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Preface 

Just two months ago astronomers did not know about it. But now lhey are giving good 
odds that Hyakutake will be the most impressive comet since the invention of telescope 
400 years ago. (Herald Sun, Durham. NC, March 24,1996.) 

One can trace the origins of wavelets back to the beginning of this century; however, 
wavelets, understood as a systematic way of producing local orthogonal bases, are 
a recent unification of existing theories in various fields and some important “dis- 
coveries.” They are mathematical objects that have interpretation and application in 
many scientific fields. most notably in the fields of signal processing, nonparametric 
function estimation, and data compression. In the early 1990s, a series of papers by 
Donoho and Johnstone and their coauthors demonstrated that wavelets are appropriate 
tools in problems of denoising, regression, and density estimation. The subsequent 
burgeoning wavelet research broadened to a wide range of statistical problems. 

This book is aimed at graduate students in statistics and mathematics, practicing 
statisticians, and smtistically curious engineers. It can serve as a text for an introduc- 
tory wavelet course concerned with an interface of wavelet methods and statistical 
inference. The necessary mathematical background is proficiency in advanced calcu- 
lus and algebra; consequently, this book should be useful to advanced undergraduate 
students as well as to graduate students in statistics, mathematics, and engineering. 

This book originated from the class notes supporting the Special Topics Course on 
Multiscale Methods at Duke University. The content can be divided into two parts: 

X i  



xii PREFACE 

an introduction to wavelets (Chapters 1-5) and statistical modeling (Chapters 6-1 1). 
An introduction and some mathematical prerequisites are presented in Chapters 1 and 
2. Continuous and discrete wavelet transformations are covered in Chapters 3 and 
4. Some important generalizations (caiflets, biorthogonal wavelets, wavelet packets, 
stationary, periodized and multivariate wavelets) are covered in Chapter 5. 

Chapters 6-1 1 are data-oriented. Chapter 6 is the crux of the book, covering the 
theory and practice of wavelet shrinkage. Important theoretical aspects of wavelet 
density estimation are covered in Chapter 7. Chapter 8 discusses Bayesian mod- 
eling in the wavelet domain. Time series are covered in Chapter 9, while Chapter 
10 contains several probabilistic and simulational properties of wavelet-based ran- 
dom functions and densities. Chapter 11 gives some novel and important wavelet 
applications in statistics. 

Instead of providing appendices with data sets and programs used in the book, I 
opted for a more modem style. The web page: 

http://wwn.isds.duke.edu/'-brani/wiley.html 

is associated with the book. This page contains all data sets, functions, and programs 
referred to. 

I hope the reader will find this book useful. All comments, suggestions, updates, 
and critiques will be appreciated. 

BRANI VIDAKOVIC 

Institute of Statistics and Decisioti Sciences 
Duke Universizy 
Durham, February 1999 
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1 
Introduction 

In this chapter, we give a brief overview of the history of wavelets, make a case for 
their use in statistics, and provide a real-life example that emphasims specificities 
of wavelets in data processing problems. The wavelet method in this example is 
compared with its counterpart traditional approaches. The reader may encounter 
unfamiIiar jargon or undefined objects. Some of these notions will be defined later 
and some are used to illustrate the general picture. 

1.1 WAVELET EVOLUTION 

Wavelets are developed not only from a couple of bright discoveries, but from 
concepts and theories that already existed in various fields. In this section, we 
will give a brief historic tour of some important milestones in the development of 
wavelets. 

Functional series have D long history that can be traced back to the early nineteenth 
century. French mathematician (and politician!) Jean-Baptiste-Joseph Fourier [Fig. 
l.l(a)] in 1807 ’decomposed a continuous, periodic on [-x, T] function f(z) into 

Jean-Baphsre-Joseph Fourier’s Tfieorie analitique de In chaleur (The %f3lhemaIical Theory of Heal) 
inauguratad simple methods for the solullon of boundary vrlue problems occurring in the conduction of 
heat. 

1 



2 INTRODUCTION 

the series 

where the coefficients a, and bn are defined as 

It is interesting that, at the time of Fourier’s discovery, the notion of a function 
was not yet precisely defined. 

(a) (b) 

Fig. 1.7 (a) Jean-Baptiste-Joseph Fourier 1768-1830 and (b) Alfred Haar 1885-1933. 

