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Preface 

The goal of this book is to present the major results of classical measure and inte- 
gration theory in as clear, rigorous, and detailed a fashion as possible. This book as- 
sumes that the reader has studied advanced calculus and elementary analysis. For 
example, the first eight chapters of Walter Rudin’s Principles of Mathematical 
Analysis should provide a strong preparatory framework for the material in this 
book. 

Measure Theory and its sister Integration Theory are viewed by some as special 
topics to be subsumed under the larger heading of Analysis, and many analysis 
books cover these topics in varying degrees of detail. However, these topics are rich 
enough that they can stand alone as deep and fascinating topics. Modern probability 
theory and mathematical statistics rely heavily on measure and integration theory, 
and to understand the former topics, one must be competent in the latter topics. 

In the writing of proofs and in my choice of notation, I have tried to be as explic- 
it as possible. Elegance or a sense of aesthetics have without exception deferred to 
clarity, although one can certainly be both clear and elegant in certain situations. If 
anything, I have erred on the side of perhaps showing too many details, although I 
believe most readers will at some time be grateful for the details. 

Anybody who knows the area well and purviews this book will see the influence 
of the texts of Walter Rudin, Kai Lai Chung, and Paul Halmos. One will also see, in 
tone and in the style of presentation, the influence of those magisterial and stupen- 
dous works Real and Abstract Analysis by Edwin Hewitt and Karl Stromberg, and 
Probability and Measure by Patrick Billingsley. All of these men and their works 
were my teachers in this area, and any apparent profundity or excellence on my part 
is merely a reflection of their mastery and presentation. I make absolutely no claim 

xi 
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to originality in this book, as all of the material within is quite classical. My contri- 
bution comes [so I hope] in making certain difficult areas of the classical material 
very clear and accessible to the reader. 

There are exercises found at the end of almost every section. These exercises 
range from being trivialities to being quite substantial developments in and of them- 
selves. Hints or outlines are provided for many of the more substantive claims made 
in the exercises. As Hewitt and Stromberg say in their introduction, the more heroic 
readers may ignore the hints and outlines, but the hope is that every reader will be 
grateful for some of them. Certain exercises are marked with an asterisk; these exer- 
cises are results that are used implicitly or explicitly in later work. I believe that 
some of the exercises, besides providing useful extensions or side comments per- 
taining to the results in the text, are also interesting on their own merits. Exercises 
are quite often stated as assertions. For example, if P has property X appears in the 
exercise, this should be interpreted as Give a proof of the claim that P has property 
X. At any rate, the reader shouldn’t have any problem figuring out exactly what is 
asked of him in the exercises. As with the material in the text, the exercises are 
again of a classical nature; I again make no claim of originality in this regard. 

I believe that this book could serve as a primary or supplementary text for ( I )  a 
semester-long or year-long real analysis sequence that deals heavily with integration 
and measure theory, (2) a complementary background text for graduate courses in 
analysis, probability, and mathematical statistics, and, of course, (3) self study by 
those with mathematical maturity and the requisite background. This book is solidly 
“graduate-level” if we average over all of the contents. [There are some areas that 
solid and uncommonly mature undergraduates would find accessible, and there are 
some areas that require set theoretic considerations that are usually not found until 
later in graduate school, if it all.] 

It may be helpful to briefly discuss the material in this book, so a relatively short 
description of the chapters will now be given. 

Chapter 1. Sections 1-5 are required, and Sections 6 and 7 are optional. The 
first five sections are straightforward, and shouldn’t pose much of a prob- 
lem. I have tried to give the reader as explicit a description of Bore1 sets as 
possible without being too pedantic. Sections 6 and 7 are fairly deep and in- 
volved, but the advanced reader may find them worth the study. With only a 
few very tangential exceptions, nothing from Sections 6 and 7 will be used 
in later work. 

Chapter 2. Those who merely want to study measures in the abstract can possibly 
get by with only the first two sections. However, this would require missing 
out on the construction of Lebesgue measure, which surely is an important 
item. Therefore, Sections 3 and 4 are also highly recommended. The first two 
sections are used everywhere in the text. Sections 3 and 4 are used primarily 
in Chapters 3, 4, and 7 when dealing with Euclidean space. The instructor 
should at least cover Sections 1-3 thoroughly. 

Chapter 3. This is where we obtain our first collection of deep and foundational 
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results. A minimalist approach covers the first six sections, although really all 
ten sections should be covered in detail. This chapter is far deeper than the 
first two chapters, representing a collection of some of the most important re- 
sults in measure theory. 

Chapter 4. Sections 1-4 are required, as they discuss our rigorous formulation of 
length, area, volume, and so on. These sections serve as a sort of apologetic 
for all of the work done in Chapters 2 and 3 in the sense that we show that 
Lebesgue measure does everything [or almost everything] that we expect 
length, area, volume, [and so on] to do. Sections 5-9 are optional, but in my 
opinion they are fascinating on their own merits. It is my hope that those who 
read these latter sections find the results of interest. 

Chapter 5. Sections 1-7 are required, while Section 8 is optional. Like Chapters 1 
and 2, this section is really nothing more than a collection of definitions and 
some basic results that may not be seen as anything more than necessary evils 
for the more interesting things to come. This chapter in essence is the grab- 
bag of the results needed to construct the Lebesgue integral in Chapter 6. 

Chapter 6. This chapter is the very soul of the book, and nothing can be safely 
skipped by the reader. In this chapter, we painstakingly construct the abstract 
Lebesgue integral, proving many properties concerning it. This chapter will 
be heavily used in all that follows. 

Chapter 7. This fairly short chapter demonstrates that Lebesgue and Riemann in- 
tegrals coincide in a large class of situations. Those pressed for time may skip 
this chapter and take its results for granted. However, there is nothing particu- 
larly hard about the theory. Section 5 may seem unimportant at first, but it 
will be used in the [optional] discussion of convolutions in Chapter 10. I 
would have liked to include a careful buildup to a general change of variables 
result for multiple integrals, but space considerations prevent such a buildup. 
The same space considerations prevent a detailed discussion of the famous 
theorems of Lebesgue that relate derivatives to Lebesgue integrals. 

Chapter 8. This and the following three chapters present the main avenues 
through which one takes the theory of Chapter 6 .  For this sizable chapter, the 
first seven sections are absolutely required, as these results and discussions 
are foundational for both analysis and measure theory. Sections 8 and 9 may 
be thought of as optional, especially in light of the fact that the main result of 
these two sections will be obtained [in a slightly weaker form] using the tech- 
niques of Chapter 9. 

