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Preface 

Differential equations is an old but durable subject that remains alive and useful 
to a wide variety of engineers, scientists, and mathematicians. The purpose of 
this book is to provide an introductory graduate text for these consumers. It is 
intended for classroom use or self-study. The goal is to provide an accessible and 
concrete introduction to the main principles of ordinary differential equations 
and to present the material in a modern and rigorous way. The intent of this 
goal is to provide the solid foundation that will enable a reader to learn and 
understand other parts of the subject easily and to encourage them to learn 
more about differential equations and dynamical systems. 

The study of differential equations began with the birth of calculus, which 
dates to the 1660s. Part of Newton's motivation in developing calculus was to 
solve problems that could be attacked with differential equations. For example, 
an early triumph of differential equations was Newton's demonstration that Ke-
pler's empirical laws of planetary motion could be derived from Newton's laws 
of motion using differential equations. Now, with over 300 years of history, the 
subject of differential equations represents a huge body of knowledge including 
many subfields and a vast array of applications in many disciplines. It is beyond 
exposition as a whole. Instead, the right question to ask is what are the prin-
ciples of differential equations that a serious user should know and understand 
today? 

Principles of Differential Equations is my answer to this question. It looks 
at ordinary differential equations from the viewpoint of important principles. 
Although the word "principle" is probably overused in the academic world and 
may be a bit trite, it is used here seriously in the sense of "a basic or essen-
tial quality or element determining intrinsic nature or characteristic behavior." 
Each section presents a coherent picture of a circle of ideas that illustrates a 
key principle in the study of differential equations. The overarching questions 
driving the theory are discussed and the value and limitations of results are 
explained. Throughout, the book a concerted effort is made to tie the pieces 
together and give the reader a coherent and unified sense of the subject. 

Principles of Differential Equations is also largely about the qualitative the-
ory of ordinary differential equations. Qualitative theory refers to the study 
of the behavior of solutions without determining explicit formulas for the so-
lutions. It originated with Poincaré at the beginning of the twentieth century 
and, in my judgment, has been the most important theme of ordinary differ-
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viii PREFACE 

ential equations in that century. Consequently, very little attention is paid to 
techniques for finding analytic formulas for solutions. The emphasis is on the 
general properties of the solutions of ordinary differential equations from simple 
existence of solutions to the remarkable behavior of Hopf bifurcations. 

Another important development in the twentieth century was the study of 
dynamical systems. Since my research has always been in dynamical systems, 
this book naturally has a dynamical systems perspective. In ordinary differential 
equations, the dynamical systems approach amounts to a shift in emphasis from 
finding the solution of a particular problem to studying all the solutions of a 
differential equation at once, and it is closely linked to the qualitative point 
of view. Once the existence of a global solution containing all solutions is 
established at the end of Chapter 1, it plays a central role in the remaining 
chapters. Furthermore, various branches of modern dynamical systems have 
roots in ordinary differential equations and are briefly discussed with suggested 
introductory references at appropriate points in the text. 

Since the broad plan of the book is to expose the reader to a range of 
important ideas and basic results, the focus is on core concepts and theorems 
that apply to large classes of differential equations and not on being encyclopedic 
on any topic. This means many things, some more important than others, 
have been deliberately omitted. There will be, as there should, instructors who 
strongly disagree with my choices of what to include and what not to include. I 
would simply invite them to supplement the material in this book with a series 
of well-prepared lectures on their favorite missing topic and begin expanding 
their students' horizons. 

I have strived to make this volume as complete and self-contained as possi-
ble with minimal prerequisites, which are discussed at length in the next three 
paragraphs. Except for obvious exceptions like the Jordan curve theorem in 
Chapter 6, stated results are followed by rigorous proofs or left to the reader 
as straightforward exercises. Theorems and propositions are numbered consec-
utively in each chapter; lemmas and corollaries are unnumbered. Because the 
results build on each other, there are many cross-references to help the reader 
follow the arguments and see how the pieces fit together. There are also ap-
proximately 250 exercises that illustrate the material with specific differential 
equations, fill in gaps, or slightly extend the theory. 

To make the book as accessible as possible, the prerequisites have been kept 
to a minimum. They are primarily undergraduate real analysis of one variable 
(sometimes called advanced calculus) and introductory linear algebra. For a 
mathematically capable student one semester of each should suffice, but would 
require the student to spend more time mastering Chapter 1, which is both 
challenging and essential. In particular, to gain an understanding of how the 
fundamentals fit together, some readers may find it beneficial to skip the proofs 
in a first reading of Chapter 1 and possibly the first two section of Chapter 
2 and then go back and study the proofs. A number of advanced topics from 
both analysis and linear algebra that are less likely to be familiar to a reader 
are included with proofs when needed in text. 

From analysis it is assumed that the reader understands epsilon-delta proofs 
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and knows the standard concepts and results for both the real numbers (density 
of the rational numbers, Bolzano-Weiestrass theorem, convergence of sequences, 
Cauchy sequences, etc.) and real-valued function of one variable (limit theorems, 
continuity, uniform continuity, the intermediate-value theorem, the mean-value 
theorem, fundamental theorem of calculus, Taylor's formula with remainder, 
uniform convergence of a sequence of functions, etc.). 

It is also assumed that the reader is comfortable working with functions 
of several variables, their partial derivatives, and integrals. To facilitate the 
shift from just working with functions of several variables to doing rigorous 
analysis with them, Section 1.1 and the exercises following it provide a rigorous 
but brief introduction to the analysis of functions of several variables. The 
approach to functions of several variables is topological, and depending on a 
readers background may require more or less time to master. 

The prerequisites from linear algebra are a basic knowledge of matrix alge-
bra for real and complex matrices, finite dimensional vector spaces, and linear 
transformations. From matrix algebra it is assumed that the reader is familiar 
with matrix calculations including the determinants and inverses of matrices 
and with systems of linear equations. The vector space prerequisites are sub-
spaces, linear independence, basis, and dimension. Finally, the reader should 
be familiar with the relationship between matrices and linear transformations 
and with the nullity, rank, and eigenvalues of a linear transformation, but these 
concepts are also reviewed when they first occur in the text. 

The bibliography consists entirely of books and is longer than would be 
absolutely necessary. The intent is to provide the reader with a rich list of 
books that are the next steps toward the frontiers of differential equations and 
dynamical systems. Many of them have extensive bibliographies of important 
current and historical research papers in a wide variety of journals. A number of 
them are excellent introductions to closely related fields. All are appropriately 
referenced at some point. 

This volume grew out of my lecture notes for the introductory graduate 
course in differential equations at the University of Maryland. The students 
were typically first or second year graduate students in the mathematics or ap-
plied mathematics programs and a few graduate students from the engineering 
and physics programs. There was a large variation in their backgrounds and the 
challenge was to engage all of them in the material. This experience more than 
anything else shaped my thinking about what constitutes a coherent and acces-
sible core to the modern theory of differential equations. My lecture notes over 
the years contained a variety of different topics that enriched the course but were 
eventually discarded because they were not really central to the development of 
the subject. The material was reorganized and the proofs rethought every time 
I taught the course. Preparing this manuscript was the final distillation. 