The first “wavelet basis” was discovered in 1910 when Alfred Haar [Fig. I.l(b)l 
showed that any continuous function f(z) on [0,1] can be approximated by 

and that, when n + co, fn converges to f uniformly (11811). The coefficients (&, f) 
are given by J &(z)f(z)&. The Haar basis is very simple: 
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&(2) = l ( 0  <z 5 1). 

[l(Z) = l ( 0  5 I 5  1/2) - l f 1 / 2  _< t 5 I), 

t&) \/Z[l(O 5 z 5 1/4) - 1(1/4 _< 5 5 1/2)]: 

&(2j 23’2[1(k. 2-J 5 z 5 ( I c  + 1/2).  2-3) 

-1((lc + 1/21’ 2-3 5 5 ( l c  i- 1). 2-91: 

= 
... 
= 

... 

where n is uniquely decomposed as s n  = 23 + k, j 2 0, 0 5 k 5 2j  - 1, and 1(A) 
is the indicator of a set -4, i.e., 1(A) = 1, if z E 4, and 1(A) = 0, if x E AC. 

The approximation in (1.1) is equivaknt to an approximation by step functions 
whose values are the averages (mean values) of the function over appropriate dyadic 
intervals. 

Fig. 1.2 gives an exemplary function, f(5) = sin r x  + cos 27rx + 0.6 . l(z > 
1/2), and three different levels of approximation: 13, fis$ and f63. Basis functions 

,&, (1.2, and t& are shown in Fig. 1.3. Since J[!,(z) dz = 1 for an arbitrary n, 
there is a trade-off between the magnitude and the support of the basis functions in 
the Haar system. 

Notice that for any n 2 1 the basis function Sn can be expressed as a scale-shift 
transformation of a single function t1, 

t n ( x )  = ~ j / * c I  (2j 12 - k): n = 2J + k, 
a property shared by critically sampled wavelets, as we will see later. The function 
if0 (z) is different in nature than the functions f n ,  ra 2 1; while the functions f,,! n 2 1 
describe the detaiis in the decomposition, the function ~ ~ ( z )  is responsible for the 
“average” of the decomposed function. 

The Schauder basis on [O, 11 (Schauder j369J) consists of the primitives of the Haar 
basis functions, the triangle functions. Let A(z) = 2s l (0  5 2 5 1/2) + 2(l  - 
z) 1(1/2 5 x < 11, and let A,(z) = A(2jz - k): n = 2’ + k, j 2 0, 0 5 k 5 
2 j  - 1. Then { 1; A(z), Ax (51,. . . } constitutes a Schauder basis on [0,1] and, as in 
the case of Haar’s basis, any continuous function f(r) on (0: 11 can be approximated 
by 

Coefficients a and b are solutions of the system f(0) = Q and f (  1) = n + h, while 
the coefficients s, can be obtained by the simple relation 



I 

* .. *. 0 .  0 .  I. 

Fig. 7.2 Panels (a)-(d) show the original function f(x) = sin 7rx + cos 2ax + 0.6 . 1(x > 
i), 0 5 z 5 1, and three different levels of approximation in the Haw basis. Using the 
notation of (1.  l), approximations A, fls, and f63 are plotted. 
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___- 

I---- 
] 

“ 7 -  

Y -  

0 0  0 2  0 4  0 8  0 8  1 0  

Fig. 1.3 Functions {I ,  5 2 ,  €14. and . 5 5  from the Haar basis of ([0, 11). 

78 = 2J +k, j 2 0 .  0 5  k 5 23 - 1. 

The convergence f~ (z) -+ f(z) is uniform and the coefficients are unique; however, 
the Schauder system i s  not orthogonal. We will see later that its orthogonalization 
leads to a family of wavelets, known as Franklin wavelets. 

i n  the mrd-l930s, Littlewd-Paley techniques (based on Fourier methods) I2643 
were broadly used in research on Fourier summability and in investigation of the 
behavior of analytic functions. 

Prototypes of wavelets first appeared in Lusin’s work in the 1930s. A standard 
characterization of Hardy’s spaces can be given in terms of Lusin’s “area” functions. 

In the 1950s and 1960s. techniques by Littlewood-Paley and Lusin were developed 
into powerful tools for studying physical phenomena describable by solutions of 
differential and integral equations. Researchers realized that these techniques could 
be unified by the Calderbn-Zygmund theory [292], now a branch of harmonic analysis. 

