tion as well as data on more sensitive couple topics such as the quality of the rela-
tionship and the manner of handling disagreements, including physical aggression.
The survey is described in more detail in Sweet et al. (1988). In wave 2, completed
in 1994, interviews were conducted with all 10,005 surviving members of the orig-
inal sample and with the current spouse or cohabiting partner of the primary respon-
dent. Question sets from the first wave were largely duplicated in the second. The six
datasets described below are subsets of this survey.

Couples Dataset (couples.dat; couples.doc). This is a 6% random sample of all mar-
ried and cohabiting couples from wave 1, with an n of 416 couples. The variables
reflect various characteristics of the relationship from both partners’ perspectives, as
well as items tapping depressive symptomatology of the primary respondent.

Kids Dataset (kids.dat; kids.doc). This consists of a sample of 357 parents and their
adult offspring from both waves of the NSFH. Information is contained on couples
who were married or cohabiting, with a child between the ages of 12 and 18 in the
household in 1987-1988, whose child was also interviewed in 1992-1994. Only
cases in which the child had experienced sexual intercourse by 1992-1994 and in
which the child had answered the items on sexual permissiveness and sexual behav-
ior were included. Variables reflect attitudes, values, and other characteristics of the
parents measured in wave 1, as well as sexual attitudes and behavior reported by
their adult offspring in wave 2. Further detail is provided in DeMaris (2002a).

Union Disruption Dataset (disrupt.dat; disrupt.doc). These data consist of 1230
married and cohabiting couples in unions of no more than three years’ duration at
wave 1 who were followed up in wave 2. Primary interest was in the prediction of
union disruption by wave 2, based on various characteristics of the relationship
reported in wave 1, including intimate violence. This is a subset of the data used for
the larger study reported in DeMaris (2000).
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Cohabiting Transitions Dataset (cohabtx.dat; cohabtx.doc). This dataset consists
of 411 cohabiting couples in wave 1, followed up in wave 2. It was used to examine
the predictors of transition to separation or marriage, as opposed to remaining in the
unmarried cohabiting state, by wave 2. Wave 1 characteristics of couples used as pre-
dictors of transitions were similar to those for the union disruption dataset. The full
study is reported in DeMaris (2001).

Wave I Couples Dataset. These are the 7273 married and cohabiting couples in
wave 1 who constitute the original pool of couples from which the longitudinal vio-
lence dataset (described below) was culled. Several characteristics of the relation-
ship were measured in wave 1, with a focus on couple disagreements.

Violence Dataset. These data represent 4095 couples in wave 1 who were still intact
in wave 2 and who provided information on patterns of intimate violence at both
time periods. The response of interest is the couple violence profile, a three-category
classification of violence patterns. Predictors are characteristics of the relationship
as reported in wave 1. The full study is reported in DeMaris et al. (2003).

Datasets from the NVAWS

NVAWS is short for the national survey on Violence and Threats of Violence Against
Women and Men in the United States, 1994-1996, collected by Tjaden and
Thoennes (1999). The target population for the NVAWS included men and women
from all 50 states and the District of Columbia, and includes 8000 men and 8000
women who were 18 years of age and older in 1994. Datasets employed in this book
utilize only the women’s data. Variables contain information about four types of vic-
timization experienced over the life course: physical assault, sexual assault, stalking,
and threats, as well as the mental health sequelae of such experiences. Three datasets
are subsets of this survey.

Victims Dataset. This consists of the 1779 women who reported being victimized at
least once by physical or sexual assault, stalking, or intimidation.

Current-Partner Victims Dataset. This is the subset of 331 women from the victims
dataset who report being victimized by a current intimate partner.

Minority Women Dataset. These 1343 women are the minority subset of the origi-
nal 8000 women in the NVAWS.