Over the years I have learned about differential equations from a great variety 
of books at all levels. I am deeply indebted to the authors of all these books 
for everything I learned from them. Collectively, they shaped my perspective 
of the subject and provided a foundation for my lectures, notes, and eventually 
this book. 
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I want to thank all my colleagues and friends in the Department of Mathe-
matics at the University of Maryland for affording me the opportunity to regu-
larly teach the graduate course on differential equations in a stimulating math-
ematical environment during my many years in the department. Numerous dis-
cussions about the course content with colleagues in all areas and the semiannual 
preparation of the qualifying exam in differential equations with the dynamics 
group were particularly valuable to me as I developed my own approach to the 
subject. I also want to thank the Department of Mathematics for typing and 
reproducing an early version of my notes and Jay Alexander for using it as the 
textbook for the course and for his many insightful comments. Special thanks 
go to Mary Vanderschoot for reading the final manuscript and doing a wonderful 
job finding all kinds of little errors that needed to be corrected. Finally, I am 
particularly grateful to Lehigh University for a very generous sabbatical leave 
that allowed me to complete this book. 

I have tried to write the kind of book I would have enjoyed reading and 
benefitted from as a graduate student. It is my hope that it will fill that role 
for others. 

Nelson G. Markley 



Chapter 1 

Fundamental Theorems 

The subject of this book is ordinary differential equations of the form x = f (£, x) 
where f (£, x), is a continuous function, x is a vector, and x denotes the ordinary 
derivative with respect to the single variable t. The vector x is often thought 
of as a space variable and t as time. 

Differential equations is an old subject whose long history goes back to New-
ton and Leibnitz and is tightly interwoven with that of calculus and classical 
physics. During the nineteenth century, the foundations of differential equations 
were more rigorously established, and in the twentieth century, it has continued 
to grow and develop in important new directions. The goal of this book is to 
provide an accessible concrete introduction to ordinary differential equations 
that is both modern and rigorous. 

The purpose of this first chapter is to prove the basic facts on which the many 
branches of ordinary differential equations rest. These foundational results— 
existence, uniqueness, continuation, numerical approximation, and continuity in 
initial conditions—are akin to the axioms of abstract subjects like group theory. 
They are always with us and their use in general or specific questions becomes 
automatic. 

To help make the proof of these fundamental results more accessible, the first 
section of the chapter provides a bridge from the core theoretical ideas of calculus 
to the analysis of functions of several variables and some specific results needed 
later in this chapter. Such a bridge cannot meet every reader's needs, but from 
it most readers should be able to build on their past knowledge to understand 
better the mathematical framework for studying differential equations. 

The most fundamental question is the existence of solutions of an ordinary 
differential equation, because without solutions there is no subject of differential 
equations. The question of existence of solutions is addressed by requiring only 
that f (£, x) be continuous, although the proofs with more restrictive hypotheses 
are technically simpler. The advantage of requiring only continuity is that it 
provides a simple well-understood general context for studying principles of 
differential equations. 

The proof of the main result about the existence of solutions to an ordi-

1 
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nary differential equation raises three basic questions. When are solutions to a 
differential equation uniquely determined? Is there a constructive method for 
approximating solutions? How far can solutions be extended? These questions 
will be addressed in subsequent sections on Uniqueness, Numerical Methods, 
and Continuation. A key hypothesis running through these sections and the 
final section is that f (£, x) satisfy a Lipschitz condition. Consequently, under-
standing this hypothesis and when it holds will be important. 

The last section focuses on the collective behavior of all the solutions of a 
differential equation. The key result, continuity in initial conditions, shows that 
all the solutions of a differential equation are bound together in one continuous 
function. In other words, solutions that start sufficiently close stay close over 
a finite interval of time. This result along with the previous sections provide a 
good set of fundamental tools for studying the solutions of ordinary differential 
equations. 

1.1 Preliminaries 

Before beginning the study of the differential equation x = f (£, x) , it is necessary 
to set up some notation, review some basic facts, and describe the context for 
the study of such differential equations. In addition, a key theorem that is 
needed for existence will be proved at the end of the section. 

The real numbers will always be denoted by R, and Rm will denote m-
dimensional Euclidean space, that is, Rm consists of all m-tuples of real numbers 
or 

Rm = {(xi,a;2,... , x m ) : Xi e R for i = l , . . . , r a } . 

Boldface type will be used consistently to denote elements of Rm, m > 1, that is, 
x = (xi, X2, . . . , x m ) . Elements of Rm can be thought of as points in Euclidean 
space or as vectors pointing from the origin to x. Furthermore, boldface type will 
also be used to denote functions whose values are in Rm or what are commonly 
called vector valued functions. 

The best approach to the study of x = f (t, x) is to use the topological ideas 
of open sets, closed sets, compact sets, and the norms used to define them. 
Consequently, open, closed, and compact sets of Rm will be used frequently, 
and so introducing these topological ideas is a natural starting point. 

The Euclidean norm on Rm is defined by 

IMI =(£*?) 

where x = (x\1X2i... , x m ) . The distance between x and y is defined to be 
||x—y||. This is the standard Euclidean distance between x and y. In particular, 
||x|| is just the Euclidean distance from x to 0 = (0 ,0 , . . . , 0) and satisfies the 
following conditions for x and y in Rm and a in R: 

(a) ||x|| = 0 if and only if x = 0; 
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(b) ||ox|| = \a\ ||x||; and 

(c) ||x + y | | < | | x | | + ||y||. 

The last condition is called the triangle inequality. 
The proof of the triangle inequality and other useful elementary facts that 

may or may not be familiar to the reader are included in the exercises at the 
end of this section. 

Remark For x and y in Mm, 

| l | x | | - | | y | | | < | | x - y | | . 

Proof. By the triangle inequality ||x|| = ||x — y + y|| < ||x — y|| + ||y|| or 
IMI - ||y|| < ||x - y||. Similarly, ||y|| - ||x|| < ||y - x|| = ||x - y|| and the 
conclusion follows. D (The symbol D will be used to indicate the end of a 
proof.) 

A set U in Rm is an open set if for every x G U there exists e > 0 such that 

{ y : | | y - x | | < £ } c t / . 

It is easy to show that the Euclidean ball 

{y : ||y - x|| < r} 

of radius r with center at x is itself an open set. Moreover, the union of open 
sets is open and the intersection of a finite number of open sets is open. 