(R) of the 
form {y&k(z) = 2 J / 2 ~ ( 2 3 1  - k), j , k  E Z}, a wavelet-like basis more general 
than Haar’s basis. Stromberg’s construction uses Franklin systems which are Gram- 
Schmidt orthogonalized Schauder basis functions &($) 

Stromberg [3W] was the first to construct an orthonormal basis of 
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For more information about the historical roots of wavelets, we direct the reader 
to monographs by Meyer [294.295] and Daubechies [ 1041. 

1.2 WAVELET REVOLUTION 

The first definitions of wavelets can be atlributed to Morlet et al. [300] and Morlet 
and Grossmann 11791 and it is given in the Fourier domain: A wavelet is an (R) 
function for which the Fourier transformation !PII(w) satisfies 

dt 
t 

Iq(tw)12- = 1, for almost dt w. 

The definition of Morlet and Grossmann is quite broad and over time the meaning of 
the term wavelet became narrower. Currently, the term wavelet is usually associated 
with a function ?j E h (R) such that the translations and dyadic dilations of +, 

constitute an orthonormal basis of 
Calculating wavelet expansions directly is a computationally expensive task, more- 

over, most interesting wavelets are without a closed form. In the mid- 1980s, Malfat 
[274,275.276] connected quadrature-minor filtering and pyramidal algorithms from 
the signal processing theory with wavelets. He demonstrated that discrete wavelet 
transformation can be calculated very rapidly via cascade-like algorithm. This link 
was of paramount importance for the practice of wavelets. Daubechies’ discovery 
of compactly supported wavelet bases represents anather important milestone in the 
development of wavelet theory. Daubechies’ bases are versatile. in smoothness and 
locality and represent a starting point for much of the subsequent generalizations and 
theoretical advances. 

Wavelet theory has developed now into a methodology used in many disciplines: 
mathematics, geophysics, astronomy, signal processing, numerical analysis, and 
statistics, to list a few. Wavelets are providing a rich source of useful and sometimes 
intriguing tools for applications in “time-scale’’ types of problems. In analyses of 
signals, the wavelet representations allow us to view a time-domain evolution in 
terms of scale components. In this respect, wavelet transformations behave similarly 
to Fourier transformations. The Fourier transform extracts details from the signal 
frequency, but all information about the location of a particufar frequency within the 
signal is lost. Time localization can be achieved by first windowing the signal, and 
then by taking its Fourier transform. The problem with windowing is that slices of 
the processed signal are of B fixed length, which is determined by the window. Slices 
of the same length are used to resolve both high and low frequency components. For 
nonstationary signals, this lack of adaptivity may lead to a local under- or over-fitting. 

(R}. 
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Table 1.7 CoefficienB of the doppler function in the Haar basis plotted in levels deter- 
m i n d  by the length of support of corresponding basis functions, &,, n > 0. 

level in 
Fig. 1.4 coefficients of support j k 

j and k rn the notation: n = 21 4- k 

. . .  

. . .  

ij2@ 
1 / 2 h  

1 /4 
112 
1 
I 
. . .  

... 

j = 9  
j = S  
. . .  
j = 2  
j=1 
j = O  

... 

. . .  

0 k 2 9 -  1 
0 5 k 5 28 - 1 

O < k < 3  
O < k < l  
k = O  

... 

In contrast to windowed Fourier transforms, wavelets select widths of time slices 
according to the local frequency in the signal. This adaptivity property of wavelets 
i s  very important, and we will make it more precise later in the discussion of Heisen- 
berg’s uncertainty principle. Two panels in Fig. 1.1 I ,  on page 28, depict slicing the 
time-scale plane for a windowed Fourier (left) and a wavelet transformation (right). 

Now we give several examples: The first example views the Haar decomposition 
as a wavelet decomposition and discusses connections bctween “levels” and resoIu- 
tions of the decomposition. The subsequent four examples demonstrate important 
properties of wavelets: the ability to filter, “disbalance”, and “whiten” signals as well 
as to detect self-similarity within a signal. 

Example 1.2.1 The Haar basis as a wavelet basis. To illustrate the time and scale 
adaptivity of wavelets, and to introduce some necessary wavelet notations and jargon, 
let us  consider a decomposition of the function 

in Haar’s basis. This function is known as the doppler test-function. Notice that 
frequency in the function increases as 3: decreases. 

In Table 1.1, n is represented as 21 + k where j IS a level and k is a sh$ within 
the level. Notice that alt functions within a level have supports of the same length. 
The support of a function is defined as closure of the set at which the function differs 
from zero. 