Chapter 9. Section 1 is essential, presenting the famous and important Radon- 
Nikodym Theorem. Section 2 is a fairly deep section, and some may justifi- 
ably find that the generalization to the Radon-Nikodym Theorem obtained in 
that section is not worth all of the extra work. It is there for those who are in- 
terested, and those who are not interested [or are pressed for time] need not 
worry that this section will be needed for later work. Section 3 presents a sec- 
ond proof of the Riesz Representation Theorem as originally given in Section 
8.9. Readers who skipped Sections 8.8 and 8.9 might want to study this sec- 
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tion so that the Riesz Representation Theorem may be seen at least once. Sec- 
tion 4 is a long and involved section that may be safely skipped by those who 
are not planning to study Chapter 1 1, or who want to study the Strong Laws in 
Chapter 11 without spending so much time on the constructions given there. 
[Section 4 in no way requires Sections 2 or 3.1 For those who will want all of 
the details behind the Strong Laws, this section is absolutely essential, form- 
ing a key component for the convergence results given in Section 3 of Chapter 
11. 

Chapter 10. This is the longest chapter in the book, and presents the basic theory 
regarding product measures and integrals over product spaces. Despite the 
length of this chapter, those who are in a hurry can get by with merely cover- 
ing the first two sections, where a very complete and lucid presentation of the 
standard theory is given. The remaining four sections present interesting ap- 
plications of the Fubini Theorems and the general theory of product mea- 
sures, and are there for those who want to see “Fubini in action” and the like. 
However, these four sections are not used in Chapter 11, so the lecturer may 
pretty much do as he pleases with these sections. It is hoped that some readers 
will appreciate the discussion of convolutions and the famous Hardy-Little- 
wood Maximal Theorem. 

Chapter 11. Chapter 11 discusses the product of two measure spaces, while this 
chapter discusses arbitrary products of measure spaces. There are five sec- 
tions in this chapter. The first two sections carefully [some might say tedious- 
ly] construct the requisite items, showing that certain objects actually exist 
and make sense. Depending on one’s tastes and desires, the work produced by 
these two foundational sections may be viewed as interesting or an annoy- 
ance. Those who are under a time constraint might be able to get away with 
covering the notation and definitions, while presenting the basic ideas and re- 
sults without spending a lengthy amount of time on their proofs. However, 
part of measure theory and mathematics in general is a quest for rigor and de- 
tails, so I would encourage everybody to study the first two sections, painful 
as they might be. Section 3 of this chapter may be thought of as a first appli- 
cation of the theory of Sections 1 and 2, or it may be regarded as more ma- 
chinery needed to state and prove the Strong Laws of Large Numbers. The 
same comments regarding Sections 1 and 2 apply to Section 3. Sections 4-6 
represent the pinnacle of the chapter [and perhaps of the entire book], where 
careful proofs of the famous Strong Laws are presented. It would have been of 
interest to present some further topics regarding infinite-dimensional product 
spaces, such as Martingale Theory, Kakutani’s Dichotomy, Brownian Motion, 
and a general treatment of stochastic processes, but limitations of space [and 
the author’s energy!] and a general desire to not wander too far from the beat- 
en path prevent their inclusion. 

My hope has been to write well enough and clearly enough that even the most 
advanced concepts appear accessible to general readers pursuing a Ph.D. or gradu- 



ate degree in mathematics, statistics, or a field that requires a rigorous background 
in integration and measure theory. Those who read the book will of course be able 
to make up their own minds on whether I have succeeded in this regard. 

ERIC VESTRUP 
Downers Grove 
Illinois 
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1 
Set Systems 

This chapter talks about the various collections of sets associated with mea- 
sure theory. The need for these many set structures defined and discussed 
within comes from the desire to rigorously define the framework wherein 
measure-theoretic concepts reside. Of the seven sections in this chapter, the 
first five are essential. The last two sections are optional and show the pro- 
fundity of certain seemingly simple concepts. 

Preliminary Notation. We will use the standard symbols N, Q, Z, and R 
to denote the sets of positive integers, rational numbers, integers, and real 
numbers respectively. Note that f c o  fi! R. There are 9 types of intervals in 
R, and we use standard notation for them: 

where z, a ,  b E R. In particular, intervals of the form ( a ,  61 are called right 
semiclosed [rsc]; intervals of the form [a, 6 )  are called left semiclosed intervals 

For k E N, the set Rk is called k-dimensional Euclidean space, and Rk is 
defined as the k-fold Cartesian product R x . ‘  . x R. Given 2 E R” we will 
write x = ( z l , . . .  ,zk), where ,zk E R. The nine types of intervals 
above have their k-dimensional analogs, denoted by 

[ lsc]. 

( - -o~ ,oo ) ,  ( - - 0 0 , ~ ] ,  (--oo, z), [z, oo), (2, a), (a, b ) ,  (a,  b], [a, b) ,  [a, 61, 

where 2, a, b E Rk. The interpretations of these k-dimensional rectangles 
is similar to the one-dimensional case: (-oo,z] denotes the set of 9 E Rk 

1 



2 SETSYSTEMS 

with -co < yi 5 xi for i = 1,. . * , k; (a, b] denotes the set of 2 E Rk with 
ai < xi 5 bi for i = 1 , .  . . , k ,  and so on. We will write z 5 y [or z < y] 
to mean that xi 5 yi [or xi < yi] for i = l , . . .  ,k. Thus, we may write 
[z,oo) = {y E Rk : y 2 z}, ( a , b )  = {z E Rk : a < 3: < b } ,  etc. We will 
refer to (a, b] as a T S C  rectangle; [a, b)  is a Isc rectangle. 

The set R of extended real numbers is defined as R U {-m, +M}. While 
kco (z R, we do have f c o  E Ik By definition, -co < +m and -co < x < +m 
for all 5 E R. Subsets of I having the form A, A U (2 ,  co], A U [-m, x), or 
A U [-00, x) U (y, 001, where A R is open and x ,  y E R, are declared open. 
In particular, both 0 and are open subsets of Jk 

For k E N, the set Rk is called k-dimensional extended Euclidean space, 
and is the k-fold Cartesian product of R. Therefore, an element z E Rk has 
some, none, or possibly all of its coordinates equal to +co and/or -M, and 
all other coordinates are real numbers. We write +oo = (+co,. . + , +GO) and 

Given a set R ,  we denote its cardinal number by card(R). We will write 
c = card(R), No = card@), and z = card((0,l)). The set of all subsets of 
R [or the power set of R] is denoted by 2"; we write zcard(") for card(2"). 
A set fl is at most countable [amc] iff R is finite or card(R) = No, that is, if 
card(R) 5 No. R will be called uncountable iff it is not amc. 