A subset F of E m is a closed set if its complement, 

Rm \ F = {x : x g F} 

is open. Not surprisingly, the closed Euclidean ball 

{ y : | | y - x | | < r } 

is a closed set. It follows from the above remarks about open sets that the 
intersection of closed sets is closed and the finite union of closed sets is closed. 
Note that Rm and the empty set, 0, are sets that are both open and closed. 

Using the distance function ||x — y|| instead of the usual absolute value 
\x - 2/|, it is easy to define the convergence of sequences in Rm. A sequence 
of points Xfc in Rm converges to y if given e > 0, there exists N > 0 such 
that ||xfc — y|| < e when k > N. Moreover, the standard result from advanced 
calculus that a sequence of real numbers converges to a real number if and only 
if it is a Cauchy sequence extends to Rm. (See Exercise 9.) 

The idea of a compact set is more subtle. A set C is a compact set provided 
that whenever {£/*}, A E A, is a family of open sets indexed by A such that 

CC [jUx 
,\eA 
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then there exists a finite set of indices A i , . . . , A* such that 

k 

The essential theorem about compact sets in Rm is the well-known Heine-Borei 
theorem. 

Theorem 1.1 (Heine-Borei) A subset C ofRm is compact if and only if it 
is both closed and bounded. 

Proof. First assume C is compact. If C is not closed, there exists a sequence 
Xfc in C converging to y 0 C. (See Exercise 6.) For every r > 0 set 

Ur = Rm \ {x : ||x - y|| < r } = {x : ||x - y|| > r } . 

Then each Ur is open, 
C C U Ur, 

r>0 

but C is not contained in a finite union of the sets Ur, r > 0, contradicting the 
assumed compactness of C. Therefore, C must be closed. 

If C is not bounded, there exists a sequence Xfc € C such that ||xfc|| goes 
to infinity. Set Ur = {x : ||x|| < r} and obtain a contradiction as above. This 
completes the proof of the first half of the theorem. 

Now, assume C is closed and bounded and suppose 

Cc\JUx, 

where each U\ is open. Every open set is a union of Euclidean balls of the form 

{y : ||y-x|| < r} 

where r is rational and the center x has rational coordinates, and there are only 
countably many such sets. (See Exercises 11 and 12.) Consequently, it suffices 
to consider 

oo 

C c U Uu 
2 = 1 

where Ui = {y : ||y — Xj|| < r*}, r* is rational, and x* has rational coordinates 
and to show that 

N 

C C (J Uu 
i = l 

for some N. 
Suppose this does not hold. Then for each integer k there exists 

k 

XfeGCXlJt/,. 
i= l 
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Consequently, the coordinates of the sequences of x&, k = 1 , . . . , are bounded 
because C is bounded. A bounded sequence of real numbers has a convergent 
subsequence by the Bolzano-Weierstrass theorem. (We assume the reader is 
familiar with the Bolzano-Weierstrass theorem from advanced calculus or real 
analysis.) In particular, there exists a subsequence with convergent first coor-
dinates. It in turn has a subsequence with both first and second coordinates 
converging. Do this m-times to get a subsequence Xfcj converging to y. Because 
C is closed, y EC. Therefore, y € Uk for some A: and x ^ € Uk for large j . This 
contradiction completes the proof. D 

Consider a function f : W —> Rn, where W is an open subset of Rm and 
m and n are arbitrary positive integers. The function f is continuous at x £ 
W if given e > 0, there exists 6 > 0 such that ||f(y) — f (x)|| < e whenever 
||y — x|| < 6. Although continuity is a point property, we will only be using 
functions that are continuous at every point of their domain. In this context, it 
is easy to prove the following: f is continuous at every point of W if and only if 
f~l(U) = {x : f(x) E U} is open for every open set U of Rn. The next theorem 
links compactness and continuity by showing that the continuous image of a 
compact set is compact. 

Proposition 1.2 Let f : W —► Rn be a continuous function on the open set W 
o/Rm and let C be a compact set contained in W. Then f(C) is compact. 

Proof. Suppose 
((C) c U UX, 

where each U\ is open. It follows that 

A6A 

Since each f~l(U\) is open by the continuity of f, there exist A i , . . . , A* such 
that 

CciJf-1^) 
1 = 1 

because C is compact. It follows that 

k 

t(C)c\JuXi 

to complete the proof. D 

Knowing that a continuous real-valued function is bounded on a compact set 
will be a common ingredient in proving theorems about differential equations. 
In fact, a continuous function assumes its maximum and minimum values on a 
compact set as the next result establishes. 
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Proposition 1.3 Let f : W —► E be a continuous function on the open set W 
o/Rm and let C be a compact set contained in W. Then f is bounded on C and 
there exist x m and xj^ in C such that 

/ ( x m ) < / (x ) < / ( x M ) 

for all x in C. 

Proof. Since f(C) is compact by the previous theorem, it is closed and bounded 
by the Heine-Borei theorem. Hence, inf {/(x) : x € C} and sup {/(x) : x E C} 
are finite and belong to / (C ) . So, there exist x m and XM in C such that 

/ ( x m ) = i n f { / ( x ) : x e C } 

and 
/ ( x M ) = s u p { / ( x ) : x € C } . 

Obviously / ( x m ) < / (x ) < / ( X M ) for all x in C. D 

Let f : W —► Rn be continuous function on an open set W" of Rm and let E 
be a subset of W. The function f is uniformly continuous on E if given e > 0 
there exists 6 > 0 such that ||f (y) — f(x)|| < e whenever ||y - x|| < 6 and both 
x and y are in E. Again there is an important connection with compactness. 

Proposition 1.4 Let f : W —► Rn be continuous function on an open set W of 
Rm. If C is a compact set contained in Wf then f is uniformly continuous on 
C. 

Proof. Let e > 0. Because f is continuous at every point of W, it follows 
that for each x e C there exists 6X > 0 such that ||f(y) — f(x)|| < e/2 when 
||y - x|| < <5X. Set C/x = {y : ||y - x|| < <5x/2}. Then the sets C/x are a family 
of open sets such that 

C C U C/x. 

By the Heine-Borei theorem there exists x i , . . . , x^ in C such that 

Cc{JuXj. 
3 = 1 

Let 6 = min{<5Xl/2,... ,6Xfc/2}. Suppose ||x - y|| < 5 with x and y in C. 
Then there exists j such that ||y — Xj|| < 6Xj/2. It follows that 

||x - X j | | < ||x - y|| + ||y - xj-ll < 6 + 6^/2 < 6Xj/2 + 6Xj/2 = 6Xj. 

By the choice of <5Xj, both ||f(y) - f(xj)\\ < e/2 and ||f (x) - f(xj)\\ < e/2. The 
triangle inequality implies that ||f(x) — f(y)|| < e to complete the proof. D 

The entire discussion of open, closed, and compact sets originated from the 
Euclidean distance between two points. Although we are most familiar with 
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Euclidean distance, it is not, however, the only distance function on which the 
discussion could have been based. Many arguments will require estimates of 
distance or size based on norms, and frequently norms other than the Euclidean 
norm will be easier to apply. To this end, a discussion of norms in general is 
worth the time, and it will be helpful to prove that it does not matter which 
norm is used. 