When j + m> the number of coefficients in the level increases and the length 
of support of the corresponding basis functions decreases. For example, the level 
indexed by j = 5 has 2’ zz 32 coefficients and the supports are of length Y5.  
The shifts within a level are indexed by k. where k ranges from 0 to 2J - I .  For 
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dl 

d2 

d6 I 1  I .  I '  

d7 

d0 

d9 

d10 

s10 

t I I I I I 

0.0 0.2 0.4 0.6 0.8 1 .o 

Fig- 1.4 The doppler function and its Haar basis decomposition. 
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an exact description of an arbitrary function. the number of levels is infinite. The 
coefficient corresponding to 6 is called the ”smooth” coefficient (YO in Fig. 1.4) and 
the coefficients corresponding to &! 7 t  > 1 are called “detail” coefficients. Level 
j = 9 (dl in Fig. 1.4) contains coefficients corresponding to “fine” details. 

When dealing with functions that are given by their sampled values, it is cus- 
tomary to set the sampled values to be “smooth” coefficients at the level j = J .  The 
subsequent “detail” levels denoted by d l ,  d2, . . . , correspond to j = J - 1, J -  2, . . . . 

We provide four more examples that emphasize the most interesting features of 
wavelet transformations. Occasionally, we will use terms like “fine and coarse 
levels”, “wavelet domain”, and “energy”. which have not been previously defined 
and will be defined in the subsequent chapters. However, the intended messages of 
the examples should be clear even without precise definitions of such terms. 

Example 1.2.2 Wavelets generate local bases. Classical orthonormal bases (Fourier, 
Hermite, Legendre, etc.) have been used with great success in applied mathematics 
for decades. However, there is a serious limitation shared by many classical bases, 
which is nun-~ucafify. A basis is non-local when many basis functions are substan- 
tially contributing at any value of a decomposition. The convergence of non-local 
classical decompositions often relies on a multitude of cancellations. 

Local bases are desirable since they are more adaptive and parsimonious. In 1946, 
Gabor [ 1611 suggested localizing Fourier bases by modulating and translating an 
appropriate “window” function g. More precisely, Gabor suggested bases in the form 

where rrt and n are integers and g is a square-integrable function. An example of a 
function g that produces an orthonormal basis of C, (El is sin(Tz)/(xo). 

The Balian-Low theorem stipulates limitations of Gabor bases. If the Gabor basis 
is orthogonal and B ( w )  is the Fourier transformation of the window g(z) then, by the 
Balian-Low theorem, either J~*1,g(z)1~ dx = 0;) or Jw21~(w) j2  ch = m. In other 
words, orthogonal Gabor bases are non-local either in time or in scale (frequency). 
Modulations and translations of the Gaussian window g(z) = -& e -xz j2  (which 
is well localized in both time and frequency, and for which the above integrals are 
finite) will not produce an orthonormal basis. 

Locality of wavelet bases comes from their construction. Most of the wavelets that 
are used in statistics now are either compactly supported or decay exponentially. An 
exception are Meyer-type wavelets (with a polynomial decay) used in deconvolution 
problems. 

Example 1.23 Wavelets filter data. To illustrate the action of wavelets as a fihering 
device, we generate two periodic functions with different frequencies, y1 = sin 5 + 
cos 22,  and y2 = arcsin(sin 20~1,  where 3: E [-27r> 2 4 .  These are shown in panel 
(a) in Fig. 1.5. Our goal is  to filter out the component yz from the given sum yl + yz 
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[Fig. lS(b)]. Since the periods of y1 and 92 are different, the functions are described 
by wavelets with different supports (and whose coefficients belong to different levels). 
Fig. 1.5(c). depicts the level-wise energies (sums of squares of wavelet coefficients). 
The support of wavelets associated with level 1 is 32 times larger than the support of 
wavelets associated with level 5. This means that almost all the energy in levels 0,1, 
and 2 comes from signal 91: and the energy in Ievel5 comes from 92, thus allowing 
an easy separation. The filtered components are depicted in Fig. 1.5(d). 

Example 1.2.4 Wavelets “disbalaoce” energy in data. The term “disbalance” is 
coined and it relates to an uneven distribution of energy in a signal. Disbalancing is 
desirable since a signal can be well described by only a few energetic components. 

To illustriate the disbalancing action that is typical of wavelets, we first introduce 
some necessary notation. Given a vector g = ( a l ,  Q%, . . . , u,) let Ilgflz = Ci ui be 
the total energy of a and let af be the ith energy component. Let a:,), a$, , . . . , a&, 
be increasingly ordered energy components. The standard measure ot disbalance 
used in economics is the Lorentz curve. The Lorentz curve was introduced at the 
beginning of the century. It was used by economics researchers to assess inequality 
of distribution of wealth in a country, region, or among people within a particular 
population group. 