-W = (-0,. . . ,-..). 

1.1 T-SYSTEMS, A-SYSTEMS, AND SEMIRINGS 

This section deals with three systems of sets used in measure theory, and is 
broken up into three subsections, each with exercises. 

Definition. A nonvoid collection P of subsets of a nonvoid set R is called a 
n-system [of subsets of fl] iff A, B E P implies A rl B E P ,  that is, P is closed 
under intersection. We will also say that P is a n-system on/over R,  or, if no 
confusion can arise, P is a n-system. 

Example 1. Let (R, p )  denote a metric space. Recall that if A, B C_ R and both A 
and B are open with respect to p ,  then A n B is open. Thus, the collection of open 
subsets of R forms a 7r-system of subsets of R. Next, recall that the intersection 
of two closed subsets of R is itself a closed subset of R, and hence the collection of 
closed subsets of 0 is a 7r-system as well. 

Example 2. Let R = W, and let P consist of 0 and the rsc intervals. It may be 
painlessly verified that P is a 7r-system on W. Next, let R = Wk, and let P k  consist 
of 0 and the k-dimensional rsc rectangles. We claim that P k  is a 7r-system. To see 
this, let A, B E Pk. If A or B is empty, then A r l  B = 0 E Pk. If A = ( a , b ]  and 
B = (c,  d ] ,  then A n  B = C1 x . . . x ck, where Ci = (ail bi] rl (ci,di], i = 1,. . k. 
Since P is a 7r-system, we have (71,. . . , c k  E P by what has been shown in the case 
k = 1. Since a k-fold Cartesian product of P-sets is a Pk-set, we have A n B E P k ,  

and thus P k  is closed under intersection. 
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In general, it is automatic that a nonempty collection P is a 7r-system on 
a nonempty set 0 iff for every finite collection A l ,  . . ' , A,  of P-sets, we have 
nZ1 Ai E P [closure under finite intersections]. At least two a-systems of 
subsets of R always exist: 2" and the collection (0,n). Thus, the concept of 
a 7r-system is never logically vacuous. 

Exercises. 

l*. Let R = (a,p] .  Let P consist of 0 along with the rsc subintervals of 0. P is a 
r-system of subsets of (a,P]. 

2. Must 0 be in every r-system? 

3. List all r-systems consisting of at least two subsets of (wI ,wz,w3} .  

4*. If P consists of the empty set and the k-dimensional rectangles of any one form, 
then P is a r-system of subsets of Wk. 
5. Let P consist of 0 and all subsets of W k  that are neither open nor closed. Then 
P is not a r-system of subsets of I t k .  
6*. For each (Y in a nonempty index set A ,  let P, be a r-system over R. 
(a) The collection naEA P, is a r-system on R. 
(b) Let A 2'. Suppose that {Pa : a E A }  is the ''exhaustive list" of all the 
r-systems that contain A. In other words, each P, _> A, and any r-system that 
contains A coincides with some Pa. Then nmEA P, is a r-system that contains 
A. If & is a r-system containing A, then naEA P, &. [The collection naEA Pa 
is called the [minimal] r-system [on R] generated by A.] The minimal r-system 
generated by A always exists. 
(c) Suppose that P is a r-system with P 2 A, and suppose that P is contained in 
any other r-system that contains A. Then P = naEA Pa, with notation as in (b). 
The minimal n-system containing A [which always exists] is also unique. 

It will turn out that 7r-systems play a role in an important uniqueness 
question in Chapter 3. At this stage, with the definition and the exercises, 
there is not much else to say. The next definition will give us a collection of 
sets that has a stronger set of closure properties. 

Definition. A nonempty collection C of subsets of a nonempty set 52 is called 
a A-system [on R] iff 
(A,) n E c ,  
(X2) A E C implies A" E C, and 
(As)  For every disjoint sequence 

Properties (A2)  and (A,) are called closure under complementation and 
closure under countable disjoint unions, respectively. By (XI) and (XZ), it is 
automatic that 0 is in every A-system. Next, observe that the collections 
(0 ,  n} and 2" are A-systems, hence a A-system over 0 always exists. 

Example 3. For any k E PI, if R consists of 2k elements, then the collection that 
consists of R, 0,  and all k-element subsets of R is a A-system of subsets of R. 

The additional closure properties listed below will be used in the exercises: 

of C-sets, we have U,"==, A,  E C. 
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( X i )  For all A , B  E L ,  A c B implies B - A E L ;  
(X4) For all A, B E L, A n B = 0 implies A U B E C; 
(As)  For any nondecreasing sequence 
(As) For any nonincreasing sequence 
These properties are called closure under proper differences, closure under 
disjoint unions, closure under nondecreasing countable unions, and closure 
under nonincreasing countable intersections. We use the term nondecreasing 
relative to to mean that A1 A2 2 where any of the contain- 
ment relations may in fact be equality. We say that A1 , A2, . . . are [strictly] 
increasing if each of the containments is proper: A1 s A2 C . . . .  Similar 
comments apply to the terms nonincreasing [A1 2 A2 2 . . and [strictly] 
decreasing [A1 2 A2 2 3 - a ] .  

Exercises. 

7*. This exercise explores some equivalent definitions of a A-system. 
(a) C is a A-system iff C satisfies (AI) ,  (A;), and (As).  
(b) Every A-system additionally satisfies (h), (As) ,  and (Ae).  
( c )  t is a A-system iff C satisfies ( A l ) ,  (A;), and (As). 
(d) If a collection C is nonempty and satisfies ( A z )  and (h), then L: is a A-system. 

8*.  If L: is a A-system and a 7r-system, then U,"==, A,, E C whenever A,  E C for all 
n E N. That is, C is closed under countable unions. 
9. A A-system is not necessarily a 7r-system. 

10. Find all A-systems over { w ~ , w z , w ~ , w ~ }  with at least three elements. 

11. The collection consisting of 0 and the rsc intervals is not a A-system on W. 

12*. Suppose that for each a in a nonempty index set A, C, is a A-system over R. 
(a) The collection naEA C, is a A-system on 52. 
(b) Suppose that A 2" is such that A is contained in each C,, and suppose that 
{C, : a E A} is the "exhaustive list" of all the A-systems that contain A. Then noEA C, is a A-system that contains A. If Q is a A-system on R that contains A, 
then nuEA C, C &. [The collection naEA C, is also called the [minimal] A-system 
[over 521 generated b y  A,] The minimal A-system generated by A always exists. 
( c )  Let C denote a A-system over R with C 2 A and where C is contained in any 
other A-system also containing A. Then C = naEA L,, with notation as in (b). 
Therefore, the A-system generated by A always exists and is unique. 

