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Preface 

Until recently a book on the history of statistics in the 19th century was 
badly needed. When I retired six years ago, I decided to write such a book, 
feeling that I had a good background in my statistical education in the 1930s, 
when the curriculum in statistics was influenced mainly by the writings of 
Laplace, Gauss, and Karl Pearson. Studying the original works of these 
authors I found no difficulty in understanding Gauss and Pearson, but I 
soon encountered difficulties with Laplace. The reason is of course that Gauss 
and Pearson are truly 19th century figures, whereas Laplace has his roots 
in the 18th century. 

I then turned to the classical authors and worked my way back to Cardano 
through de Moivre, Montmort, Nicholas and James Bernoulli, Huygens, 
Fermat, and Pascal. Comparing my notes with Todhunter’s History, I found 
to my surprise that his exposition of the topics in probability theory that I 
found most important was incomplete, and I therefore decided to write my 
own account. 

The present book, covering the period before 1750, is an introduction to 
the one I had in mind. It describes the contemporaneous development and 
interaction of three topics: probability theory and games of chance; statistics 
in astronomy and demography; and life insurance mathematics. 

Besides the story of the life and works of the great natural philosophers 
who contributed to the development of probability theory and statistics, I 
have told the story of important problems and methods, in this way exhibiting 
the gradual advance of solving these problems. I hope to have achieved a 
better balance than had been achieved before in evaluating the contributions 
of the various authors; in particular, I have stressed the importance of the 
works of John Graunt, Montmort, and Nicholas Bernoulli. 

The contents of the book depend heavily on research carried out by many 
authors during the past 40 years. I have drawn freely on these sources and 

V 



vi PREFACE 

acknowledged my debt in the references. The manuscript was written during 
the years 1985-1987, so works published in 1986 and 1987 are not fully 
integrated in the text. Some important books and papers from 1988 are 
briefly mentioned. 

With hesitation, I have also included some background material on the 
history of mathematics and the natural and social sciences because I have 
always felt that my students needed such knowledge. I realize of course that 
my qualifications for doing so are rather poor since I am no historian of 
science. These sections and also the biographies are based on secondary 
sources. 

The plan of the book is described in Section 1.2. 
I am grateful to Richard Gill for advice on my English in Chapters 2 and 

3, to Steffen L. Lauritzen for translating some Russian papers, and to Olaf 
Schmidt for a discussion of Chapter 10. In particular, I want to thank SBren 
Johansen for discussions on the problem of the duration of play. 

I am grateful to two anonymous reviewers from the publisher for valuable 
comments on the manuscript and for advice resulting in considerable 
reduction of the background material. I thank the copy editor for improving 
my English and transforming it into American. 

I thank the Institute of Mathematical Statistics, University of Copenhagen, 
for placing working facilities at my disposal. 

I thank the Almqvist & Wiksell Periodical Company for permission to 
use material in my paper published in Scandinavian Actuarial Journal, 1987; 
the International Statistical Institute for permission to use material from 
three papers of mine published in International Statistical Review, 1983, 1984, 
and 1986; and Springer-Verlag for permission to use material from my paper 
published in Archive for History of Exact Sciences, 1988. 

I am grateful to the Department of Statistics, Harvard University, for 
permission to quote from Bing Sung’s Translations from James Bernoulli, 
Technical Report No. 2, 1966, and to Thomas Drucker for permission to 
quote from his (unpublished) translation of Nicholas Bernoulli’s De Usu Artis 
Conjectandi in Jure. 

My first book on statistics, written fifty years ago, was dedicated to G. K., 
so is this one. 

ANDERS HALD 

September I988 
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C H A P T E R  1 

The Book and Its Relation to 
Other Works 

1.1 PRINCIPLES OF EXPOSITION 

This book contains an exposition of the history of probability theory and 
statistics and their applications before 1750 together with some background 
material. A history should of course give an account of the time and place 
of important events and their interpretations. However, opinions differ greatly 
on where to put the main emphasis of interpretation. 

We have attempted to cover three aspects of the history: problems, 
methods, and persons. We describe probabilistic and statistical problems 
and their social and scientific background; we discuss the mathematical 
methods of solution and the statistical methods of analysis; and we include 
the background and general scientific contributions of the persons involved, 
not only their contributions to probability and statistics. 

Since history consists of facts and their interpretation, history continually 
changes because new facts are found in letters, archives, and books, and new 
interpretations are offered in the light of deeper understanding based, in this 
case, on the latest developments in probability theory, statistics, and the 
history of science. 

In the 17th and 18th centuries many problems were formulated as 
challenge problems, and answers were given without proofs. Some books on 
probability were written for the educated public and therefore contained 
statements without proofs. In such cases we have tried to follow the author's 
hints and construct a proof which we believe represents the author's 
intentions. 

The material has been ordered more according to problems and methods 
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2 THE BOOK A N D  ITS RELATION TO OTHER WORKS 

than according to persons in an attempt to treat the achievements of the 
various authors as contributions to a general framework. 

A leading principle of the exposition of probability theory and life 
insurance mathematics has been to rewrite the classics in uniform modern 
terminology and notation. It is clear that this principle may be criticized for 
distorting the facts. Many authors prefer to recount the old proofs with the 
original notation to convey the flavor of the past to the reader. There are 
two essential steps in modernization that we have made here. The first is to 
use a single letter, p, say, to denote a probability instead of the ratio of the 
number of favorable cases to the total number of cases, a/(a + b), say, where 
a and b are positive integers. This change of notation conceals the fact that 
nearly all the probabilities discussed were constrained to rational fractions. 
The advantage of this notation was noted by de Moivre (1738, p. 29) who 
writes, “Before I make an end of this Introduction, it will not be improper 
to shew how some operations may often be contracted by barely introducing 
one single Letter, instead of two or three, to denote the Probability of the 
happening of one Event” and, further (on p. 30), that “innumerable cases of 
the same nature, belonging to any number of Events, may be solved without 
any manner of trouble to the imagination, by the mere force of a proper 
Notation.” However, de Moivre did not rewrite the Doctrine of Chances with 
the new notation; he used it  only in his Annuities upon Lives (1725 and later 
editions). We have followed the advice of de Moivre and rewritten the proofs 
in the new notation, feeling confident that the reader will keep in mind that 
most probabilities were defined as proper rational fractions, a fact which is 
nearly always obvious from the context. 