A real-valued function ||x||a on Rm is called a norm if it satisfies the following 
conditions: 

(a) ||x||a = 0 if and only if x = 0; 

(b) \\ax\\a = |a| ||x||a for all a e R and x € Rm 

(c) ||x + y| | a < ||x|U + ||y||a for all x, y € R™. 

As with the Euclidean norm it follows from the triangle inequality that 

|l|x|U-||y||a|<l|x-y||«. 

Two other simple examples norms on Rm are 
m 

M = 5>«I 

and 
||x||oo = max{|xi | : 1 < i < m). 

The first of these two norms will be particularly useful. 
To what extent do the topological ideas of open, closed, and compact sets 

depend on the norm is now an obvious question. Two norms, || • ||i and || • H2 
are called equivalent if there exists positive constants A and B satisfying 

i4||x||i < ||x||2 < BHxIlx 

for all x. [The dot • in the notation | • | or g(- ) indicates an unnamed variable 
of a norm or a function.] 

If two norms are equivalent, then for a given x 

{y : ||y - x||i < r/B} C {y : ||y - x||2 < r} C {y : ||y - x\\x < r/A), 

and either norm will define the same family of open sets. The next theorem 
completely settles the question of which norm to use by establishing that they 
are all equivalent. This fact will be technically very helpful. 

Theorem 1.5 Any two norms on Rm are equivalent. 

Proof. It suffices to show that the Euclidean norm, || • ||, is equivalent to an 
arbitrary norm || • ||a. (See Exercise 17.) Let e i , . . . , e m be the standard basis 
o/Rm, that is, ei = (1 ,0 ,0 , . . . ,0), e2 = (0 ,1 ,0 . . . . ,0), etc. Set 

c = max{| |ej | | a : 1 < j < m). 
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Then 

and 

X — 2_^X3e3 
j=\ 

||x|U < 5^1^-1 Ilenia <cJ2\Xj\< mc||x|| 

because |XJ| < ||x||. This establishes the first required inequalities for the equiv-
alence of norms. 

Also note that 

| | | x | | „ - | | y | | . | < | | x - y | | 0 < m c | | x - y | | 

implies that ||x||a is a continuous function of x on Rm. (Given e > 0, let 
6 = e/mc.) 

To establish the second required inequality, it suffices to show that there 
exists A > 0 such that ||x|| = 1 implies A < ||x||a because then for any x ^ 0, 

1 

and hence 

or 

A< M ' 

AM < ||x||«. 
Since {x : ||x|| = 1} is compact and ||x||a is continuous, by Proposition 1.3, 
there exists x m with | |xm| | = 1 such that 

ll*m||a < l|x||a 

whenever ||x|| = 1. To complete the proof, set A = | |xm| | a , which is positive 
because x m ^ 0. D 

The above theorem is only true for finite-dimensional vector spaces. In fact, 
its failure in the infinite-dimensional case is one of the key differences between 
finite-dimensional and infinite-dimensional normed vector spaces. 

Sequences of vector valued functions play a critical role in the study of 
differential equations, especially uniformly convergent sequences. They are the 
final preparatory topic in this section. Let f̂  : W —» Rn be a sequence of 
continuous functions on an open set W C Rm. The sequence of functions f̂  
converges to a function f : W —► Rn if the sequence ffc(x) converges to f(x) 
for every x G W. In general, the limit of continuous functions need not be a 
continuous function unless the convergence is uniform. 

The sequence of functions ffc converges uniformly on W to a function f : 
W -> Rn if given e > 0 there exists TV > 0 such that ||ffc(x) - f(x)|| < e for 
every x G W when k > N. The proofs of several crucial theorems in this chapter 
depend on showing that a sequence of functions converges uniformly on an open 
set and then applying the following result: 
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Proposi t ion 1.6 Let fk : W —» Rn be a sequence of continuous functions on 
an open set W C Rm. Iffk converges uniformly to a function f : W —> Rn, then 
f is continuous on W. 

Proof. Let y be a point in W. Given e > 0, there exists N > 0 such that 
||fjb(x) - f(x)|| < e/3 for every x 6 W when k > N. Choose a fc > N. Since 
ffc is continuous at y, there exists 6 > 0 such that ||ffc(x) — ffc(y)|| < e/3 when 
l|x-y||<«. 

Putting the pieces together 

| | f (x)-f(y) | | < | |f(x)-ffc(x)| | + ||ffc(x)-ffc(y)|| + | |f fc(y)-f(y)| | < § + § + § = * 

when ||x — y|| < <5, and thus f is continuous at x. D 
The proof of the existence of solutions to x = f (t, x) , the first major result 

about differential equations, will require a theorem known as Ascoli's Lemma. 
Since it is not as commonly known as other parts of advanced calculus and real 
analysis, a complete proof of it is included. 

Consider a sequence of functions fm : I —► Rn defined on an interval / . The 
set of functions {fm : m > 1} is equicontinuous if given e > 0, there exists 6 > 0 
such that for all m > 1 

| | f ( * ) - f ( t ) | | < e , 
whenever \s — t\ < 6. 

Theorem 1.7 (Ascoli) Let fm : / —► Rn be a sequence of functions defined on 
a bounded interval I. If the set of functions {fm : m > 1} is equicontinuous and 
for each t € / , the sequence im{t) is bounded) then there exists a subsequence of 
fm, which converges uniformly on I. 

Proof. Let {r i , r2,r3, . . .} be an enumeration of the rational numbers in i\ 
(See Exercise 10.) Since fm(ri) is a bounded sequence of vectors in Rn, it 
contains a convergent subsequence by the Bolzano-Weierstrass theorem. Thus 
there exists a subsequence of fm denoted by f(p>1) such that f(P}\){ri) converges 
to an element of Rn. Since a subsequence of the sequence fm is determined by 
picking an increasing sequence of integer indices, (p, 1) is just the notation being 
used for the pth integer in the increasing sequence of integers that determines 
the first subsequence of fm. 

For the same reason, there exists a subsequence f(p,2) °f f(p,i) s u c n t n a t 
f(p,2)(r2) converges in Rn. Of course, linip-.oo f(p,2)(n) remains unchanged be-
cause a subsequence of a convergent sequence converges to the same limit. Now 
(p, 2) denotes the pth term of the second subsequence. Because we are selecting 
a subsequence of a subsequence, the increasing sequence of integers (p, 2) must 
be selected from the increasing sequence (p, 1). Since this process must be re-
peated ad infinitum, this notation is not as strange as it might first seem, and 
f(p>fc) will naturally denote the pth in the fcth subsequence of fm. 