The third type of collection of sets in this section will now be presented. 

Definition. A semiring on/over R is a collection A of subsets of R satisfying 
(SR1) 0 E d, 
(SR2) A is a r-system, and 
(SR3) If A ,  B E A with A E B ,  then there exist disjoint C1,. . - , ck E A with 
B - A = C1 U. .. U Ck. [Equivalently, we have B = A U C1 U .. . U Ck.] 

Example 4. Both 2* and (0,  R} are [trivial] semirings of subsets of R. 

Example 5. Let R = W, and let A consist of 0 and all rsc intervals. Property 
(SR1) is automatic, and Example 2 gives (SR2). To verify (SR3), pick A B 

of L-sets, UrZt"=, A, E L; 
of L-sets, r\rZ1 A, E L. 
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with A , B  E A. If A = 0, then B - A = B and (SR3) trivially holds. Next, let 
A = (a ,b]  and B = (c,d] with c 5 a < b 5 d ,  and consider the cases (i) a = c 
and b = d, (ii) a = c and b < d, (iii) c < a and b = d, and (iv) c < a and b < d. 
For these cases, B - A is 0,  (b,d], (c,a], and (c,a] U (b,d], respectively. In every 
case (SR3) holds, hence A is a semiring on W. If we instead used lsc intervals, A 
would still be a semiring, but if we used intervals of any other form A would fail to 
be a semiring. This consideration is why we will concentrate on rsc intervals when 
working in subsequent chapters. 

Example 6. Let 0 = W k ,  and let Ak consist of 0 and the k-dimensional rsc 
rectangles. We claim that Ak is a semiring. (SR1) is satisfied by definition, and 
Example 2 shows that (SR2) holds. We now turn to verifying (SR3). Let A ,  B E dk 
with A c B. If A = 0,  then B - A = B ,  and (SR3) trivially holds in this case. 
Otherwise, suppose that A # 0 and write A = I1 x x I k a n d B = J I x ' " x J k ,  
where each of 11,  . . . , I k ,  J1, . . , J k  is a rsc interval. Since A c B ,  we have Ii c Ji ,  

i = 1 , .  . . , k. By Example 5, J, - Ii is a disjoint union Ai U Bi, where A, and Bi 
freely denote rsc intervals or 0, i = l , . . .  ,k. Consider the 3k k-dimensional sets 

x ck, where ci denotes either I,, A, ,  or Bi, z = 1;.. k; the sets C1 x . . . x  c k  

are disjoint [some might be empty]. One of the sets C1 x x ck is A ,  and B - A 
is the disjoint union of the remaining sets c1 x . . . x c k .  ce each set of the form 
C1 x . . x c k  is either empty or a k-dimensional rsc rectangle, (SR3) holds. 

The role of semirings will become apparent in discussing the  results relating 
to the  extension and uniqueness of measures, found in Chapter 3. 

Exercises. 

13*. Is ( 0 )  U ((0, x] : 0 < x 5 1) a semiring over (0, I]? 

14*. This exercise explores some alternative definitions of a semiring. 
(a) Some define A to be a semiring iff A is a nonempty nsystem such that both 
E ,  F E A and E c F imply the existence of a finite collection Co, G I , .  . . , C, E A 
with E = GO c C1 c . . .  c C, c F and C; - Ci-1 E A for i = 1;'. ,n. This 
definition of a semiring is equivalent to our definition of a semiring. 
(b) Some define A to be a semiring by stipulating (SRl), (SR2), and 
property: A,  B E A implies the existence of disjoint A-sets Co, C1, 
B - A = u:=, Ci. Note that here B - A is not necessarily a proper 
A is a semiring by this definition, then A is a semiring by our definition, but the 
converse is not necessarily true. 

15*. Let A consist of 0 as well as all rsc rectangles (a, b].  The collection of all 
finite disjoint unions of A-sets is a semiring over Wk. 

16. An arbitrary intersection of semirings on R is not necessarily a semiring on R. 

17. If A is a semiring over R, must R E A? 

18*. Let A denote a semiring. Pick n E N, and let A , A 1 , . . .  , A ,  E A. Then there 
exists a finite collection {GI, , C,} of disjoint A-sets with A-U:=, A, = uJm=l Cj.  
[When n = 1, write A - A1 = A - ( A n  A]) and invoke (SR3). Assume the result is 
true for a fixed n and show that A - U;:; Ai = U,",,(Cj - A,+1). Apply the n = 1 
case to each of the Cj - A,+1 terms.] 
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19. Other books deal with a system called a ring. We will not deal with rings of 
sets in this text, but since the reader might refer to other books that deal with rings, 
it is worthy to discuss the concept. A collection R of subsets of a nonempty set Cl 
is called a ring of subsets of R iff (Rl) R # 0, (R2) A,  B E R implies A U B E R, 
and (R3) A,  B E R implies A - B E R. That is, a ring is a nonempty collection of 
subsets closed under unions and differences. 
(a) 0 is in every ring. 
(b) R is a ring iff R satisfies (Rl),  (R2), and (R4): A,  B E R with A c B implies 
B - A E R. [Use the identity B - A = ( B  U A )  - A.] 
( c )  Every ring satisfies (R5): A , B  E R implies A A B  E R. [ A A B  is the usual 
symmetric difference of A and B ,  the set of elements that are in exactly one of A 
or B. That is, A A B  = ( A  - B )  U ( B  - A) . ]  
(d) Every ring is a ?r-system. [Verify first that A n B = ( A  U B )  - ( A A B ) . ]  
( e )  Every ring is closed under finite unions and finite intersections. 
(f) R is a ring iff R is a nonempty n-system that satisfies (R4) along with (R6): 
A ,  B E R and A n  B = 0 imply A U B E R. [First, show that A U B coincides with 
[ A  - ( A  n B ) ]  u [B  - ( A  n B)] u ( A  n B).]  
( g )  R is a ring iff R is a nonempty s-system that satisfies (R5). [First, verify the 
identities A U B = ( A A B ) A ( A  n B )  and A - B = A A ( A  n B ) . ]  
(h) Suppose that {R, : a E A }  is the “exhaustive list” of all rings that contain 
A. Then naEA R, is a ring that contains A, and noEA R, is contained in any ring 
that contains A. [The collection noEA R, is called the [minimal] ring generated b y  
A.] The minimal ring containing A always exists and is unique. 
(i) The collection of finite unions of rsc intervals is a ring on W. 
(j) Let R be uncountable. The collection of all amc subsets of R is a ring on 0. 