The second great simplification of the proofs is obtained by the 
introduction of subscripts. In analyzing some complicated games of chance, 
for example, Waldegrave’s problem, Nicholas Bernoulli and de Moivre had 
to use the whole alphabet divided into several sections to denote probabilities 
and expectations of the players corresponding to various states of the game. 
De Moivre achieved some simplification by using superscripts in a few cases. 
In many problems they gave the solution for two, three, and four players 
only and concluded that “the continuation of this rule is manifest,” in this 
way avoiding a general proof which would have been rather unintelligible. 
Using modern notation with subscripts, it is easy to rewrite such proofs in 
much shorter form without invalidating the idea of the proof; in fact, we 
believe that our readers will get a clear idea of the proof because they are 
accustomed to this symbolism, just as readers in the past understood the 
original form of the proof because they were educated in that notational 
tradition. 

Comparison of proofs and results in a uniform notation makes evaluating 
the contributions of various authors easier and minimizes the danger of 
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attributing too much to an individual author. Furthermore, the importance 
of the results to the following period and to today becomes evident. 

The same principle of exposition cannot be used for statistics, because 
statistics before 1750 was nonmathematical. We shall therefore illustrate the 
development of statistical methods by typical examples, giving both the 
original data and their analysis at the time and adding some comments from 
a modern point of view. 

The book is written in textbook style, since our main purpose is to give 
an account of the most important results in the classical literature. Like most 
histories of mathematics and science, our exposition concentrates on results 
which have proved to be of lasting importance. 

The persons who laid the foundation of probability theory and statistics 
were natural philosophers having a broader background and outlook than 
scientists today. The word “scientist” was coined about the middle of the 
19th century, reflecting an ongoing specialization and professionalization. 
Nevertheless, we Shall often use the words “mathematician” and “scientist” 
to stress certain characteristics of the persons involved. 

To convey the flavor of classical works, we shall present quotations of 
programs from the prefaces of books, the formulation of important problems, 
and some heated disputes of priority. 

We shall point out priorities, but the reader should be aware of the 
uncertainty involved by taking note of Stigler’s Law of Eponymy, (Stigler, 
1980), which in its simplest form states that, “No scientific discovery is named 
after its original inventor.” 

The driving force behind the development of probability theory and 
statistics was pressure from society to obtain solutions to important 
problems for practical use, as well as competition among mathematicians. 
When a problem is first formulated and its solution indicated, perhaps 
only by a numerical example, the problem begins a life of its own 
within the mathematical community; this leads to improved proofs and 
generalizations of the problem, and we shall see many examples of this 
phenomenon. 

Finally, it should be noted that any history is necessarily subjective, since 
the weight and interpretation of the events selected depend on the author’s 
interests. 

For the serious student of the history of probability theory and statistics, 
we can only recommend that he or she follow the advice given by de Moivre 
(1738, p. 235), discussing the works of James and Nicholas Bernoulli on the 
binomial distribution: “Now the Method which they have followed has been 
briefly described in my Miscellanea Analytica, which the Reader may consult 
if he pleases, unless they rather chuse, which perhaps would be the best, to 
consult what they themselves have writ upon that Subject.” 



4 THE BOOK A N D  ITS RELATION TO OTHER WORKS 

1.2 PLAN OF THE BOOK 

A fuller title of the book would be A history ofprobability theory and statistics 
and their applications to games of chance, astronomy, demography, and life 
insurance before 1750, with some comments on later developments. The topics 
treated may be grouped into five categories: 

Background in mathematics, natural philosophy, and social conditions 
Biographies 
Probability theory and games of chance 
Statistics in astronomy and demography 
Life insurance mathematics 

Probability theory before 1750 was inspired mainly by games of chance. 
Dicing, card games, and lotteries, public and private, were important social 
and economic activities then as today. It is no wonder that intellectual 
curiosity and economic interests led to mathematical investigations of 
these activities at a time when the mathematization of science was going 
on. We shall distinguish three periods. 

The period of the foundation of probability theory from 1654 to 1665 
begins with the correspondence of Pascal and Fermat on the problem of 
points, continues with Huygens’ treatise on Reckoning at Games of Chance, 
and ends with Pascal’s treatise on the Arithmetical Triangle and its 
applications. The correspondence was not published until much later. In 
his treatise, Pascal solves the problem of points by recursion and finds a 
division rule, depending on the tail probability of the symmetric binomial. 
In their correspondence, he and Fermat had solved the same problem 
also by combinatorial methods. Huygens uses recursion to solve the 
problem numerically. He also considers an example with a possibly infinite 
number of games, which he solves by means of two linear equations 
between the conditional expectations of the two players. All three of them 
solved the problem of the Gambler’s Ruin without publishing their method 
of solution. 

After a period of stagnation of nearly 50 years, there followed a decade 
with astounding activity and progress from 1708 to 1718 in which the 
elementary and fragmentary results of Pascal, Fermat, and Huygens were 
developed into a coherent theory of probability. The period begins with 
Montmort’s Essay d’Analyse sur les Jeux de Hazard, continues with de 
Moivre’s De Mensura Sortis, Nicholas Bernoulli’s letters to Montmort, 
James Bernoulli’s Ars Conjectandi, Nicolaas Struyck’s Reckoning of 
Chances in Games, and ends with de Moivre’s Doctrine of Chances. Hence, 
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by 171 8 four comprehensive textbooks were available. We shall mention 
the most important results obtained. They discussed elementary rules of 
probability calculus, conditional probabilities and expectations, combi- 
natorics, algorithms and recursion formulae, the method of inclusion and 
exclusion, and examples of using infinite series and limiting processes. 
They derived the binomial and negative binomial distributions, the 
hypergeometric distribution, the multivariate version of these distribu- 
tions, the occupancy distribution, the distribution of the sum of any 
number of uniformly distributed variables, the Poisson approximation to 
the binomial, the law of large numbers for the binomial, and an approxi- 
mation to the tail of the binomial. They solved the problem of points for a 
game of bowls and for the game of tennis, Waldegrave’s problem, the problem 
of coincidences, and the problem of duration of play, and found the minimax 
solution for the strategic game Her. 

The third period, from 1718 to 1738, was a period of consolidation and 
steady progress in which de Moivre derived the normal approximation 
to the binomial distribution, developed a theory of recurring series, 
improved his solution of the problem of the duration of play, and wrote 
the second edition of the Doctrine of Chances, which became the most 
important textbook before the publication of Laplace’s ThPorie Analyrique 
des Probabilitks in 1812. 

We shall discuss these books in detail. We have, however, singled out the 
most important problems for separate treatment to show how they were 
solved by joint effort, often in competition among several authors. 

Many problems were taken up by the following generation of 
mathematicians and given solutions that have survived until today. We 
shall comment on these later developments, usually ending with Laplace’s 
solutions. 