Using induction, it follows that for every fc there exists a subsequence f(Pyk) 
of fm satisfying: 
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(a) f(p,fc) is a subsequence of f(P)J) for j < /c, and 

(b) f(p,fc)(rj) converges for j < k. 

Set gp = f(P)P) and verify that gp with p > k is a subsequence of f(p,fc). In 
particular, it follows that gp is a subsequence of fm and that gp(rk) converges 
for every rational number r^ in J. The proof will be completed by showing that 
the sequence gp is uniformly convergent on I. 

Let e > 0. By equicontinuity, there exists 6 > 0 such that for all p 

I M « ) - 8 P ( * ) | | < | . 

whenever \s —1\ < 6, s, t E / . Because the rational numbers are dense in R and 
I is bounded, there exists k such that for every t E / we have \t — ri\ < 6 for 
some i < k. Since the sequences gp(r*), 1 < i < k are all Cauchy sequences of 
real numbers, there exists N such that for 1 < i < k 

g p ( ^ ) - g g ( n ) | | < 3 

whenever pi q > N. Now, let £ € I and consider p, q > N. Select an r%, 
1 <i < fc, such that \t — ri\ < <5, and then by the triangle inequality we have 

iigp(*)-g,(*)ii< 

llgPW - «p(ri)|| + ||gp(ri) - g , ( r0 | | + ||g,(ri) - g,(t) | | < 

3 ~^~ 3 "^ 3 = £' 

Therefore, gp(t) is a Cauchy sequence, and hence converges to some g(t) for all 
t in J. Letting p go to infinity in the above inequality, gives ||g(t) — gq(£)ll ^ e 

for t E I and q > N, and proves that gp(£) converges uniformly to g(t) on J. 
D 
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EXERCISES 

Prove the Cauchy-Schwarz inequality: 

| v - w | < | | v | | | | w | | 

Hint: For fixed v and w the function ||tv — w||2 is a quadratic in t whose 
discriminant must be less than or equal to 0 because 0 < ||tv — w||2. (The 
discriminant of at2 + bt + c is b2 — Aac.) 

Use the Cauchy-Schwarz inequality to show that 

l|x + y | | < | | x | | + ||y||. 

Show that for fixed v and r > 0 the set 

{x : ||x - v|| < r} 

is an open set and the set 

{ x : | | x - v | | < r } 

is a closed set. 

Prove that the union of open sets is open and the intersection of a finite 
number of open sets is open. 

Prove that the intersection of closed sets is closed and the finite union of 
closed sets is closed. 

Prove that a set C is a closed set if and only if for every convergent 
sequence x n in C, its limit is also in C. 

Let B be a subset of Rm. Define the closure of B by 

~B = {x : B fi {y : ||y - x|| < e} ^ </> for all e > 0} . 

Prove the following: 

(a) The set B is a closed set containing B. 

(b) If C is a closed set such that S c C , then B C C. 
(c) The set B is closed if and only if B = B. 

(d) B = n{C:BcC = C}. 

(e) The closure of an open Euclidean ball is a closed Euclidean ball. 

. Let D be an open subset of Rd and let C be a compact set contained in 
D. Set p = inf{|x - y | : x € C and y g D}. 

(a) Show that p is positive. Is this true if C is just closed? 
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(b) Show that {y : |x - y | < p/2 for some x E C} is a compact set 
contained in D. 

(c) Show that {y : |x - y | < p/2 for some x E C) is an open set. 

9. A sequence of points x& in Rm is a Cauchy sequence if given e > 0, there 
exists N > 0 such that ||XJ — Xfc|| < e when j > N and k > N. Using 
the fact that a sequence of real numbers converges to a real number if and 
only if it is a Cauchy sequence, show that a sequence x^ in Rm converges 
to a point y in Rm if and only if it is Cauchy sequence. 

10. Construct a sequence of rational numbers rn that includes every positive 
rational number. Modify the construction to include every rational num-
ber. Given an interval / , construct a sequence of rational numbers rn that 
includes every rational number in the interval J. 

11. A set B is countable provided there exists a sequence x& such that x is in 
B if and only if x = x^ for some A;. The rational numbers are countable 
by the previous exercise. Prove that the set 

{x = (#i, #2, • • > x-m) £ Rm • Xj is rational for j = 1,2,. . . , m) 

is countable. 

12. Prove that every open set of Rm is a union of Euclidean balls of the form 
{y : lly ~ xll < r}> where r is rational and the center x has rational 
coordinates. 

13. Let f : ffc —* Rn be a function, where £1 is an open subset of Mm. Prove that 
/ is continuous at every point of Ct if and only if f~l{U) = {x : / (x ) EC/} 
is an open set for every open set U of Rn. 

14. Let f : Rm —> IRn be a function. Prove that / is continuous at every point 
of Km if and only if / _ 1 ( C ) = {* : / (* ) E C} is a closed set for every 
closed set C of Rn. 

15. Let f : Q, —► Rn be a function, where Ct is an open subset of Rm. Prove that 
/ is continuous at x E Q if and only if for every sequence {xjt} converging 
to x, the sequence {f(x^)} converges to f (x). 

16. Show that 

i = i 

and 
||x||oo = max{|xj| : 1 < i < d} 

define norms on Rd and find A and B such that A\x\ < ||x||oo < ^ l x l - For 
d = 2, graph the sets {x : |x| < 1} and {x : Hxjloo < 1}. 
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17. Let || • Ha, Il • ||b, and || • ||c be three norms on a vector space V. Show that 
if || • ||a and || • ||b are equivalent norms and if || • ||{, and || • ||c are equivalent 
norms, then || • ||a and || • ||c are also equivalent norms. 

18. Show by example that Ascoli's Lemma is false when each of the following 
hypotheses are individually deleted from the statement of the result: 

(a) The interval / is bounded, 
(b) The sequence of functions {/m} is equicontinuous, 
(c) The sequence {/m(£)} is bounded for every t e i . 

1.2 Existence 
The study of differential equations can now begin in earnest. The class of 
differential equations to be examined needs to be fully described, the concept 
of a solution of a differential equation needs to be defined, and the question 
of whether or not a particular differential equation has solutions needs to be 
addressed. These things will take place in this section and launch all that 
follows. 

Let D be an open set of Rd + 1 and let f : D —► Rd be a continuous function. 
As is customary in differential equations, a point of Rd+l will be denoted by 
(£,x), where t £ R and x e Rd. Moreover, in this notation t will be thought of 
as time and x as position in space. In this context, the differential equation 

x = f(i,x) (1.1) 

is the most general differential equation that will be considered, and the notation 
set out in this paragraph will be used consistently for it. 

Actually, equation (LI) is a system of differential equations. Since 

f(t ,x) = ( / 1 ( t , x ) , . . . , / d ( t , x ) ) 

where the fi are continuous real-valued functions, x = f (£, x) can also be written 

X\ = fl(t,Xi,X2ì...,Xd) 

X2 = f2(tìXi,X2ì...ìXd) 

Xd = fd(t,X\,X2,*-.,Xd). 