20. This problem explores the relationship between semirings and rings. 
(a) Every ring is a semiring. However, not every semiring is a ring. 
(b) Let A denote a semiring on R, and let R consist of the finite disjoint unions of 
A-sets. Then R is closed under finite intersections and disjoint unions. 
( c )  If A , B  E A and A c B, then B - A E R. 
(d) A E A, B E R, and A c B imply B - A E R. 
( e )  A , B  6 R a n d  A c  B imply B - A E R. 
(f) R is the minimal ring generated by A. [See Exercise 19(h).] 
( g )  A semiring that satisfies (R2) is a ring. 

21. Let R be infinite, and let A s 2” have cardinality No. We will show that the 
ring generated by A has cardinality NO. 
(a) Given C c 2”, let C’ denote the collection of all finite unions of differences of 
C-sets. If card(C) = No, then card(C*) = No. Also, 0 E C implies C E C’. 
(b) Let do = A, and define An = di-1 for n 2 1. Then A C u,”==,An s R(A), 
where R(A) is the minimal ring generated by A and where [without loss of generality] 

( c )  u,”=,An is a ring on R, and from the fact that R(A) is the minimal ring 
containing A, we have Ur=oAn = R(A), and thus card(R(A)) = NO. 
(d) We may generalize: if A is infinite, then card(d) = card(R(A)). 

0 E A. Also, Cad(U,”==, An) NO. 
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1.2 FIELDS 

This section deals with a new system of sets that is more stringent in its 
requirements than are the systems of the previous section. We will call this 
new system a field of sets. As before, R denotes a nonempty set. 

Definition. A field on R is a collection F C 2" such that 
( F l )  R E F, 
(F2) A E T implies A" E F, and 
(F3) If A , B  E F, then A U B  E 7. 

Using induction, it is easy to see that every field is closed under arbitrary 
finite unions and intersections: if A l , .  . . , A,, E F then UZ, Ai,  ny=, Ai E F. 
It is also easily verified that every field is a ?r-system and a semiring; however, 
a field is not necessarily a A-system. Also, 3 is a field iff F satisfies (Fl ) ,  
(F2), and is a r-system; this latter characterization is often useful. 

Example 1. Both 2" and (0, R} are trivial fields of subsets of R. 

Example 2. Let R = (0,1] and let 3 consist of 0 and all rsc subintervals (a, b] 
of (0,1]. Note immediately that R E 3 and that 3 is a ?r-system, but requirement 
(F2) might fail: any A = (a,b] with 0 < a < b < 1 will be such that A' is neither 0 
nor a rsc subinterval, and hence A" @ 3 .  Accordingly, 3 is not a field over R. 

Example 3. Keep R = (0,1] as in the previous example, but amend 3 to consist 
of 0 and the finate disjoint unions of rsc subintervals of (0,1]. That is, a non-empty 
A E .F iff for some n E N we have A = Uy=l(ai,bi], where (ai,bi] (0,1] for 
a = 1, . . .  ,n  and the union is disjoint. Note that this definition of 3 includes the 
sets in the collection from the above example. 

The verification that 3 is a field is a direct one. Clearly R E 3, so (Fl) holds. 
To verify (F2), pick A E 3 .  If A = 0,  then A' = (0,1] = R E 3. If A = (0,1] = R, 
then A' = 0 E 3 .  For the nontrivial case, let A = ( a l , b l ]  U . . .  U (a,, b,] with 
the constituent (a , ,bi] 's  denoting disjoint proper rsc subintervals of (0,1]. Then 
A" = (0, all U (a,, a21 U. . . U (b , ,  11, which is a finite disjoint union of rsc subintervals 
of R. [We will have (0, all = 0 and (b, ,  11 = 0 when a1 = 0 and b, = 1.1 Thus (F2) 
holds in all cases. 

We now show that 3 is a 7r-system, which in conjunction with the above will show 
that .F is a field. Let A and B be 3-sets. If A or B is empty, then A f l  B = 0 E 3 .  
We now deal with the nontrivial case, writing A E 3 and B E 3 as the disjoint 
unions A = Uy=l(airbi] and B = U,"=l(~jldj]. Thus A n  B = Uy='=, Uyz1 C,j ,  where 
each C,, = (ai, b,] n ( c3 ,  d j ]  and where both unions are disjoint. Each Cij will either 
be a rsc subinterval of R or 0, hence A n  B is either 0 [hence in 3] or A n B is a 
finite disjoint union of rsc subintervals of R [hence in 3l. Thus for every case we 
have A n B E 3 whenever A, B E 3, and 3 is accordingly a r-system. 

Were R any other rsc interval, then the collection consisting of 0 and the finite 
disjoint unions of rsc subintervals of R would still be a field. 

Example 4. Let R = W, and let 3 denote the collection consisting of 0 and the 
finite disjoint unions of rsc intervals. 3 is not a field, for (Fl)  and (F2) fail. 
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Exercises. 

1. The collection { A  C R : A is finite or A" is finite} is a field on 52. 
2. Let .F C 2" be such that R E T and A - B E F whenever A ,  B E T.  Then F is 
a field on R. 
3. Every A-system that is closed under arbi t rary differences is a field. 

4. Let F c 2" satisfy (Fl )  and (F2), and suppose that 3 is closed under finite 
dis jo in t  unions. Then F is not necessarily a field. 

5 .  Suppose that F1 32 C 3 3  C . . . , where 3" is a field on R for each n E N. 
Then Ur=l F, is a field on R. 

6. The collection consisting of Rk, 0,  and all k-dimensional rectangles of all forms 
fails to be a field on Rk. 
7.  The collection consisting of 0 and the finite disjoint unions of k-dimensional rsc 
subrectangles of the given k-dimensional rsc rectangle (a, b] is a field on R. 

8*.  An arbitrary intersection of fields on R is a field on R. 