The successful development of probability theory did not immediately 
lead to a theory of statistics. A history of statistical methods before 1750 
must therefore build on typical examples of data analysis; we have 
concentrated here on examples from astronomy and demography. 

Astronomers had been aware of the importance of both systematic and 
random errors since antiquity and tried to minimize the influence of such 
errors in their planning of observations and data analysis. We shall discuss 
some data by Tycho Brahe from the end of the 16th century as an example. 
The mathematization of science in the beginning of the 17th century 
naturally led many scientists to determine not only the mathematical form 
of natural laws but also the values of the parameters by fitting equations 
to data. They inserted the best sets of observations in the equations, as 
many as the number of parameters, solved for the parameters, calculated 
the expected values, and studied the deviations between observed and 
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calculated values. Prominent examples are Kepler’s three laws on 
planetary motion derived from his physical theories and data collected 
by Copernicus and Tycho Brahe. Kepler’s data were used by Newton to 
check his axiomatic theory. Galileo used several sets of observations on 
the new star of 1572 to compare two hypotheses on the position of the 
star. We shall also see how Newton used an interpolation polynomial to 
find the tangent to the orbit of a comet. 

A paragon for descriptive statistical analysis of demographic data was 
provided by Graunt’s Natural and Political Observations made upon the 
Bills qf Mortality in 1662. Graunt’s critical appraisal of the rather 
unreliable data, his study of mortality by cause of death, his estimation 
of the same quantity by several different methods, his demonstration of 
the stability of statistical ratios, and his life table set up new standards 
for statistical reasoning. Graunt’s work led to three different types of 
investigations: political arithmetic; testing the stability of statistical ratios; 
and calculation of expectations of life and survivorship probabilities. 

Petty also employed Graunt’s method of analysis, although less critical, 
to economic data and coined the term “political arithmetic” for analyses 
of data of political importance. Similar methods were used by natural 
philosophers and theologians to analyze masses of data on human and 
animal populations. The many regular patterns observed were taken as 
proof of the existence of a supreme being and His “original design.” We 
shall remark only slightly on this line of thought. 

It  is surprising that probabilists at the time recognized the importance of 
Graunt’s work and without hesitation used their theory on games of 
chance to describe demographic phenomena. They wrote about the chance 
of a male birth and the chance of dying at a certain age. 

Graunt gave a detailed description and analysis of the yearly variation of 
the sex ratio at birth in London and Romsey and suggested that similar 
investigations should be carried out in other places. Arbuthnott used some 
of Graunt’s data extended to his own time to give a statistical proof, based 
on the symmetric binomial, for the existence of divine providence, a proof 
that was further strengthened by ’sGravesande. Nicholas Bernoulli 
compared the observed distribution of the yearly number of male births 
with a skew binomial distribution, the parameter being estimated from 
the data, and discussed the probability of the observed number of outliers. 
His investigation is the first attempt to fi t  a binomial to data and to test 
the goodness of fit. Some years later, Daniel Bernoulli used the normal 
approximation to the binomial in his analysis of deviations between 
observed and expected values of the number of male births to decide 
between two hypothetical values of the sex ratio. 

Huygens used Graunt’s life table to calculate the median and the average 
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remaining lifetime for a person of any given age. He also showed how to 
calculate survivorship probabilities and joint-life expectations. His results 
were, however, not published, but similar results were published without 
proof by James Bernoulli and later proved by Nicholas Bernoulli. 

The usefulness of probability theory was convincingly demonstrated by 
application to problems of life insurance. In the 16th and 17th centuries, 
states and cities sold life annuities to their citizens to raise money for 
public purposes. The yearly benefit of an annuity was fixed as a percentage 
of the capital invested, often as twice the prevailing rate of interest and 
independent of the nominee’s age. In a report from 1671, de Witt showed 
how to calculate the value of an annuity by means of a piecewise linear 
life table combined with the age of the nominee and the rate of interest. 
De Witt’s life table was hypothetical, although he referred to some 
investigations of the mortality of annuitants. In 1693 Halley constructed 
a life table from observations of the yearly number of deaths in Breslau, 
calculated the first table of values of annuities as a function of the nominee’s 
age, and explained how to calculate joint-life annuities. 

After these ingenious beginnings one would have expected rapid 
development of both mathematical and practical results in view of the 
fact that many economic contracts in everyday life depended on life 
contingencies, but nothing happened for about 30 years. The breakthrough 
came in 1725 with de Moivre’s Annuities upon Lives, greatly simplifying 
both the mathematics and the calculations involved; however, as shown 
by Simpson, de Moivre went too far in his simplifications. Simpson 
therefore constructed his own life table for the population of London, and 
by recursion he calculated tables of values of single- and joint-life annuities 
for various rates of interest. In the strong competition between de Moivre 
and Simpson, a comprehensive theory of life annuities was created, and 
the necessary tables for practical applications provided. 

In some chapters in this book we have supplemented the text with 
problems for the reader, mostly taken from the classical literature. 

Although we have not included every classical paper, or every paper 
commenting on the classical literature, we believe that we have covered 
the most important ones. However, for various reasons two important 
results before 1750 have been omitted. The first is Cotes’s rule (1722) for 
estimating a true value by a weighted mean, when observations are of 
unequal accuracy (see Stigler, 1986, p. 16); the second is Daniel Bernoulli’s 
results (1738) on the theory of moral expectation, the utility of money, and the 
Petersburg problem (see Todhunter, 1865, Jorland, 1987, and Dutka, 1988). 

We shall discuss our reasons for stopping our history at 1750. 
By 1750 probability theory had been recognized as a mathematical 

discipline with a firm foundation and its own problems and methods as 
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described by de Moivre in the Doctrine of Chances. A new development 
began with the introduction of inverse probability by Bayes (1764) and 
Laplace (1 774b). 

By 1750 statistics had still not become a mathematical discipline; a 
mathematical theory of errors and of estimation emerged in the 1750s, as 
described by Stigler (1986). 

Also about 1750, the first phase of the development of a theory of life 
insurance had been completed. In the 1760s life insurance offices arose so 
that new and more accurate mortality observations became available. A 
theory of life assurances was developed, and new ways of calculating and 
tabulating the fundamental functions were invented. 

The reader should note that formulae are numbered with a single number 
within sections. When referring to a formula in another chapter the decimal 
notation is used, (20.5.25) say, denoting formula (25) in $ 5  of Chap. 20. 
Within a chapter the chapter number is omitted so that only section and 
formula numbers are given. 