Let I be an open interval (possibly infinite). A curve is a continuous function 
(f : i" —» Rd. The curve if : / —> Rd is said to be differentiate if (p = (v?i,. . . , Wd) 
exists at every point of / , where as usual & is the derivative of <£*, which is a real-
valued function of one real variable. A solution of 1.1 is simply a differentiate 
curve (p : / —► Rd such that on / 

<p(t) = t{tM*))-
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Note it follows that if ip is a solution of (1.1), then (t, <p(t)) is in D for t G / , 
and the curve t —► (t,(p(t)) lying in D is called a trajectory of ( i . i j . Because 
f and <p are continuous, it also follows that (p is continuous. That is, a solution 
must be continuously differentiable. Instead of using a different symbol for the 
curve if and the point x, we will usually write x(£) to denote dependency of x 
on t in a solution of (1.1). 

For differential equations, it is slightly more convenient to use the norm 

M = X>*I 

and define the distance between x and y to be |x — y|. Using |x| instead of the 
more familiar ||x|| has no effect on the open sets, the continuity of functions, 
and the convergence of sequences by Theorem 1.5. Not only are || • || and | • | 
equivalent, it can easily be verified that 

5M < ||x|| <|x|. 

Let <p be a curve whose domain includes the closed interval [a, b]. Define the 
integral of ip from a to 6 by 

/ <p(t)dt=U Vl(t)dt,...,f <pd(t)dt). 

When a < 6, then 

/ <p(t)dt\ = S / **(*)* 
Ja ,•_■• \Ja i=l 

d , 6 

< È / \v>i(t)\dt 
i=lJa 

= / \<p(t)\dt. 
Ja 

So in this context, the familiar inequality 

rb I rb 
[ <p(t)dt\< f \<p(t)\dt 

Ja Ja 

when a < b is retained and is one reason for preferring the norm | • | to the 
Euclidean norm. The next remark shows why the integral of a curve is relevant 
for differential equations. 
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Proposition 1.8 Letx(t) be a continuous function on the open interval I such 
that (£,x(£)) e D for all t e i , and let r e i . Then x(t) is a solution of 
x = f (£, x) if and only if 

x(t) = x(r) 4- / f (s,x(5)) ds. (1.2) 

Proof. Just apply the fundamental theorem of calculus to each coordinate. D 

The first fundamental question about the differential equation x = f (£, x) is 
whether or not any solutions exist, but this question cannot be phrased quite so 
simply. Since the trajectory of one solution occupies an insignificant portion of 
D, knowing that (1.1) has a solution tells us very little. Furthermore, in many 
physical situations, the initial data specifies a point in D through which the 
desired trajectory must pass. 

The right existence question to ask is When does there exist a trajectory 
passing through a specific point of Dl The answer to this question is the best 
possible, and the primary goal of this section is to prove that at least one 
trajectory passes through each point of D. 

Seeking a solution whose trajectory passes through a specified point (T, £) G 
D is called an initial-value problem. Note that (r, £) is on the trajectory of the 
solution x(t) if and only if (T,X{T)) = (r,£) or x(r) = £. Consequently, an 
initial-value problem can always be written in the form 

x = f(t ,x) 
* = x(r) . 

A solution to the above initial-value problem starts at £ at time r and heads 
in the f (r, £) direction for just an instant. By actually following the line through 
£ in the f (r, £) direction for a short time we will not stay on the solution, but the 
error should be small over a short time interval. We can also stop and correct 
our course by recalculating the direction f(£,x) at a new time and point, and 
then follow the line in the corrected direction. Repeating this process for short 
intervals of time should track an actual solution. The challenge is to show that 
this intuitive idea really works. 

Theorem 1.9 (Peano) Iff (t, x) is continuous on the open set D, then for each 
point ( T , £ ) e D, there exists at least one solution to the initial-value problem 

x = f(*,x) 
£ = x(r) . (1.3) 

Before tackling the details of the proof, it is worthwhile outlining the argu-
ment to understand how the pieces will fit together. The first step is to define 
a sequence of approximate solutions 

<pm:{t:T-a<t<T + a}->Rd 
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for a suitable a > 0 using line segments. The function f (£, x) will be used to 
determine the directions of these line segments. Specifically, starting at the 
point £ and at time r , the curve ipm{t) will move along the line through £ in 
the direction f(r,£) until a time t\. From t\ to £2, it will move along the line 
through <pm(ti) in the direction f (ti,<pm(£i)), and so forth. Of course, as m 
gets large, the distance between r and t i , £1 and £2, and so forth, will be sent 
to zero. 

The second step is to show that Ascoli's lemma applies to the sequence <pm 

of functions, and thus establishes the existence of a subsequence <pmk, which 
converges uniformly on [r — a, r -f a] to a function ip. 

The final step is to prove that (p is a solution of x = f(£,x) satisfying 
vK7") = £- Carrying out the details of the proof will take several pages and may 
take more than one reading to understand completely. 

Proof. Because D is open, there exists 6 > 0 such that for the given point 
(r, £) € D, the set 

R= {(t,x) : \t-r\ < 6 a n d |x - £| < 6} C D. 

Since the rectangle R is closed and bounded and hence compact, it follows from 
Proposition 1.3 that 

sup{|f(*,x)| : (*,x) e R} = M < 00. 

Set a = min{6, b/M} and let I denote the open interval {t :T — a <t < T + OL). 
For each positive integer m, an approximate solution <pm : I —> Rn will be 

defined. Because R is compact, f is uniformly continuous on R by Proposi-
tion I.4. In particular, there exists 6m > 0 such that 

| f ( t , x ) - f ( a , y ) | < l , 

whenever |t — s| < 6m and |x — y | < 6m. Now, fix m and pick ti such that 

T — a = t_p < t_p+i < • • • < £_i < to = r < h < ••• < tp-i < tp = T + a 

and \U — U-\\ < min{<5m,£m/M, 1/m}. Define y m ( t ) on the closed interval 
[ t - i , t i ]by 

Vm(t) = * + ( t -*0)- f ( t0 ,É) 

= $ + ( t - r ) . f ( T , 0 . 