9*. Let R be arbitrary, and let A c 2". There exists a unique field ,F on R with 
the properties that (i) A c 3, and (ii) if B is a field with A C 8, then 3 C B. This 
field F is called the [minimal ]  field [on R] generated by A. (2" is a field on 51 that 
contains A, hence a field containing A always exists. Let 7 denote the intersection 
of all fields on R that contain A.] 
10. Let A1, ' .  . , A ,  5 R be disjoint. What does a typical element in the minimal 
field generated by ( A 1 , .  . . , A,}  look like? [See Exercise 9.1 

11. Let S be finite, and let R denote the set of sequences of elements of S. For each 
w E R, write w = ( z l ( w ) ,  zz(w),  . . .), so that Zk(W) denotes the kth term of w for all 
k E N. For n E N a n d  H 5 S", let C,(H)  = {w E R : ( z ~ ( w ) , . . .  , t n ( w ) )  E H } .  
Let 7 = {Cn(H) : n E N ,  H C S"}. Then F is a field of subsets of S". [The 
sets Cn(H) are called cyl inders  of rank  n, and 3 is collection of all cylinders of all 
ranks.] 

12*. Suppose that A is a semiring on R with R E A. The collection of finite disjoint 
unions of A-sets is a field on R. [Compare with Example 3 and Exercise 7.1 

13*. Let f : R + R'. Given A' C 2"', let f - ' (A ' )  = {f-'(A') : A' E A'},  where 
f - ' (A ' )  is the usual inverse image of A' under f .  
(a) If A' is a field on R', then f - ' (A')  is a field on R. 
(b) f(A) may not be a field over 52' even if A is a field on R. 

14. Let R be infinite, and let A 2" have cardinality No. Let f(d) denote the 
minimal field generated by A [Exercise 91. We will show that card(f(s2)) = NO. 
(a) Given a collection C,  let C' denote the collection of (i) finite unions of C-sets, 
(ii) finite unions of differences of C-sets, and (iii) finite unions of complements of 
C-sets. If 0 E C, then C c C'. If card(C) = No, then card(C*) = No. 
(b) Define do = A and A, = for n E N. Without any loss of generality we 
may assume that 0 E do when considering the collection Ur=o A,. 
( c )  A C UF=o An c f ( A ) ,  and c d ( U r z 0  An) = No. 
(d) U;==, A, is a field on R that contains A. 
( e )  I+om (c) and (d), we have f ( A )  = Ur=oAn, hence card(f(A)) = NO. 
( f )  We may generalize: if A C 2" is infinite, then card(A) = card(f(A)). 
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15. Some books work with a system of sets called an algebra. An algebra on R is a 
nonempty collection of subsets of R that satisfies (F2) and (F3). 
(a) 7 is an algebra on R iff 7 is a ring on R with R E 7. 
(b) 7 is an algebra iff 7 is a field. Thus algebra and f ie ld  are synonymous. 

1.3 a-FIELDS 

The most important set system is called a a-field. Other authors might equiv- 
alently use the term a-algebra. This set system will eventually be found in 
most of our work. A a-field is a field with one extra assumption of a rather 
strong nature. 

Definition. A collection F is a a-field on R iff 

(S2) A E F implies A' E F, and 
(S3) U:='=, A,  E 7 whenever A l , A z , . . .  E 3. 

Closure properties (Sl) and (S2) are exactly those for a field, but (S3) 
deals with closure under countably infinite unions, whereas property (F3)' for 
fields dealt merely with closure under finite unions. From (Sl) and (S2) it is 
automatic that 0 is in every a-field. From (S2) and (S3), a a-field F is closed 
under countable intersections of F-sets. Also, the collections ( 0 , R )  and 2" 
are a-fields, hence the concept of a a-field is never vacuous. 

Every a-field is a field. To see this, let F denote a a-field with A ,  B E F. 
Since 0 E F, we have A U B = A U B U 0 U 0 U * . .  E F by (S3). Thus 
every a-field is closed under finite unions as well. Similarly, every a-field is 
also closed under finite intersections. Also, every finite field is a a-field. 

The main thing about a-fields is that they are closed under the application 
of countably many of the standard set manipulations. The standard set op- 
erations are union, intersection, complementation, difference, and symmetric 
difference, and all of these can be expressed in terms of unions and comple- 
ments. Thus, when one works with a collection of sets in a a-field, one will 
never by using at  most countably many set operations on these sets produce 
a set outside the a-field. 

Example 1. Let R be infinite, and let 7 = {A C R : A is finite or A' is finite}. 
It is trivial that F satisfies (Sl) and (S2). To see that F is closed under union, let 
A, B E F. There are two cases: (i) both A and B finite, and (ii) at least one of A' 
or B' is finite. For (i) we have that A U B is finite, whence A U B E 7. For (ii), 
assume that B' is finite. We have (A U B)' = A' n B' C B', and thus (A U B)" is 
finite, so that again A U I3 E F. Therefore, F is a field. 

However, 7 fails to be a 8-field. To see this, pick a countably infinite subset 
(w1, ~ 2 , .  . . } of R. Define A, = (Q,} for n E N, hence A, E 7 for all n 6 N. We 
have Ur=l A,, = ( w ~ , w ~ , w g ~ . . } ,  and A,)' contains { W ~ , W S , W J , . . . } ,  which 
means that both UrE1 A, and 7. Thus, 
F fails to satisfy (S3). This gives a nontrivial example of a field that is not a 0-field. 

(Sl) 52 E F, 

A,)' are infinite, giving urz1 A, 
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Example 2. Let R be infinite, and let F = { A  R : A is amc or A' is amc}. 
Again, (Sl) and ( S 2 )  are trivially satisfied. To see (S3), let denote a 
sequence of F-sets, and consider two cases: (i) each A, is amc, and (ii) at least one 
A,  is such that A: is amc. Since the countable union of amc sets is itself amc, (S3) 
holds in case (i). In case (ii), we assume without any loss of generality that A: is 
amc, and we have that Cur==, A,)' = nr=l A: AT, so that cur==, A,)' is amc. 
It follows that U,"==, A,  E F for case (ii) as well. Therefore, UT=p=, A, E 3 in both 
cases, so F is closed under countable unions, hence 3 is a a-field. 

Observe that if R = [0,1) and U = [0, 41, then both U and Uc are uncountable, 
whence U # F. This shows that a a-f ie ld  does n o t  necessarily conta in  every subset 
of R. Also, if we consider all singletons {x} where z E U, then for each x E U we 
have {z} E 7 but UzEv{x} = U # F, so that a u-f ie ld  i s  n o t  necessarily closed 
u n d e r  completely arbitrary [uncountable] un ions .  