1.3 A COMPARISON WITH TODHUNTER’S BOOK 

The unquestioned authority on the early history of probability theory is 
Isaac Todhunter (1820-1884) whose masterpiece, A History of the 
Mathematical Theory of Probability from the Time of Pascal to that of 
Laplace, was published in 1865. Kendall (1963) has written a short 
biography of Todhunter in which he gives a precise characterization of 
his work: “The History of the Mathematical Theory of Probability is 
distinguished by three things. It is a work of scrupulous scholarship; 
Todhunter himself contributed nothing to the theory of probability except 
this account of it; and it is just about as dull as any book on probability 
could be.” 

We consider Todhunter’s History an invaluable handbook giving a 
chronological review of the classical literature grouped according to 
authors. For the period before 1750, however, we shall argue that 
Todhunter’s account of important topics is incomplete, that he has 
overlooked the significance of important contributions, and that the trend 
in the historical development is lost by his organization of the material. 

In the many references to Todhunter’s History in the following we shall 
omit the year of publication (1865) and give page references only. 

As a mathematician Todhunter concentrates on the mathematical theory 
of probability and disregards the general background, the lives of the 
persons involved, and the application of their theories to statistics and 
life insurance. 
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Todhunter’s book is ordered chronologically according to authors; each 
important author is allotted a separate chapter in which his works are 
reviewed page by page and commented upon. This method makes it easy 
for the reader to locate the contributions of each author but difficult to 
follow the advances made by various authors to the solution of a given 
problem. We have avoided this dilemma by reviewing the works of each 
author and referring the detailed treatment of the most important topics 
to separate chapters that show the historical development for each topic. 

More important, however, are the different weights given to many topics 
by Todhunter and by us. I t  is not surprising that the significance of a 
theorem or method differs when viewed from the perspectives of 1865 and 
today. Todhunter meticulously reports proofs of many results which are 
without interest today; conversely, he omits proofs of results of great 
importance. We shall give some examples. 

Today one of the most important and interesting topics is the development 
from James Bernoulli’s law of large numbers for the binomial distribution 
through Nicholas Bernoulli’s improved version of James’s theorem and his 
approximation to the binomial tail probability to de Moivre’s normal 
approximation. These three results are treated by Todhunter in less than 
two pages (pp. 72, 131, 192). He states Bernoulli’s theorem without giving 
his proof; he has overlooked the significance of Nicholas’ contribution 
and gives neither theorem nor proof; he states de Moivre’s result for 
p =  1/2 only and indicates the proof by the remark, “Thus by the aid of 
Stirling’s Theorem the value of Bernoulli’s Theorem is largely increased.” 
Todhunter has completely overlooked de Moivre’s long struggle with this 
problem, the importance of de Moivre’s proof as a model for Laplace’s 
proof, and de Moivre’s statement of the theorem for any value of p .  Instead 
of giving the historical development of the method of proof, he gives Laplace’s 
proof (pp. 548-552) because, as he says, previous demonstrations are now 
superseded by that. This is ofcourse a very peculiar argument for a historian. 

It is a common misunderstanding, perhaps due to Todhunter’s incomplete 
account, that de Moivre gave the normal approximation only for the 
symmetric binomial. 

The deficiency of Todhunter’s method is most conspicuous in his analysis 
of the correspondence between Montmort and Nicholas Bernoulli, 
published in the second edition of Montmort’s Essay ( 1  713). These closely 
intertwined letters contain formulations of new problems, usually as a 
challenge to the recipient; theorems without proofs, sometimes with hints 
for solution; replies to previous questions; a running commentary on 
progress with the solution of various problems; and remarks on the 
contributions of other authors. A single letter often treats five to ten 
different topics. It is of course impossible to get the gist of these letters 
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in a page-by-page review; rather, it is necessary to give an overview of 
the contents grouped by subject matter. Todhunter therefore does not 
realize the importance of Nicholas Bernoulli’s work; perhaps he was also 
under the influence of de Moivre who in the later editions of the Doctrine 
tried to conceal the importance of Bernoulli’s results to his own work. 

The most difficult topic in probability theory before 1750 was the problem 
of the duration of play. It was formulated by Montmort in 1708; the first 
explicit solution was given by Nicholas Bernoulli in 1713. Two solutions 
were given by de Moivre in 1718, and these were worked out in more 
detail in 1730 and 1738. Todhunter gives up analyzing this important 
development, instead he uses Laplace’s solution from 1812 to prove de 
Moivre’s theorems. Furthermore, he does not comment on Laplace’s 
solution from 1776 by solving a partial difference equation because this 
method “since [has] been superseded by that of Generating Functions” 
(Todhunter, p. 475). 

The same procedure is used by Todhunter in his discussion of Waldegrave’s 
problem, the probability of winning a circular tournament, which was 
solved incompletely by Montmort and de Moivre. A general solution was 
given by Nicholas Bernoulli, but Todhunter gives only Laplace’s proof 
without noting that Bernoulli’s is just as simple. 

Todhunter’s discussion of the strategic game Her is rather incomplete. He 
has overlooked the fact that Montmort gives the general form of the 
player’s expectation under randomized strategies and that Waldegrave 
solves the problem numerically arriving at  what today is called the 
minimax solution. Misled by Todhunter’s account, Fisher (1934) solved 
the “old enigma of card play” by randomization and reached the same 
solution as Waldegrave did 221 years before. 

Todhunter gives unsatisfactory accounts of James Bernoulli’s and 
Montmort’s probabilistic discussion of the game of tennis, of the problem 
of points in a game of bowls, of Montmort’s discussion of the occupancy 
problem, of Simpson’s solution of the theory of runs, and of several other 
problems mentioned in the following chapters. 

Kendall’s characterization that “it is just as dull as any book on probability 
could be” applies equally well to several sections of the present book. 
Detailed proofs of elementary theorems illustrating the historical 
development are necessarily dull for us, even if they were exciting for them. 
Pascal, Fermat, Huygens, Hudde, James Bernoulli, Montmort, Nicholas 
Bernoulli, de Moivre, and Struyck were all intensely interested in solving 
the problem of the Gambler’s Ruin, which today is considered elementary. 
For statisticians who find examples of games of chance rather dull, it must 
be a consolation to know that dicing and card playing have their 
equivalents in sampling from infinite and finite populations, respectively. 



1.4 WORKS OF REFERENCE 1 1  

1.4 WORKS OF REFERENCE 

Gouraud’s Histoire (1848, 148pp.) gives a nonmathematical and rather 
uncritical exposition of probability theory and insurance mathematics 
beginning with Pascal and Fermat and ending with Poisson and Quetelet. 
It contains many references and was therefore useful for Todhunter when 
he wrote his History (1865, 624pp.). 

The first two chapters of Czuber’s Entwicklung der Wahrscheinlichkeits- 
theorie (1899, 279pp.) covers nearly the same period as the present book 
but in less detail. Czuber indicates some methods of proof without giving 
complete proofs. 