One definition of the Lorentz curve, in terms of energy Components, i s  

where 1.J is the largest integer smaller than 2. In Fig. 1.6(a), an observed time series 
(turbulence data set) is given. Below is its wavelet transformation represented in a 
vector form beginning with coarse coefficients. Orthogonality of the transformation 
preserves the total energy, llr~11~. However, the energy in the wavelet domain is more 
disbalanced, as indicated by the Lorentz curves in Fig. 1.6(b). Notice that 90% of 
energy is contained in about 6-796 of the components in the wavelet-transformed data 
set compared to nearly 50% of the components in the original (time) domain. 

Example 1.2.5 Wavelets whiten data. In this example, we show another interesting 
property of wavelets. Orthogonal wavelet transformations map white noise to white 
noise, which is a consequence of orthogonality. However, signals that are correlated 
in the time domain become almost uncorrelated in the wavelet domain. Informally, 
the wavelet transformation acts as an approximation to the Karhunen-Lobe transfor- 
mation. To exemplify this statement, a time series of 256 components was generated 
from a random process with stationary increments. AMMA( 1.1.1) process. Such 
processes exhibit long-range dependence and their autocovariance functions [Fig. 
1.7(a)] show slow decay. The autocovariance function of the wavelet-transformed 
time series exhibits very difterent behavior. Only the covariances at the first few lags 
are significant at a 5% significance level. 

Related discussion can be found in Johnstone and Silverman [222], Mallat [2771, 
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Fig. 1.5 Filtering property of wavelets. Two functions 11 = s i u z  + cos2z and yz = 
arcsin(sin 202). and their sum y1 + y2 are plotted in panels (a) and (b). Panel (c) shows 

the separation of "energy" to different levels in waveiet decomposition. while panel (d) shows 
filtered functions. 



Fig. 7.6 (a) Atmospheric turbulence measurements of u velocity component (upper panel) 
and their wavelet transformation (lower panel). (b) Lorentz curves of the original and trans- 
formed measurements. The curve corresponding to transformed measurements has higher 
CUrVaKure. 
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Fig. 1.7 Illustration of the whtening effect of wavelet transformaltons. Autocovanance 
function for a time scnes [ARIMA(I.l,I)] in thc hmc domain [panel (a)] and the wavelet 
domain [panel (b)]. 
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Fig. 1.8 Self-similarity of a turbulence time series. 

Walter [439], and Wornell [461]. 

Example 1.2.6 Wavelets detect self-similar phenomena. Being self-similar them- 
selves, wavelets are especially apt to describe phenomena exhibiting self-similarity 
in different scales (Fig. 1.8). Early research on wavelets was generated to address 
reIated problems in geophysics, especially in turbulence. An overview can be found 
in Kumar and Foufoula-Georgiou [250]. A curious phenomenon is  that atmospheric 
turbulence measurements of different physical quantities, such as air velocities, ozone 
and humidity concentrations, temperature, and so on, follow identical power laws (as 
predicted by Kolmogorov's [2421 theory). Such laws describe the energy transport 
in the inertial range of turbulent flows. A nice reference is a book by Frisch [ 1601. 

One of the theoretical laws is the *'-:'* law. It states that the log-power spectrum 
in the inertial range decreases linearly, with the slope of - i. Fig. 1.9 shows the 
wavelet-spectrum of air velocity measurements and it's near-perfect compliance with 
the - $ law. 

There are problems in which wavelets should be used with caution. For instance, 
in the wavelet domain, the dependence structure in the transformed time series is 
influenced by the choice of the decomposing wavelet. In some cases, the extent of 
such non-robustness hinders practical generalizations. When non-robustness is of 
particular concern, researchers usually fix a good wavelet for a class of problems, 
as is the case with the prevalent use of the Haar and Walsh bases in processing the 
turbulence data. 
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Fig. 7.9 Wavelet power-spectrum and Kolmogorov’s - $ law. Dots represent !he loganthms 
of the cumulative level-energies. The variabte log (wavenumber) is linearly related to the 
level j .  
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Wavelets are not replacements for the standard Fourier methods, they are alter- 
natives. If the signal is a linear combination of harmonics, clearly wavelets are 
suboptimal building blocks. For instance, if f is given as a lacunary (sparse) Fourier 
series like czo 2-3 sin(2a2Jz), then wavelets will be inferior in tasks of denoising 
and compression as compared to the Fourier transformation. 