Note that this is a line segment with (pm(to) = ^ m ( r ) = £. For £ G [£_i,£i], 

|Vm(t) ~ «| = I* " *0l |f (*0,€)| < ö M < ^ M = 6 

and (i,<£m(t)) € Ä. Extend the definition of (pm to [ t i ,^] by 

<Pm(t) = <pm(tl) + (t-t1)t(t1,<pm{ti)). 
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For t e [ti, * 2 ] , 

| V m ( 0 - € | < | V m ( 0 - V m ( * l ) | + | V m ( * l ) - € | 

< |t " tl | |f (ti, tpm{tl))\ + \tl ~ t0\ | f(t0 ,€)| 
< |t — ti|Af -h |*i - t0\M = \t- t0\M < b 

and (t,(pm(t)) € R for to < t < t2- It is now clear that this process can be 
repeated in both directions until it reaches tp = r + a and t_p = r — a to define 
<£m on / satisfying (t,(fim(t)) € fi for alH € / . In particular, 

V m ( t ) = ¥>m(*fc) + (* - *fc) t(tk,V>m(tk)) 

on [tfc,tfc+i] for fc > 0 and on [tfc-i,tfc] for fc < 0. See Figure 1.1 for an 
illustration of a tpm{t) in the plane. 

Clearly, <pm is continuous and 

¥>(*) = f(tfc.¥>m(**)) 

when tfc < t < tk+i for A; > 0 and when tfc_i < t < tk for fc < 0. This completes 
the first step in the proof. 

A 

\ 

Figure 1.1: Graph of a sample planar <pm(t) with p = 3. The arrows indicate 
the direction of increasing t. 

The crucial property of (pm that must be established is the following: For 5 
and t in I 

\<Pm(t)-<Pm(8)\<\t-8\M. 

The case when to < s < t will be established and the other two cases will be 
left to the reader. First, find j and fc, 0 < j < fc such that tj < s < tj+i and 
tk < t < tk+i. U j = fc, then 

|Vm(«) - <Pm(*)\ = \t~ S\\f (ti,<Pm(tS))\ <\t~ S\M. 
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If j < k, then 

|v»m(«) - ¥»m(«)| < 
|v»m(t) - <Pm(tk)\ + |Vm(tfc) " V>m(*k-l)| + " ' " + |Vmfe+ l ) ~ ¥>m(*)| < 

I* " M |f (*fc, Vm(**))| + • - + \tj+l ~ S\ |f(*j, ¥>«(*i))| < 
|t - tfe|M + |tfe - tk-i\M + ■■■ + \tj+1 - s\M = 

\t - s\M. 

(The last equality holds because \t — tk\ = t — tk, etc.) The proof of the other 
two cases is similar. 

For t^ti,i = -p,...,p, we have <pm{t) = f(tk,<fim(tk)) for some tk such 
that \t-tk\ < 6m and \t-tk\ < 6m/M. Hence |vmW-Vm(*fc)| < \t-tk\M < 6m, 
and the uniform continuity of f now implies that 

\<pm(t)-f{t,<pm(t))\ = \f{tk,<pm(tk))-f(t,<pm(t))\ < Ì , 

which will be needed for the last step. The above inequality also says that each 
ipm is an approximate solution of (1,3). 

Since \t—s\M is independent of m, it follows from \(PTn(^)~<Pm(s)\ ^ l* — S\M 
that {<pm : ra > 1} is an equicontinuous set of functions. Furthermore, <pm is a 
uniformly bounded sequence because 

|VmW| < \Vm(t)-<Pm(to)\ + \<Pm(to)\ 

< \t-tQ\M+\ipm(to)\ 

< aM+ |£|. 

Hence, Ascoli's Lemma Theorem 1.1 applies and there exists a subsequence 
<£m., which is uniformly convergent on I to some function <p. This completes 
the second step of the proof. 

Clearly, (pm{r) = £ for all m implies (p(r) = £. To establish that <p is a 
solution of x = f(t,x) and complete the proof, it suffices by Proposition 1.8 to 
show that (1.2) holds or equivalently that 

<p{t) - <p(r) - I t(8t(p(s))d8 = 0 

on I. 
By the triangle inequality, 

<p(t) - <p(r) - J f(sMs))d8 

< M«) - <Pmi(t)\ + \<Pmi(t) - V(T) ~ J f{s,<PmM) ds 

l rl I 
+ / f{8,<pmi(s))-t(8Ms))da\. 
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The first term obviously goes to zero as i goes to infinity. With the observations 
that 

I f f (a, <pmi (a)) - f {s, <p(a)) da\< f \{{s, <pmi (a)) - {{a, <p{a)) | da 
\JT I JT 

and 
\f(S,<pmi(s))-f(aMs))\-*0 

uniformly as i goes to infinity, it follows that the third term also goes to zero 
as i goes to infinity. 

Because <£m is piecewise continuous, it follows that 

for all m. Now substitute the above expression into the middle term to get 

1 / <pmi(S)-f(a,<pmi(s))da\ < f ! £ „ , ( « ) - f ( « , V m < ( « ) ) | cfa 
\Jr I JT 

JT rrii rrii 

because tpm. is an approximate solution. Thus, the middle term goes to zero as 
i goes to infinity to complete the proof. D 

Corollary If i is continuous on an open set D, then every point in D has at 
least one trajectory of x = f (£, x) passing through it 

Corollary Iff is continuous on an open set D and C is a compact subset of D, 
then there exists a > 0 such that for every (£,£) € C, the initial-value problem 

x = f(*,x) 
£ = x(r) 

has a solution defined on {t : r = a < t < r -f a}. 

Proof. Exercise. 

Peano's theorem supplies a simple general setting in which the existence of 
solutions can be taken for granted. We will always stay within this context and 
only consider the differential equations x = f (£, x) , where f is continuous on an 
open set. 

Peano's theorem, however, has three drawbacks. First, the interval on which 
the solution is defined in the proof of Peano's theorem may unnecessarily be very 
short. Second, it leaves open the possibility that an initial-value problem has 
more than one solution. Third, it is highly non constructive. 
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EXERCISES 

1. Consider the initial-value problem 

x = t2 + x2 

0 = x{0) 

on R2. Determine the longest interval on which the proof of Peano's 
theorem guarantees a solution. What is the answer to the same question 
when t2 + x2 is replaced by \t\p + \x\p with p > 1? 

2. Let D = R2 and use separation of variables to solve the initial-value 
problem 

x = 1+x2 

0 = x(0). 

(In this problem, f(t,x) = 1 + x2 is independent of t.) Show that the 
longest interval on which Peano's theorem guarantees a solution is less 
than one-third of the length of the interval on which there is a known 
solution. 

3. Suppose f(t ,x) is continuous and bounded on Rd. Show that for all £ the 
initial-value problem 

x = f(t,x) 

£ = x(r) 
has a solution defined on an arbitrarily long interval. 

4. Prove the second corollary to Peano's theorem. 

5. Let ipm{t) be a sequence of solutions to x = f(£,x) with f continuous on 
an open set D. Suppose that 

Ä = {(t,x) : \t-r\ < c a n d | x - £ | < c} C D 

for some c > 0. Prove the following: If each <pm(t) is defined on the 
open interval / = (r — 7 , T + 7), the sequence (fim{r) converges to £, and 
(£, <pm(t)) G R for all £ G / , then some subsequence of <pm converges to a 
solution of 

x = f(t,x) 

£ = x(r ) . 