The books by Edwards (1987, 174pp.), Pascal’s Arithmetical Triangle, and 
Hacking (1975, 209pp.), The Emergence of Probability, may be read as an 
introduction to the present one; they give a more detailed treatment of 
certain aspects of the history up to the time of Newton and Leibniz. 

David (1962, 275pp.) gives a popular history of probability and statistics 
from antiquity through the time of de Moivre, stressing basic ideas and 
providing background material for the lives of the great probabilists. 

Jordan’s book (1972,619pp.) contains a mathematical account of classical 
probability theory organized according to topics, with some references to 
the historical development. 

The first 81 pages of Maistrov’s book (1974, 281pp.) gives a sketch of the 
history of probability theory before 1750. 

Daston’s Classical Probability in the Enlightenment (1988, 423pp.) gives a 
comprehensive, nonmathematical study of the basic ideas in classical 
probability theory in their relation to games of chance, insurance, 
jurisprudence, economics, associationist psychology, religion, induction, 
and the moral sciences, with references to a wealth of background material. 
Daston’s discussion of the history of probabilistic ideas is an excellent 
complement to our discussion of mathematical techniques and results. 

Turning to books on the history of statistics, we mention first Karl 
Pearson’s The History ofstatistics in the 17th and 18th Centuries, Lectures 
given at University College, London, 1921-1933, edited by E. S .  Pearson 
(1978, 744pp.). This is a fascinating book with an unusual freshness that 
conveys Pearson’s enthusiasm and last-minute endeavors in preparing his 
lectures. It describes “the changing background of intellectual, scientific 
and religious thought,” and gives lively biographies with digressions into 
the fields of mathematics and history of science. Pearson does not discuss 
statistics in the natural sciences but is mainly concerned with political 
arithmetic, demography, and the use of statistics for theological purposes. 
Pearson does not conceal his strong opinions on the subjects treated and 
the persons involved, which occasionally lead to biased evaluations. 
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Stigler’s The History of Statistics (1 986,410pp.) is the first comprehensive 
history of statistics from 1750 to 1900, it also contains a discussion of 
Bernoulli’s law of large numbers and de Moivre’s normal approximation 
to the binomial. 

Westergaard’s Contributions to the History ofStatistics (1932,280pp.) gives 
the history of political arithmetic, population statistics, economic statistics, 
and official statistics before 1900, as well as a short survey of statistical 
theory. It  is a nonmathematical, well-balanced, and scholarly work, with 
valuable references to the vast literature on descriptive and official 
statistics. 

John’s Geschichte der Statistik (1884, 376pp.) contains a description of the 
development of German political science, at that time called statistics, and 
of political arithmetic and population statistics before 1835. 

Meitzen’s Geschichte, Theorie und Technik der Statistik (1  886, 240pp.) 
discusses the history of official statistics with the main emphasis on its 
development in Germany. 

Following the pioneering work by M. G. Kendall and F. N. David in the 
1950s and 1960s, there has been growing interest in the history of 
probability and statistics, and a great number of papers have been 
published; the most important, relating to the period before 1750, are 
listed in the References at the end of this book. Several important papers 
have been reprinted in Studies in the History of Statistics and Probability, 
Vol. 1 edited by E. S. Pearson and M. G. Kendall (1970) and Vol. 2 edited 
by M. G. Kendall and R. L. Plackett (1977). A Bibliography of Statistical 
Literature Pre-1940 has been compiled by Kendall and Doig (1968). 

A comprehensive account of the development of life insurance and its 
social, economic, and political backgrouiid before 19 14, with some remarks 
on mathematical results has been given by Braun in Geschichte der 
Lebensversicherung und der Lebensversicherungstechnik ( 1925, 433pp.). 

For the biographies we have of course used the Dictionary of ScientiJic 
Biography, edited by C .  C. Gillispie (1970-1980) and the individual 
biographies available. 

As reference books for the history of mathematics we have used Cantor 
(1880-1908) and Kline (1972). 

For long periods of time there existed a considerable backlog of 
publications of the Academies at London, Paris, Turin, etc., so that papers 
were read some years before they were published. Referring to such papers 
we have used the date of publication; in the list of references, however, we 
have usually added the date of communication to the Academy. 



CHAPTER 2 

A Sketch of the Background 
in Mathematics and Natural 
Philosophy 

2.1 INTRODUCTJON 

The first mathematical analyses of games of chance were undertaken by 
Italian mathematicians in the 16th century. The main results, which remained 
unpublished for nearly a century, were obtained by Cardano about 1565. 

It was almost 100 years after Cardano before probability theory was taken 
up again, this time in France by Pascal and Fermat (1654). Their work was 
continued by Huygens (1657) in the Netherlands. He wrote the first published 
treatise on probability theory and its application to games of chance. 

About the same time a statistical analysis of data on the population of 
London was carried out by Graunt (1662). He did not have any knowledge 
of probability theory. 

The first contributions to life insurance mathematics were made by de 
Witt (1671) in the Netherlands and by Halley (1694) in England. They 
combined Huygens’ probability theory with Graunt’s life table. 

Error theory and the fitting of equations to data were developed in 
astronomy and navigation. Outstanding contributions are due to the Danish 
astronomer Tycho Brahe in the late 16th century, the German astronomer 
and mathematician Kepler in the beginning of the 17th century, and the 
Italian natural philosopher Galileo. 

The problems taken up were of great current interest scientifically, socially, 
and economically. Their solutions depended on the mathematical 
background and sometimes required the development of new mathematical 
tools. 

13 
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All these activities were well under way just before the Newtonian 
revolution, which was of decisive importance both mathematically and 
philosophically to further development. 

For historical background we shall sketch the principal progress in 
mathematics and natural philosophy of importance for our subject before 
1650. However, these fields only constitute a small part of the cultural 
background at the time. Most natural philosophers had a very broad 
education, worked in many different areas, and entertained ideas which today 
would be called superstitious. Belief in astrology, alchemy, and magic was 
widespread. Cardano and Tycho Brahe are outstanding examples of the 
versatile men of the Renaissance. Besides being a great mathematician, 
physician, and scientist, Cardano believed in and practiced divination, 
occultism, and healing by magic. The astronomer Tycho Brahe worked also 
in astrology and alchemy and produced many medicaments, for example, an 
elixir against the then common and dangerous epidemic diseases. Both men 
also made important technical inventions and thus bear witness to the close 
relationship between science and technology. 