Other Datasets

Students Dataset (students.dat; students.doc). This is a sample of 235 students tak-
ing introductory statistics at Bowling Green State University (BGSU) from the author
between the years 1990 and 1999. Variables include student characteristics collected
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in the first class session as well as the scores on the first two exams, given, respec-
tively, in the sixth and tenth weeks of the course.

GSS98 Dataset (gensoc.dat; gensoc.doc). These data consist of the 2832 respon-
dents from the 1998 General Social Survey. The GSS is conducted roughly bienni-
ally by the National Opinion Research Center. It is based on a multistage probability
sample that is representative of all noninstitutionalized English-speaking persons 18
years of age and older living in the household population of the United States.
Variables in the dataset represent selected demographic and attitudinal or opinion
items deemed by the author to be of interest.

Faculty Salary Dataset (faculty.dat; faculty.doc). This consists of 725 faculty
members employed at both the main and Firelands campuses of BGSU during the
academic year 1993-1994. Data represent faculty salaries and factors deemed to
predict variation in salaries, such as rank and years of seniority. The primary purpose
of the study was to discover whether there was any evidence of gender inequity in
salary allocation at the institution. Reports of the full studies utilizing these data can
be found in Balzer et al. (1996) and Boudreau et al. (1997).

Introductory Sociology Dataset (introsoc.dat; introsoc.doc). These data were
taken from all nine sections of introductory sociology offered at BGSU during the
1999 spring semester. The study involved four waves of data collection during the
course of the semester. The total sample size is 751 students, but due to absenteeism
at one or another data collection point, sample sizes vary in each wave. The focus of
the study was an examination of the factors predicting academic performance, par-
ticularly self-esteem. Variables consist of measures such as prior and current aca-
demic performance, indexes of self-esteem and test anxiety, and related academic
factors. Results of the study can be found in Bradley (2000).

Unemployment Transitions Dataset (jobs.dat; jobs.doc). These data are in the form
of 620 unemployment spells for 283 Brazilian immigrants residing in the United
States and Canada in 1990-1991. The purpose of the study was to test predictions
from job search theory regarding the duration in, and rate of exit out of, unemploy-
ment for an immigrant population. The predictors consist largely of demographic,
familial, and human capital variables. The full study is reported in Goza and
DeMaris (2003).

Inmates Dataset (inmates.dat; inmates.doc). This dataset, collected by the Ohio
Department of Rehabilitation, consists of information on 1485 male inmates admit-
ted to the Ohio Department of Rehabilitation and Correction during September and
October 1985. Variables reflect demographic and criminal history information for
each inmate as well as individual lifestyle data and correctional-institution informa-
tion regarding rule infractions during incarceration. The full study is reported in
Clark (2001).
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APPENDIX: STATISTICAL REVIEW

Overview

In this appendix I review basic statistical concepts and notation necessary to an under-
standing of the material in subsequent chapters. I assume that the reader has been
exposed to most of this material at a previous time. However, those who are unfamil-
iar with probability and distribution theory, expectation, variance, covariance, corre-
lation, sampling distributions, parameter estimation, and tests of hypotheses will
probably want to read this appendix before proceeding with the rest of the book.

Variables and Their Measurement

The raw material of statistics consists of data. Data are essentially measurements for
one or more variables, taken on one or more cases, from some population of cases of
interest. Let’s flesh this idea out a little more. We assume that there is a larger popu-
lation of cases in which the researcher has an interest. The population is simply the
collection of cases that the researcher is trying to make general statements about, or
“generalize to.” Cases in the social and behavioral sciences are typically people, but
do not have to be. They are the individual units of observation in one’s study. These
can be individuals or organizations, just as they can be incidents or events. What we
typically obtain in sampling cases from the population are attributes or characteristics
of the cases, usually expressed as numerical values. These are our measurements on
the cases. The attributes are called variables, and each variable typically exhibits
some variability in realized values across the n cases in our sample. When the value
of a variable for a given case cannot be predicted ahead of time, we refer to that vari-
able as a random variable. For example, suppose that I randomly sample a person
from the U.S. population and code his or her gender as 1 for male and O for female.
Then the person’s gender is a random variable—I don’t know ahead of time what
value it will take. If, on the other hand, I divide the population into males and females
ahead of time and sample first from the males and second from the females, gender
is no longer a random variable. In this case, we say that gender is fixed—its value is
set ahead of time by the researcher prior to sampling, and there is no mystery about
what each case’s gender is. This distinction is important in regression modeling when
we describe the regressors as random variables versus fixed effects.