The whitening property, discussed in Example 1.2.5, impairs the performance of 
wavelet-based methods in prediction prablems. 

Another example in which wavelets should be cautiously used comes from image 
processing. In this example the interpretation of an object changes when the resolution 
changes. The two women in the background in Salvador Dali's picture Memudo de 
esclavos con aparicion del busto invisible de Voltairt? (Fig. 1.10) at a coarser 
resolution level can be interpreted as a bust of Voltaire. Clearly, the meaning of the 
object changes in different scales. 

Fig. 7.70 Mercah de escluvos con aparicion del busto invisible de Volruire, a 1940 painting 
by Salvador Dali. 

1.3 WAVELETS AND STATlSTlCS 

Statistical multiscale modeling has, in recent years, become a burgeoning area in 
both theoretical and applied statistics, and is beginning to impact developments 

'Slave Markez w z h  the Dtsappeam~ Bust a/ Vohre  11940), Oil on canvas. 1 R f x 25 
of The Salvador Dali Museum. St Petersburg. Florida. 01998 Salvador D J i  Museum, Inc. 

in, Coflection 
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in statistical methodology as well as in various applied scientific fields. Wavelet- 
based methods are developing in statistics in areas such as regression, density and 
function estimation, factor analysis, modeling and forecasting in time series analysis, 
and spatial statistics. Emerging connections of Bayesian statistical modeling and 
wavelets are generating exciting new directions for the interface of the two research 
areas, with significant potential for future impact on appiied work. 

The attention of the statistical community was attracted when Mallat established 
a connection between wavelets and signal processing and Donoho and Johnstone 
showed that wavelet thresholding had desirable statistical optimality properties. 
Since then, wavelets have proved useful in many statistical disciplines, notably in 
nonparametric statistics and time series analysis. Bayesian concepts and modeling 
approaches have, more recently, been identified as providing promising contexts for 
wavelet-based denoising appIications. 

In addition to replacing traditional orthonormal bases in a variety statistical prob- 
lems, wavelets brought novel techniques and invigorated some of the existing ones. 
Even in the cases in which the traditional orthogonal series are simply replaced by 
wavelet bases, wavelets often offer better localization and parsimony. For example, 
Cencov’s [66J linear density estimator in the form of a Fourier series uses traditional 
orthonormal bases (Hermite, Fourier) to express its empirical Fourier coefficients. 
Wavelets achieve the same convergence rates and at the same time provide eff- 
cient non-linear approximations and adaptivity to unknown smoothness (via wavelet 
shrinkage). Wavelet shrinkage is achieved via explicit or implicit use of statistical 
models in the wavelet domain. 

We elaborate further on the modeling in the wavelet domain and formalize some 
of the concepts already mentioned. 

Low Entropy Modeling Environment. A s  we mentioned befare, wavelet trans- 
formations tend to disbalance the data on input. Even though the transformations 
preserve the &-norm of the data, the energy of the transformed data (an engineer- 
ing term for the &-norm) is concentrated in only a few wavelet coefficients. This 
concentration narrows the class oC plausible statistical models and facilitates the 
thresholding. Different formalizations of this disbalancing property can yietd a va- 
riety of criteria for the best basis selectron. For more discussion, see Coifman and 
Wickerhauser 1941, Donoho [ 1231, and Mallat [277], among others. 

Ockharn’s Razor Principle. Wavelets, as building blocks of models. are well 
localized in both time and scale (frequency). Signals with rapkd local changes (signals 
with discontinuities, cusps, sharp spikes, etc.) can be prccisely represented with just 
a few wavelet coefficients. Generally, this statement does not apply to other standard 
orthonormal bases that may require many ”compensating” coefficients to describe 
discontinuity artifacts or to suppress Gibbs’ effects. The latest “generation” of 
wavelets form over-complete dictionaries and provide parsimonious representations 
of real phenomena with complicated ttme and frequency behaviors. 



Fig. 1.17 Localized Fourier and wavelet paving of time-scale space. 

By-Passing the Curse of Heisenberg. Heisenberg’s principle states that in modeling 
time-frequency phenomena, we cannot be precise in the time domain and in the 
frequency domain simultaneously. In other words, squares and rectangles in the 
pavement of the time-scale plane (as given in Fig. 1.11) have areas bounded from 
below by a universal constant. 