The purpose of the present chapter is to refresh the reader’s memory on 
some of the salient historical facts before 1650. It is, however, not possible to 
point to a simple causal explanation of the development of probability and 
statistics in terms of these facts, but the record should make it easier for the 
reader to review and to grasp the spirit of the time. 

The exposition is necessarily very brief; it is also biased in the sense that 
it concentrates on the most conspicuous events in the development of 
mathematics and natural philosophy, and it emphasizes those events that 
are of particular interest for the history of probability and statistics. 

2.2 ON MATHEMATICS BEFORE 1650 

Classical Greek mathematics had been nearly forgotten in Western Europe 
in the early Middle Ages. The Crusades and increasing trade and travel in 
the Mediterranean countries from about I 100 brought the Europeans into 
contact with the Arabs and the Byzantines who had preserved the Greek 
works. During the later Middle Ages and the Renaissance, the classical works 
were translated, commented upon by European mathematicians, and put to 
good use in connection with many practical applications, such as navigation, 
surveying, architecture, and commercial arithmetic. A survey of the existing 
mathematical knowledge with a view to applications was given by Luca 
Pacioli (c. 1445-c. 15 17) in 1494. 

In the 16th century considerable progress was made in arithmetic, algebra, 
and trigonometry. Zero was accepted as a number, and negative and irrational 



2.2 ON MATHEMATICS BEFORE 1650 15 

numbers came gradually into use. Complex numbers occurred in the solution 
of quadratic equations, but they were considered “useless.” The decimal 
system of notation was introduced for fractions, replacing the ratio of two 
integers. 

Two prominent Italian mathematicians, Niccolo Tartaglia (c. 1499-1 557) 
and Girolamo Cardano (1501-1576), wrote textbooks containing new results 
in arithmetic and algebra. For example, they gave methods for the solution 
of equations of the third and fourth degrees, and Cardano noted that the 
number of roots equaled the degree of the equation. 

The French mathematician Franvois Vieta (1 540-1603) published several 
works on plane and spherical trigonometry in which he systematized and 
extended the formulae for right and oblique plane triangles and for spherical 
right triangles. He also found many trigonometric identities, for example, 
the important expression for sin nx in terms of sin x. Vieta’s trigonometric 
research was mainly inspired by problems in astronomy and surveying; 
however, he also showed how to use trigonometric formulae for the solution 
of certain algebraic equations. 

Progress in algebra was hampered by the tradition that geometry was the 
only real mathematics, and algebraic results had therefore to be given a 
geometrical interpretation. For example, algebraic equations had to be 
written in homogenous form of at  most the third degree. Vieta realized, 
however, that algebra could be used to prove geometrical results and to 
handle quantities whether or not they could be given a geometrical 
interpretation. Thus algebra gradually became a separate mathematical 
discipline independent of geometry. 

The increasing use of mathematics in practice resulted in the computation 
and publication of many tables, particularly tables of trigonometric functions. 

Texts on arithmetic and algebra in the Renaissance were written in a 
verbal style with abbreviations for special words: for example p for plus, m 
for minus and R for square root. According to Kline (1972, p. 260), the 
expression (5 + - ) (5  - G) = 25 - (- 15) = 40 was written by 
Cardano as 

5p: Rm: 15 

5m: Rm: 15 

25m:m: 15 qd est 40. 

Gradually, symbols were introduced for the unknowns and exponents for 
powers. A decisive step was taken by Vieta, who used letters systematically 
also as coeficients in algebraic equations. The sign = for equality was 
proposed about the middle of the 16th century but was not universally 
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accepted. Descartes used w as a stylized ae (from aequalis), and this was still 
used by Bernoulli in his Ars Conjectandi in 1705. The symbol 00 for infinity 
was introduced by Wallis in 1655. The letter R was introduced in the beginning 
of the 18th century but de Moivre still used c (derived from circumference) 
as late as 1756 in his Doctrine of Chances. 

Essential steps in the free use of letters and special signs for mathematical 
symbols were first taken by Descartes, Newton, and Leibniz. 

The most important advance in arithmetic in the 17th century was the 
invention of logarithms. The German mathematician Michael Stifel 
(1486-1567) considered in 1544 the correspondence between terms of an 
arithmetic and a geometric series and stated the “four laws of exponents,” 
but he did not take the decisive step of introducing logarithms. This was 
done by John Napier (1550-1617), Laird of Merchiston in Scotland, a 
prominent politician and defender of the Protestant faith. He published two 
books on logarithms, the Descriptio (1614) and the Constructio (1619), the first 
giving the definitions and working rules of logarithms and a seven-figure 
table of logarithmic sines and tangents, the second containing theory and 
proofs. Napier considered the synchronized motion of two points, each 
moving on a straight line, the one with constant velocity, and the other with 
a decreasing velocity proportional to the distance remaining to a fixed point, 
the initial velocity being the same. In modern notation his model may be 
written as 

dxfdt = r, 

dyldt = - y, 

x(0) = 0, 

y(0) = r, 

with the solution x( t )  = rt, and 

It follows that the Naperian logarithm, log, y = x, is a linear function of the 
natural (or hyperbolic) logarithm 

r 
log,y=rlog,-. 

Y 

Napier constructed his table of logarithms by means of a detailed 
tabulation of the function g(x) = r(l - E)X, x = 0, 1,. . . , for r = lo7 and for 
small positive values of E. He carried out these calculations personally during 
a period of nearly 20 years. 
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Since log, r = 0, and 

Napier realized that his definition of logarithms was unpractical, and in 
cooperation with Henry Briggs (1  561-1630), professor of mathematics first 
in London and later in Oxford, he proposed the system of common (or 
Briggsian) logarithms with base 10. From 1615 Briggs devoted the main part 
of his time to the construction of logarithmic tables. In 1617 he published 
the first table of common logarithms of the natural numbers from 1 to 1000. 
This was followed by his Arithmetica Logarithmetica (1624) containing the 
logarithms of the natural numbers from 1 to 20,000 and from 90,000 to 
100,OOO to 14 decimal places, with an introduction on the construction of 
the table and examples of arithmetical and geometrical applications. 
Posthumously occurred his Trigonometria Brittanica (1 623) containing sines, 
tangents, and their logarithms to 14 decimal places. Many other tables were 
published about the same time so that 20 years after Napier’s book, a wealth 
of logarithmic tables was available, and for the next 300 years logarithmic 
tables were the most important tools for computational work. In Napier 
Tercentenary Memorial Volume (19 15) Glaisher writes, 

By his invention Napier introduced a new function into mathematics, and in his 
manner of conceiving a logarithm he applied a new principle; but even these 
striking anticipations of the mathematics of the future seem almost insignificant 
by comparison with the invention itself, which was to influence so profoundly the 
whole method of calculation and confer immense benefits upon science and the 
world. 