Variables are distinguished by two major criteria in statistics, both having to do
with the specificity of their measurement. The first distinction pertains to level of
measurement. There are four commonly conceived levels: nominal, ordinal, interval,
and ratio. Nominal variables are those whose values indicate only qualitative
differences in the attribute of interest; they carry no information as to rank order on
the attribute. For example, religious affiliation coded 1 for “Protestant,” 2 for
“Catholic,” 3 for “Jewish,” and 4 for “other denomination” is a nominal variable. All
that can be said about cases with two different values on this attribute is that they are,
well, different. Other than that, the numerical codes 1, 2, 3, and 4 convey no quanti-
tative differences on the dimension of religious affiliation.
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The values of ordinal variables, on the other hand, represent not only qualitative
differences but also relative rank order on the attribute. Religiosity, for example,
coded 1 for “not at all religious,” 2 for “slightly religious,” 3 for “moderately reli-
gious,” and 4 for “very religious,” is an ordinal variable. Given two people with
different religiosity scores, say 3 versus 4, we can say that the second person is
“more religious” than the first. How much more religious, however, cannot be
specified precisely.

Interval variables represent an even more precise level of measurement. The val-
ues of interval variables are distinguished by the fact that they convey the exact
amount of the attribute in question. Annual income in dollars, for example, is an
interval variable. Further, given two people with different values of income, say
$45,529.52 and $51,388.03, we can say not only that their incomes are qualitatively
different and that the second person is higher in income but can also specify pre-
cisely how much difference there is in their incomes: $5858.51, to be exact. Notice,
however, that if we collapse income categories into ranges, the variable loses its
interval-level specificity and becomes ordinal. For example, suppose that we have
income categories defined in $10,000 ranges and coded from 1 for [0-10,000) to 11
for [100,000 or more). Further, suppose that individual A is in category 5 [40,000—
50,000) and individual B is in category 6 [50,000-60,000). Certainly, we can say
that B has a higher income than A. But it is no longer possible to specify precisely
how much higher B’s income is.

Ratio variables are interval-level variables with a meaningful zero point. In this
case, it makes sense to speak of the ratio of two values. Income is also an example
of a ratio variable. If A makes $50,000 a year and B makes $100,000, B makes twice
as much income as A.

The other major criterion for distinguishing variables is whether they are discrete
or continuous. This distinction is central to the characterization of their probability
distributions (see below). Technically, a discrete variable is one with a countable
number of values. This is a technical concept which essentially means that the val-
ues have a one-to-one relationship with the collection of positive integers. Since
there are an infinite number of positive integers, discrete variables could conceivably
have an infinite number of values. In practice, discrete variables take on only a rela-
tively few values. For example, the number of children ever borne by U.S. women is
a discrete variable, taking on values 0, 1, 2, and so on, up to some maximum value
delimited by biological possibility, say 25 or so. Nominal variables are always dis-
crete, as are ordinal variables, since rank order can always be put in a one-to-one cor-
respondence with positive integers.

Continuous variables are those with an uncountable number of values. These
variables can, technically, take on any value in the real numbers, delimited only by
their logical range. Realistically, measurement limitations prevent us from ever actu-
ally observing continuous variables in practice. For example, the weight of humans
in pounds could conceivably take on any of an uncountably infinite number of val-
ues in the range [0—1000]. But limitations in instruments for weight measurement
mean that we probably cannot discern weight differences smaller than, say, .001
pound between two people. No matter. We will find it expedient to freat variables as
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continuous if they are at least ordinal in nature, if they have a sufficient number of
values, and if their probability distributions are not too skewed. Otherwise, they will
be treated as discrete. For this book, therefore, the discrete—continuous distinction is
the one that is most important.