6. Suppose f(£,x) is continuous and satisfies | /(£,x) | < log(|£| -I- |x|) on Rd. 
Show that for all £ the initial-value problem 

x = f(f,x) 

£ = x(r) 

has a solution defined on an arbitrarily long interval. 
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1.3 Uniqueness 
The second fundamental question concerning initial-value problems is to deter-
mine when there is exactly one solution. This question is not purely question; 
it has practical consequences. 

For example, suppose the behavior of some physical phenomenon is modelled 
by the initial-value problem 

x = f(t,x) 
£ = x(r) 

Also suppose a specific function (p(t) is a solution of this problem. Without 
knowing that this initial-value problem has a unique solution it cannot be as-
serted a priori that <p(t) describes the behavior of the physical phenomenon 
being studied. Its behavior may in fact, be governed by a different solution 
r/)(t). Consequently, simple broadly applicable tests for uniqueness can guaran-
tee that a known solution of an initial-value problem is not extraneous. 

Similarly, if a numerical procedure carried out with the aid of a computer 
is generating a sequence of approximate solutions to an initial-value problem, 
then without uniqueness the meaning of these computer calculations can be very 
ambiguous. In fact, uniqueness ensures that solutions can be approximated by 
numerical procedures. The most elementary of them, Euler's method, will be 
discussed in the next section. 

Continuity of f is not enough to guarantee that initial-value problems have 
unique solutions. To construct a counterexample let D = R2, that is, d = 1 and 
both t,xeR. 

Consider the initial-value problem 

x = \J\x\ 

0 = x(0). 

[Although /(£,x) depends only o n x G R , the t variable is included in the domain 
so that for now all differential equations are treated consistently in one form.] 
Clearly, x(t) = 0 or x(t) = 0 for all t € R is a solution. (The symbol = is used 
to indicate that a function has a particular constant value at each point in its 
domain.) 

The elementary technique of separating variables yields a second solution, 

w ,x / O , t < 0 ; 
x W ~ \ t 2 / 4 , * > 0 , 

of the same initial-value problem. 
The bad behavior of the above example is a result of the cusp of v/R at 

0. However, there are differential equations that exhibit even more pathological 
behavior. For example, it is possible to construct a continuous function /(£, x) 
on R2 such that every initial-value problem has infinitely many solutions. ( See 
[17] page 18.) 
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The theme of this section is the study of a simple assumption called a Lips-
chitz condition, which guarantees that initial-value problems have unique solu-
tions. After the Lipschitz condition is defined and its relationship with unique-
ness analyzed, it will be shown that continuous first partial derivatives imply 
the Lipschitz condition. Thus the usually easy to check hypothesis that a func-
tion has continuous first partial derivatives will resolve one of the weaknesses of 
Peano's theorem. 

If there exists a constant L > 0 such that for every (£, x) and (£, y) in D the 
following inequality holds: 

| f ( * , x ) - f ( t , y ) | < L | x - y | , (1.4) 

f (£, x) is said to satisfy a Lipschitz condition on D. Technically, this Lipschitz 
condition is only with respect to the space variable x. Because no other varia-
tions of this concept will be used, it will be adequate simply to say that f (£, x) 
satisfies a Lipschitz condition and not include the phrase "with respect to x." 

Roughly speaking, a Lipschitz condition says that the values of f cannot 
separate faster than the distance between x and y. It can also be thought of as 
a crude finite derivative condition because 

| f ( t , x ) - f ( t , y ) l ^ r 

when x ^ y. Replacing | • | by an equivalent norm will not destroy a Lipschitz 
condition but will change the constant L. 

Theorem 1.10 Let f satisfy a Lipschitz condition on D and let <Pi{t) and 
<P2(t) be two solutions of the differential equation x = f(£, x) on the domain D. 
Suppose both ifi(t) and y^W are defined on the open interval I. If <£>I(T) = 
^ 2 ( T ) for some T € I, then <fi(t) = ^ M for e ^ r y t in I. 

Proof. Because v?i(r) = V^O")'» ^ follows from 

<Pi(t) = VM + j {{siiPi(s))ds, 

and (1.4) that 

\Jr I 

< j | f (a ,V l (a))-f (a ,V 2(a)) |ds 

< / L\tpx(s) - (p2(s)\ ds 

for t > T. Thus 

\<Pi{t) - <P2(t)\ < L J |Vl(«) -<p2(s)\ds 
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for t > T. It remains to show that this inequality forces <Pi(t) = <p2(t) for t > r , 
and then apply the simple technique of reversing time to obtain the result for 
t<T. 

Setting g(t) = \<Pi(t) - (f2(t)\ and G(t) = fr g(s) ds, the previous inequality 
can be written as 

g(t) < LG(t) 

or 
G(t) - LG(t) < 0. 

Multiply this inequality by e~Lt and note that the left-hand side is now the 
derivative of e~LtG(t). (This is the standard method of integrating factors used 
to solve a first-order linear differential equations.) Thus 

d[e-LtG(t)} < 

dt 

for t > T. Because e~LTG(r) = 0, integrating from r to t, yields 

e~LtG(t) < 0 

or 
G(t) < 0 

when t > T. 
Since G(t) = g(t) > 0 and G(r) = 0, it also follows by integrating G(t) that 

G{t) > 0 for t > r. Therefore, G(t) = 0 and G(t) = g(t) = 0 for t > r . It 
follows that <Pi(t) = <f2(t) for t > r. 

For t < T and i = 1,2, let t^(£) = <^(- t) on - / = {-t : t G / } . Then 

*M = - ^ ( - t ) = - f ( - *, Vi(-*)) = - f ( - 1 . ^<W) 

and ^j(£) is a solution of x = —f(—^,x) on D' = {(^,x) : (—£,x) € £)}. Clearly, 
il>i(-r) = ^)2{~T) a n d | - f ( - t , x ) f ( - t , y ) | < L|x - y|. The preceding 
arguments show that rp\(s) = tp2(s) for 5 > —r or (fi(t) = <^2(0 f°r * ̂  r - ^ 

It is not evident from the previous theorem that uniqueness is really a local 
issue. By "local" we mean what occurs just near points in D not necessarily 
throughout D. The next theorem makes this point. 

Theorem 1.11 Let <fi(t) and ip2(t) be two solutions of the differential equation 
x = f (£, x) on the domain D and assume they are defined on the same interval 
I. Suppose that for each point x of D there exists an open set U containing 
x and contained in D such that f(t,x) satisfies a Lipschitz condition on U. If 
<PI{T) = (p2{r) for some r € / , then <Pi(t) = <p2(t) for all t in I. 

Proof. Assume <Pi(s) ^ <p2(s) for some s > r . (The argument for the case 
when s < r is similar.) Set 

ß = sup {s : <Pi(t) = <p2(t) for r < t < s } . 