Wavelets automatically trade-off the time-frequency precision by their innate na- 
ture. The parsimony mentioned above can be ascribed to the ability of wavelets to 
cope with limitations of Heisenberg’s principle in a data-dependent manner. 

Whitening Property. There is ample theoretical and empirical evidence that wavelet 
transformations tend to simplify the dependence structure in the original data. It is 
even possible to construct a biorthogonal basis that will decorrelate a given stationary 
time series (a wavelet-counterpart of the Karhunen-Lotve ttansformation). For a 
discussion and examples, see Walter [439]. 

Smootbness Control. Under mild conditions wavelets provide unconditmnal bases 
for many important smoothness spaces (&, , p > 1; Besov Spaces B& ; Holder Spaces 
e). Using simpler terminology, this means that by controlling the magnitude of the 
coetlicients in the wavelet domain one controIs the smoothness of the decomposed 
function. This connection provides the theoretical framework for wavelet smoothing 
and wavelet function and density estimation. 
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1.4 AN APPETIZER: CALIFORNIA EARTHQUAKES 

We conclude this introductory chapter with a real-life example. The. example we 
provide emphasizes basic differences between wavelet-based and standard denoising 
methods. It shows the ability of waveiels to “zoom-in” and adapt their space-scale 
“descriptors” to  the data at hand. 

A researcher from the geology department at Duke University was interested in 
the possibility of predicting earthquakes by monitoring water-levels in the nearby 
wells. To do this, he obtained water level measurements from six wells located in 
California that were taken every hour for approximately six years. The goal was to 
smooth the data, eliminate the noise, and inspect the signal at pre-earthquake time. 
Here is some background (provided by Dr. Stuart Rojstaczer, Duke University). 

The ability of water wells to act as strain meters has been observed for centuries. 
The Chinese, for example, have records of water flowing from wells prior to 
earthquakes. Lab studies indicate that a seismic slip occurs along a fault prior 
to rupture. Recent work has attempted to quantify th~s response, in an effort to 
use water wells as sensitive indicators of volumetric strain. If this is possible. 
water wells could aid in earthquake prediction by sensing precursory earthquake 
strain. Water level records from s:x wells in southern California are collected 
over a six year time span. At least 13 moderate size earthquakes (Magnitude 4.0 
- 6.0) occurred in close proximity to the wells during this time interval. There 
is a significant amount of noise in the water level record which must first be 
likered out. Environmental factors such as earth tides and atmospheric pressure 
create noise with frequencies ranging from seasonal to semidiumal. The amount 
of rainfall afso affects the water level, as do surface loading. pumping, recharge 
(such as an increase in water level due to irrigahn), and sonic booms, LO name 
a few. 

a 

4 

a 
3 

4 

3 

5 

fig. 1.12 (a) California water-level data set. (b) Water-level oxillation at the earthquake 
time. 



Once the noise IS subtracted from the signat, the record can be analyzed for 
changes in water level. either an increase or a decrease depending upon whether 
the aquifer is expenencing a tensile or compressional volume strain, Just prior 
to an earthquake. 

Fig. 1.13 Comparison of several smoothing methods. (a) Data smoothed by kernel method 
(normal window, k = 5); (b) Data smoothed by loess method, (c) Data smoothed by 
supsmu method, and (d) Wavelet smoothed data (Daubechies' wavelet with four vanishing 
moments). 

A plot of the raw data for hourly measurements collected over one year (8192 = 
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213 observations), IS given in Fig. .I.l2(a). The line-like artifact [enlarged in Fig. 
1.12tb)l represents a line connecting two extreme level values at the earthquake time 
(Jultan day of 417). 

The measurements were smoothed by three traditional methods (kernel, lowess, 
and supsmu) and by wavelet shnnkage. Fig. l.l3(a), (b), and (c) are processed 
data, smoothed by the kernel method (normal kernel, bandwidth = 3, by the locally 
weighted regression smoother (implemented in S-Plus as lowess), and by the local 
cross-validation smoother (implemented in S-Plus as supsmu) method. 

Rather than discussing whether the filtering indicates that the earthquake could 
have been predicted, we emphasize differences in the outputs of traditional and 
wavelet smoothing methods. Notice that in all traditional methods the artifact of 
interest (earthquake jump) IS lost. The application of nonlinear wavelet shrinkage 
to the data, results in a smooth signal with the jump at earthquake time preserved. 
The wavelet-smoothed data are given in Fig. 1.13(d). Only 20 of 8192 (0.244%) 
coefficients (those 20 with largest magnitude) were used in describing the wavelet 
shrinkage estimator. 
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2 
Prerequisites 

In this chapter, we introduce notation and briefly review several mathematical con- 
cepts necessary for the definition and derivation of the basic properties of wavelets. 
Some fundamental concepts from the theory of Hilbert spaces, Fourier analysis, lin- 
ear algebra, and signal processing will be used to define the multiresolution analysis 
and to develop wavelet formalism. 