Probability and Distribution Theory

In sampling cases from a population, we speak of the probability of observing a
particular value for a given variable, for the ith individual, where i equals 1, 2, . . .,
n. The technical definition of probability is quite arcane (see, e.g., Chung, 1974;
Hoel et al., 1971). Intuitively, however, the probability of some outcome refers to
the relative frequency of its occurrence over an infinite repetition of the conditions
that made its observation possible. For example, if we toss an honest coin, the prob-
ability of observing a head is .5. This means that if we were to toss that coin an
infinite number of times, 50% of the outcomes would be heads. Since we will never
be able to conduct an infinite repetition of any experiment, probabilities are figured
by a simple rule. For any event, E, the probability of event E, or P(E), is defined as
follows:

P(E) = number of ways that E can occur
total number of observable outcomes

Hence, in the coin example, there is only one way to get a head, but there are two
possible outcomes of a coin toss: a head or a tail. The probability of a head is there-
fore 7= 5.

Although in this book we will not be concerned with probability problems per se,
a few probability rules are important. First, for any event A, if P(A) is the probabil-
ity that A occurs, then 1 — P(A) is the probability that it doesn’t occur (or that any-
thing else occurs that isn’t A). Further, consider any two events, A and B. Then the
event (A and B), also denoted (A N B), refers to an event that is both A and B simul-
taneously, while the event (A or B), also denoted (A U B), refers to the event that at
least one of A or B occurs. For example, if A is “being married” and B is “having a
child,” (A and B) is “being married with a child,” while (A or B) is satisfied by any
of these three events: being married but childless, having a child outside marriage,
or being married with a child. The conditional probability of an event is the proba-
bility of an event under the restriction that some condition holds first. The condi-
tional probability of some event B, given that event A holds, is denoted P(B|A). For
example, the conditional probability of B given A, from above, is the conditional
probability of having a child given that the person is married. Two events are inde-
pendent if P(B) = P(B|A), and dependent otherwise. For example, the events “being
married” and “having a child” are independent if the probability of having a child is
unchanged by whether or not a subject is known to be married. In all likelihood,
these events are not independent, since the probability of having a child when one is
married is probably higher than the probability of having a child in general, called
the unconditional probability of having a child. If A and B are independent events,
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P(A and B) =P(A)P(B). This generalizes to: If events A; are independent, for i =1,
2,...,n,then P(A; and A, and - - - and A,) = P(A))P(4,) - - - P(A4,).

Probability Distributions. More important for the current work are probability dis-
tributions. (Readers with a limited math background may want to review Appendix A,
Section I, before proceeding with this section.) A probability distribution for a ran-
dom variable X is an enumeration of all possible values of X, along with the proba-
bility associated with each value, should one collect one observation on X from the
population. Actually, this is too simple. In truth, we need to distinguish between the
distribution and density functions for the variable X. The distribution function for X,
denoted F(x), tells us P(X =x) for any value x of X. That is, the distribution function
tells us the probability of observing any value up to and including x, when we make
a single observation on X from the population. (I follow the statistical convention here
of using X to denote the variable generally and x to denote a specific value of the vari-
able, e.g., 3.2, 5.93, etc.)

What the density function tells us, on the other hand, depends on whether X is dis-
crete or continuous. If discrete, the density of x, denoted f(x), gives us the probabil-
ity of getting the specific value x of X when we sample one value of X from the
population. Figure 1.1 depicts a simple discrete density function for a variable X.

f(X,) = P(X= X,)

f(x,) +f(x,) = 0.4 +0.6 = 1.0

Figure 1.1 Discrete density function for X.