For more details on the history of logarithms, we refer to Naux (1966, 1971) 
and Goldstine (1977). 

The great progress in physics and astronomy in the beginning of the 17th 
century by Galileo and Kepler had a profound influence on the direction of 
mathematics. By fitting mathematical equations to data, they obtained simple 
descriptions of physical phenomena, and they thus demonstrated the 
usefulness of mathematics in science and technology. All the great 
contributions to  mathematics in the following centuries came from men who 
were as much scientists as mathematicians. 

As natural tools for his work in astronomy Johannes Kepler (1 571 - 1630) 
worked on interpolation; logarithms; tabulation of trigonometric functions 
and logarithms; the mathematics of conics, for example, the gradual change 
of one conic into another by a change of the parameters; the length of curves; 
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and the areas and volumes limited by curves and surfaces. He calculated 
such areas and volumes as the sum of a large number of small sections. 

In the 1630s and 1640s many mathematicians worked on the area 
(integration) problem. Cavalieri ( 1  598- 1647) invented a method of 
“indivisibles,” a geometrical method for finding areas and volumes by means 
of an infinite number of equidistant parallel linesegments and areas, 
respectively. Other mathematicians, such as Fermat, Roberval, Pascal, and 
Wallis, solved concrete problems either by Cavalieri’s method or by 
approximating the area under a curve by the sum of the areas of suitably 
chosen rectangles with bases of the same length, letting the number of 
rectangles increase indefinitely and keeping only the main term of the sum. 
Using the latter method, Fermat, for example, worked out the integral of x“ 
over a finite interval for all rational n except - 1. A general method of 
integration (and differentiation) had, however, to wait for the works of 
Newton and Leibniz in the latter part of the century. 

Practical problems in optics, perspective, and cartography led Girard 
Desargues (1591-1661) to use projection and section as a general method in 
geometry, and he thus founded modern projective geometry. He studied 
transformation and invariance for the purpose of deriving properties of the 
conics from those already proved for the circle. 

The most influential natural philosopher and mathematician in the first 
half of the 17th century was Rent Descartes (1596-1650). Here we shall only 
mention some mathematical results contained in his La GPomttrie (1637). 
Descartes continued Vieta’s attempts to introduce better symbolism. For 
example, he introduced the rule of using the first letters of the alphabet for 
constants and coefficients and the last for variables and unknowns. He also 
continued Cardano’s and Vieta’s algebraic works. He asserted that the 
number of roots in a polynomial equation f ’ (x )  = 0 equals the degree of f ( x )  
and, furthermore, that f ( x )  is divisible by x - a  if and only if f ( a )  = 0. He 
considered algebra to be an extension of logic and independent of geometry 
and used algebra to solve geometrical construction problems. He founded 
what today is called analytic or coordinate geometry by introducing (oblique) 
coordinate axes and defining a curve as any locus given by an algebraic 
equation. In particular, he studied the conics and the correspondence between 
their algebraic and geometrical expressions. He also began the study of curves 
of higher degrees. The important problem of finding the tangent of a curve 
was solved by a combination of geometrical and algebraic reasoning. 

About the same time, and independently, Fermat solved nearly the same 
problems in analytical geometry, but since his works were not published 
(they only circulated in manuscript), he did not have the same influence as 
Descartes. 

Frans van Schooten ( I  61 5-- 1660), professor of mathematics in Leiden, 
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translated La GPomktvie into Latin, which was still the international scientific 
language. He also added his own commentary and taught Cartesian geometry 
to his students. Because his translation was much in demand, he published 
a much enlarged second edition, which besides his own commentaries 
contained essential contributions by his students Huygens, de Witt, and 
Hudde, whom we shall meet later in their capacities as probabilists. 

The early history of combinatorics is rather obscure (see Biggs, 1979). 
From numerical examples given by the Indian mathematician Bhaskara 
about 1150, it seems that he knew the general formulae for the number of 
permutations of n objects and the number of combinations of r among n 
objects. From the Hindus this knowledge spread to the Europeans through 
the Arabs. 

The binomial expansion and the corresponding arithmetical triangle of 
coefficients originated also among Hindu and Arab mathematicians. The 
arithmetical triangle and its construction are explained by the Arab 
mathematician al-Tusi in 1265 but is not found in European works before 
the 16th century. 

The relationship between the combinatorial formula and the binomial 
coefficient was recognized by Marin Mersenne ( I  588- 1648) in 1636. Finally, 
a unified theory of the combinatorial numbers, the figurate numbers, and 
the binomial coefficients was developed by Pascal in 1654 and published in 
1665. 

The previous remark that the early history of combinatorics is rather 
obscure is no longer true after the publication of Pascal's Arithmetical 
Triangle by Edwards (1987). Here the history of the arithmetical triangle is 
traced back to Pythagorean arithmetic, Hindu combinatorics, Arabic 
algebra, and Chinese and Persian mathematics, and a meticulous study of 
the development in Europe is given, comprising contributions by Tartaglia, 
Cardano, Stifel, Mersenne, and Pascal and ending with the use of the binomial 
coefiicients in the works of Wallis, Newton, Leibniz, and Bernoulli. We shall 
return to this book in $94.3 and 5.2. 

The above sketch of the history of mathematics before 1650 is essentially 
based on the book by Kline (l972), where details and references may be found. 

2.3 ON NATURAL PHILOSOPHY BEFORE 1650 

The 12th century saw the rise ofthe European university with its four faculties: 
theology, law, medicine, and the arts. The curriculum of the arts embraced 
grammar, logic, rhetoric, arithmetic, music, geometry, and astronomy. Most 
teachers and scholars had a clerical education, and Latin, the official language 
of the Church, became the universal scholarly language. University teaching 
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and research were dominated by Christian theology and the heritage of the 
Greeks. The classical Greek works were read in Latin translation, often 
obtained by translating Arab editions. The most important works were by 
Aristotle in philosophy, ethics, and logic; Euclid in geometry; Ptolemy in 
astronomy; and Galen in medicine. 

In the 12th and 13th centuries many philosophers wrote commentaries 
on the Scriptures and the Greek classics for the purpose of developing a 
general philosophy uniting these two lines of thought. The attempts to 
reconcile Aristotelian ideas with Christian theology resulted in a firmly 
established philosophy which has been called Scholasticism. Among the 
scholastic philosophers the most famous was Thomas Aquinas (1 225- 1274) 
whose system of thought was later authorized by the Catholic Church as 
the only right one. It became the dominant philosophy for about 400years. 