The following claim is mimicked by Exercises 1.6, 1.12, l . l9(h) ,  2.8, and 
2.9, and is of great importance for later devlopments. A simple fact used in 
the proof is this: every arbitrary intersection o f  a-fields on some common set 
R is itself a a-field on R. [The reader may easily verify this.] 

Claim 1. Let 0 # A c 2". There exists a unique a-field a(A) on R such that 
(i) A 5 a(A),  and (ii) any a-field 6 on R with A c 6 is such that a(A) c 6. 

Proof: Let C(A) denote the family of 0-fields on R that contain A, and 
observe that 2" E C ( A ) ,  hence C(A) # 0. Let a(A) = nrcc(d) F. We have 
that a(A) is a rr-field since it is the intersection of a-fields, and it is clear 
that  A c o(A). Therefore (i) holds. To verify (ii), if 6 is a a-field on R that 
contains A, then 6 E C(A),  hence .(A) = r )FEC(A) F 5 6. 

All that  remains is to show that a(A) is the unique a-field on R with 
properties (i) and (ii). Suppose that 3t is a a-field on R with (i) A E 3t and 
(ii) any a-field 6 with A c G is such that 3t c 6. By property (i) for a(A) 
and property (ii) for 31, we have that  a(A) 31. By property (ii) for a(A), 
we have 31 c a(A). Therefore 3t = a(A),  and the entire proof is complete. 

Definition. We will call a(A) the [minimal] a-field [on R] generated b y  A. 

Some properties are notable: 0 5 A C B C 2" implies a(d) C .(a). To 
see this, observe that any a-field over R that contains B must also contain A, 
SO c(B) c C(A). It follows that a(A) = n T E C ( d )  F c nrEc(o) 

Next, A is a a-field ifl A = o(A).  To see this, let A denote a a-field. By 
definition, A a(A);  however, part (ii) of Claim 1 forces a(A) C A, and 
hence d = o(A) .  Conversely, if A = a(A), then A is a a-field since a(A) is. 

Letting 0 C c 2", we take A = a(C) in the previous paragraph. A 
is a a-field over R ,  hence a(A) = A, that  is, a(a(C)) = a(C). Therefore, 
a(a(C)) = a(C) for any nonempty collection C o f  subsets o f  R.  

The concept of a minimal a-field on R generated by a collection A may 
be extended to Ir-systems, X-systems, and fields by the same reasoning ex- 
hibited in Claim 1. If 0 # A c 2", we let l l (A ) ,  A(A), and F(A)  de- 

= .(a). 
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note the collections of all x-systems, X-systems, and fields of subsets of R 
that contain A, respectively. With this, we may define x(d) = npen(d) P ,  
X(d) = &-,,(A) L, and f(d) = nFEF(d) F, and we may show that these 
quantities are n-systems, X-systems, and fields that contain A. We may also 
show that if 6 is a n-system, X-system, or field that contains A, then n(d) ,  
X(d), and f (A)  are contained in G. Furthermore, each of n(d) ,  X ( d ) ,  and 
f(d) are the unique x-systems, X-systems, and fields with such properties. 
Such demonstrations were the points of Exercises 1.6, 1.12, 2.8, and 2.9. 

Finally, n(d) c f(d) c a(d) and x(d) c X(d) c a(d). To see this, 
observe that any a-field containing d is a field containing A, and any field 
containing d is a n-system containing A, whence C ( d )  E F(d) & IT(d), 
hence nFen(d)  F c n F E F  A) F I: n F E C ( d )  F, so n(d) c f(d) O ( d ) .  The 
other containment claim fo \ lows similarly and is left as an exercise. 

The following result is important, and will be used later to characterize a 
certain collection of sets. 

Claim 2. Let X : R + R' be given with A' 2 2"'. Then (i)  X-'(a(d')) is a 
a-field on R, and (ii) we have a(X-'(d')) = X-'(a(d')). 

Proof: We first show (i). Since R = X-'(R') and R' E a(d'),  we have that 
R E X-'(a(d')). Next, if A E X-'(a(d')), then A = X - ' ( B )  for some 
B E a(d'). Therefore, A" = X - ' ( B ) "  = X - ' ( B C ) ,  and BC E a(d') since 
a(d') is a a-field. It follows that AC E X-'(a(d')), so that X-l(a(d'))  
is closed under complementation. To see that X-'(a(d')) is closed under 
countable unions, let {An}Z=20=1 denote a sequence of sets in X-'(a(d')). For 
each n E N, there is B, E a(d') with A, = X-'(B,).  Therefore U;=, A, = UrZl X-l(B, )  = X-'(U;=l B,), and U;=, B, E a(d') since a(d') is a a- 
field. It follows that U:='=, A, E X-'(a(d')), and thus X-'(a(d')) is closed 
under countable unions. Thus (i) stands proven. 

X-'(a(d')), 
and hence a(X-'(A')) C a(X-'(a(d'))) = X-l(a(d')) ,  where the equal- 
ity follows from (i). This gives one containment relation. For the reverse 
containment relation, let A* = {A' c R' : X-'(A') E a(X-'(d'))}.  It is 
direct to verify that (a) A' contains A' and (b) A* is a a-field on R'. Since 
a(d') is the smallest a-field containing A', (a) and (b) yield a(d') C_ A*, so 
X-'(a(d')) C X-'(A') c o(X-l(d')) ,  where the last containment follows 
by the definition of A'. This gives the reverse containment relation, and the 
proof of (ii) is complete. 

Exercises. 

1*. A collection F of sets is called a monotone class iff (MC1) for every nonde- 
creasing sequence {An}T=P=l of F-sets we have UF=t"=l A, E F, and (MC2) for every 
nonincreasing sequence {An}T=l of F-sets we have nr=.=, A, E 3. 
(a) If 3 is both a field and a monotone class, then 3 is a a-field. 
(b) A field is a monotone class if and only if it is a a-field. 

We now turn to (ii). Since A' c a(d'), we have X-'(d') 
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Monotone classes will be a main tool in discussing product measures and Fubini's 
Theorem in later chapters. 

2*. This problem discusses some equivalent formulations of a o-field. 
(a) F satisfies (SFl), (SF2), and closure under amc intersections iff 7 is a o-field. 
(b) Every field that is closed under countable disjoint unions is a a-field. 
(c) If 3 satisfies (Sl), closure under differences, and closure under countable unions 
or closure under countable intersections, then 7 is a o-field. 