2.1 GENERAL 

For denoting the sets of natural, integer, real, and complex numbers we use notation 
N, Z. IR, and C. The modulus of a complex number z E &: will be denoted by 121, and 
the complex conjugate by Z. The set of positive real numbers will be denoted by R+ . 
It is tacitly assumed that all functions are measurable. The support of a function f, 
denoted supp(f), is the closure in B of the set {x E R : f(z) # 0). 

The indicator of a relation p, f ( p ) ,  is defined to be I if the relation p is satisfied 
and 0 otherwise. The Kronecker delta &u,v can be defined using the indicator function 
as l ( u  = v). We also define 6, to be d,,~. Maximum and minimum of a and b are 
denoted by u V b and u A b, respectively. 

Let f+ = f . l(f 2 0) = f V 0 be a positive part of a function f and f- = 
-f - l(f 5 0) = -(f A 0) be its negative part. By definition, I f 1  = f+ + f- and 
f = f.+ - f-. We will sometimes use 0-notation; a, = O(b,) would mean that 
a,/b,, is asymptotically bounded away from 0 and 00; u, = o(b,) would mean that 
a,, fb ,  + 0. 

23 
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A Lebesgue point of a function f is any point z such that 

If(z + 1 )  - f(z)l dt = 0. 

The Dirac function 6(z) (not to be confused with the Kronecker symbol 6k,i) is 
defined as 

1 
6(x) = lim - l [ O  z 5 a). 

a+O a 

The Dirac function (2.1) satisfies the following relations 

I ,  6(z) dz = 1, 

It can be thought of  as a generalized derivative of a Heaviside step function 
H ( z )  = 1(z 2 0) .  

2.2 HILBERT SPACES 

Hilbert spaces are natural generalizations of finite dimensional Euclidean spaces Rn . 

Working with absnact Hilbert spaces is beneficial in several respects. Our geo- 
metric intuition, based on properties of Euclidean R2 or R3 spaces, can in part be 
easily extended to an arbitrary Hifbert space. An example is the projection rheorem 
(Theorem 2.2.1). The norm in the Hilbert space is connected with a quadratic ex- 
pression and the process of norm-minimization falls in the class of linear problems. 
All separable Hilbert spaces are (abstractly) equivalent to one another. 

The Inner Product Space. A complex vector space 'fl i s  said to be an inner product 
space if for any two elements z, y E 31 there exists a complex number (z, y} (called 
the inner product of z and y) that satisfies - 

0) 
(ii) 
(iii) 
(iv) 
(v) 

(2: Y) = (Y, 4 
(z + y, t) = (5, z )  + (y, z ) ,  for all z, y> and z E ?I. 
(ax, y) = a(z ,  y) for z,y E 3c and cr E @. 
(z, z) 2 0, for all r E '?f. 
(z, 2) = 0, if and oniy if z = 0. 

ThenarmIjzl(ofanetementz E 31isdefinedviainnerproduct, 1 1 ~ 1 1  = m. 
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Example 2.2.2 11.2 (R) space (space of all square-integrable functions). 
f E e, (a) if J If12 < 00. 

Example 2.2.3 & space (space of all square-summable sequences). 
= { ~ n }  E Cz ifx,,, 12n12 < 30. 

(F, F) = C*,Z ZiE7 1141 = d€zJxF 

Example 2.2.4 A function f belongs to the Lcrbesgue spuce I,, (A), 1 5 p < 00, if 

To "upgrade" the linear space 31 equipped with a norm to the Hilbert space one 
needs the completeness property. 

Definition 2.2.1 The sequence { ~ ~ ) ~ ~ m  is called a Cauchy sequence in 3t $and 
only i f ( i f l  

whenever m,n + m. 

2 E 7c. 
The spuce X is complete $any Cauchy seqiience (2,) is convergent, i.e.. x, -+ 

2.2.1 Projection Theorem 

A linear subspace V of a Hilbert space H is said to be a closed subspace of 3t if Y 
contains all i t s  limiting points, i.e.. if x, E L' and - ztl + 0, as n -b w, then 
2 E v. 