Aristotle’s scientific results were considered authoritative, but his 
inductive-deductive method by which these results had been obtained was 
pushed into the background. Scholasticism took over Aristotelian logic with 
its laws of reasoning (the doctrine of syllogism) and used it to create a system 
of theological explanations of both natural and supernatural phenomena. It 
also adopted Aristotle’s natural philosophy with its teleological explanations, 
its distinction of sublunary matter into four elements (earth, water, air, and 
fire), and its conception of an immutable universe of celestial bodies set into 
motion by God. The natural motion of terrestrial elements was supposed 
to be linear, whereas the motion of the heavenly bodies was circular. The 
immutability of the universe was in agreement with the Scriptures and with 
the deterministic outlook of Christian theology, which supposed that 
everything was created by the will of an all-powerful God. 

The exegetic and speculative nature of scholasticism led to opposition, 
particularly among English philosophers, who advocated the importance of 
observation, experimentation, and induction in natural philosophy as a 
supplement to the revelations in the Scriptures. The most prominent 
spokesman of this school was William of Ockham (1285-1349), who is most 
known today for the maxim called “Ockham’s Razor”: “Entities are not to 
be multiplied without necessity.” This philosophical principle of economy of 
the number of concepts used in the construction of a theory had great 
importance for the development of logic, mathematics, and natural 
philosophy. 

A long period of gradual progress in wealth and knowledge was disrupted 
by the Black Death in 1348. In just a few years about one-third of the 
population of Europe died of the plague. It took about 100 years for Europe 
to recover from this catastrophy, which was further aggravated by the 
Hundred Years’ War (1 338- 1453) between England and France. 

The second half of the 15th century was a period with many inventions 
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made by practical men, such as artisans, architects, shipbuilders, and 
engineers. A considerable metal-working and mining industry was developed. 
For example, rails were used to further transport in mines, and suction pumps 
were constructed for drainage. Many inventions of importance for shipping 
and warfare were made. Charts and instruments for navigation, such as the 
magnetic compass, the quadrant, and the astrolabe, were developed, and 
ocean-going sailing ships were built. The effectiveness of gunpowder in 
warfare was greatly improved by the construction of cannons and handguns. 
These inventions were the necessary conditions for the great voyages of 
exploration about 1500 and the following conquests overseas with their 
wide-ranging consequences for daily life in Europe. 

About 1450 printing by movable type was invented, and Gutenberg set 
up his printing press in Mainz. The printing of illustrations from engraved 
metal plates also became common. The new techniques spread rapidly all 
over Europe. The transition from handwritten to printed books was a 
technological advance with revolutionary effects not only in the world of 
learning but in religion, politics, art, and technology as well. The next 50 
years saw the printing of thousands of books both in Latin and the vernacular 
such that the knowledge hitherto accumulated in libraries for the few suddenly 
became available for the many, particularly for the laity. Printed books helped 
to spread the culture of the Renaissance and to further the Reformation. 

The extraordinary growth of trade and industry in the Italian city-states 
in the 15th century created a new class of merchants and bankers who used 
their great wealth to support not only artists but artisans and scientists as 
well for the purpose of furthering the development of useful methods for the 
new competitive capitalist economy. The intellectual outlook gradually 
changed from the authoritative scholastic philosophy to a more independent 
way of thinking based on observations and experiments. 

Freedom of thought also spread to religious matters through the 
Reformation in the first half of the 16th century. Protestantism in its various 
forms (Lutherans, Calvinists, Huguenots, Puritans, Presbyterians) spread all 
over Europe (except for Italy and Spain, which remained Catholic). The 
bible was translated from Greek into the national languages, commentaries 
were issued, and the laity were encouraged to read and interpret the Scriptures 
themselves. The struggle between Protestantism and Catholicism, mixed with 
strong economical and political interests, led in many countries to civil war, 
with increased intolerance and orthodoxy on both sides. 

Among the measures taken by the Catholic Church to identify and 
suppress its opponents were the establishment of the Holy Office, the 
Inquisition in Rome in 1542, and the Index librorurn prohibitorurn (Index of 
prohibited books) in 1559. This list came to comprise the famous books by 
Copernicus, Galileo, Kepler, and Descartes. In due course, when the 
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Lutheran, Calvinian, and Anglican Churches acquired secular power, they 
also forced their dogmas on society, in particular on schools and universities. 
Protestantism, however, did not develop an all-embracing philosophy 
covering not only religious and moral but also scientific matters, and the 
conflict between the Reformed Churches and the ongoing scientific revolution 
therefore became less severe. 

The works of Pythagoras and Plato were studied with renewed interest 
during the Renaissance, and their idea of a rational and harmonious universe 
describable in mathematical terms was taken over. The Church accepted the 
idea that an omniscient God has created the universe according to simple 
mathematical laws, originally unknown to man. I t  therefore became a 
praiseworthy enterprise to study and disclose these laws to obtain a better 
understanding of God and his “original design.” 

The Catholic Church, however, considered the laws of nature found by 
the scientists as hypotheses or practical computational devices, which were 
accepted as true explanations of nature only if  they did not contradict the 
dogmas of the Church. This attitude gave rise to endless conflicts between 
scientists and the dogmatists of the Church, which seriously restricted the 
lives and modes of expression of such men as Copernicus, Cardano, Galileo, 
Kepler, and Descartes. 

The scientific revolution in the 16th and 17th centuries, which forms the 
foundation of modern mathematics and science, may summarily be 
considered to begin with the publication of Nicholas Copernicus’ De 
Reuolutionibus Orhiirm Coelestium (On the Revolutions of the Celestial 
Spheres) in 1543 and reaching its culmination by Isaac Newton’s Philosophiae 
Naturulis Principia Matheinatica (The Mathematical Principles of Natural 
Philosophy) in 1687. 

Among astronomers, Copernicus’ book was received as a great work in 
mathematical astronomy comparable only to Ptolemy’s Ahayest ,  which had 
been the basis for all astronomy since about A.D. 150. However, Copernicus’ 
heliocentric model gave no better predictions of phenomena than did 
Ptolemy’s geocentric model, and Copernicus did not provide any empirical 
evidence for his hypotheses. The strength of the Copernican model was its 
simple and harmonious explanations of planetary motions and the natural 
ordering of the earth and the planets in relation to the sun. A few astronomers 
accepted the Copernican ideas and published books with improved versions 
of Copernicus’ mathematics and tables, but general acceptance had to wait 
until  the beginning of the 17th century. 

Beyond the small circle of astronomers, Copernicus’ main ideas of the 
diurnal rotation of the earth and the earth’s yearly revolution around the 
sun just as another planet were generally rejected and ridiculed as being at  
variance with experience and with the Scriptures. Luther, Melanchthon, and 