3. Prove the following claims. 
(a) A finite union of a-fields on R is not necessarily a field on R. 
(b) If a finite union of a-fields on R is a field, then it is a a-field as well. 
(c) Given o-fields F1 $32 5 . . . on R,  it is not necessarily the case that u,"==, 3, 
is a a-field. [Let R = N and for all n E N let F, = o({{l},... , {n} } ) . ]  

4*. Does Exercise 2.11 hold when field is replaced with o-field! 
5. A subset A c W is called nowhere dense iff every open interval Z contains an 
open interval J such that J n A = 0. Clearly 0 and all subsets of a nowhere dense 
set are nowhere dense. A subset A c W is called a set of the first category iff A is a 
countable union of nowhere dense sets. 
(a) An amc union of sets of the first category is of the first category. 
(b) Let F = { A  E: W : A or A" is a set of the first category}. Then 3 is a u-field 
of subsets of W. [To verify closure under countable unions, let denote a 
sequence of F-sets. To show that Ur=l A,  E 7, consider two cases: (i) each A,  is 
of the first category, and (ii) some A', is of the first category.] 

6. A a-ring of subsets of R is a nonempty collection of subsets of R that is closed 
under differences as well as countable unions. 
(a) Every o-ring is closed under finite unions and amc intersections. 
(b) 7 is a a-field iff 7 is a o-ring with R E F. 
(c) State and prove an existence and uniqueness result regarding the [minimal] 
a-ring generated b y  a collection A of subsets of R. 

7.  This exercise continues Exercise 6. Let A denote a collection of subsets of some 
set R, and let S(A) denote the minimal a-ring that contains A. 
(a) For any collection C of sets, let C' denote the collection of all countable unions 
of differences of C-sets. Define do = A, and for any ordinal a + 0, define A, = 
(Uo5a+, Ap)'. Then 0 5 a i /3 implies A C A, 
(b) Letting w denote the first uncountable ordinal, show that S(A) = Uo5,+, A,. 
[Hint: for any sequence of ordinals with each a, i w ,  there exists an 
ordinal y i w with a,  i y for all n E N.] 
(c) If card(A) 5 c, then card(S(A)) 5 c. [Use the fact that a union of continuum- 
many sets that are amc must have cardinality no greater than c.] 

8. We will show that no o-field can ever be countably infinite. 
(a) If R is finite, then any a-field on R is finite. 
(b) For the remainder, assume that R is infinite and that there is a countably infinite 
a-field 7 = { A I , A Z , . . . }  on R. For each w E R, let B, = n{A,  : w E A , } .  For 
any distinct w,w' E R, either B, = B,, or B,  n B,, = 0. 
(c) From (b), there exists a disjoint collection {Cl, CZ, . . . } of nonempty F-sets with 

Ap c S(A). 

u:=t"=l c, = 52. 
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(d) For each sequence e = (e l ,  e2 , .  I . )  of 0's and l's, let D, = U{Cn : en = 1). 
Then e # e' forces D, # D,I , and a contradiction ensues. Hence, there cannot exist 
a countably infinite a-field on our infinite R. 

9*. This problem is meant to give practice for some simple claims. 
(a) If A E A' cr(A), then a(A') = a(A).  
(b) For any collection 0 # A E 2', r (A)  c X(A) 5 a(A).  
( c )  If the nonempty collection A is finite, then a(A) = f ( A ) .  
(d) For arbitrary collections A, we have a(A) = a( f (A) ) .  
(e) For arbitrary collections A, we have f (a (A) )  = a(f(d)). 

10. We will show that f (A )  is the class of sets of the form uzl ny:, Aij,  where 
for each ( i , j )  pair either Aij or AFj is in A, and where nyAl Alj ,  . . . , nyzl A,j 
are disjoint. 
(a) Let C denote the class of sets of the stated form. Then R E C and C is closed 
under intersection. 
(b) Show that C is closed under complementation by first showing that 

where if n, < 2,  U& (AFj n 
(c) For i = 1,  . . , m, UyL2 (A:j n n",; Aik) E C. Also, by closure under intersec- 

tion, we have (UZ, 
(d) C is a field that contains A, and thus f ( A )  C C. 
(e) Every C-set must be in any field containing A, hence C c f (A) .  
11. If card(A) = No, then card(f(A)) = No. [Use Exercise 10.1 

12. When A = { A 1 , . . .  ,A,},  a(A) has at most 2'" sets. The bound is achieved if 
A1, . . . , A, are disjoint. 

13. Let A = {{w} : w E R}, where R as usual denotes a nonempty set. 
(a) f ( A )  = {A C R : A is finite or A' is finite}. 
(b) When R is amc, a(A) = 2". 
( c )  For general R ,  a(d) = { A  c 8 : A or A' is amc}. 

14. Suppose that {F,,}F=l is a sequence of a-fields on R with the property that 
each F, is generated by a countable collection of subsets of R. Then the minimal 
a-field containing each of F1 , JF2, ' . , that is, the intersection of all a-fields on R 
that contain each of 3 1 , F 2 , .  . . , is generated by an amc collection of subsets of R. 
15. Let F denote any a-field on R other than 2", and let H 5 R be such that 
H $! F. Then a(FU { H } )  = { ( H  n A) U (H' n B) : A, B E F}. [Let C denote the 
sets of the form ( H  n A) U (H' n B), where A and B range over F. One handily 
obtains a(F u { H } )  2 C. The reverse inclusion is more difficult. Argue that C is a 
a-field of subsets. To show (SZ), argue that ( A U B ) "  (HnAc)U (H 'nB ' ) .  Show 
that F U { H }  C C ,  and invoke minimality.] 

16. Let 7 = a(A),  where 0 # A 2". For each B E F there exists a countable 
subcollection Ag c A with B E o ( A s ) .  [Let B to be the set of all B E 3 with this 

Aik) is defined as 0,  i = 1 , .  . . , m. 

A;,)' E C .  
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property. Thus 8 c F. Next, show that U is itself a a-field containing each A-set, 
so that 3 C U.] 
17. The following parts are of a similar flavor. 
(a) Suppose that A is such that a ( d )  = 2". For each distinct pair w,w' E R there 
exists A E A with w E A but w' # A.  
(b) Let R be countable, and suppose that for each distinct pair w,w' E R, there 
exists a set A E d such that w E A but w' # A .  Then a(A) = 2". 

18. Given 0 # A  c 2" and 0 # B s R, let A n B  = { A n B  : A E A} and let 
a(A) n B = { A  n B : A E a(d)}. 
(a) a ( d )  r l  B is a a-field on B. 
(b) Next, define ~ ~ ( d n  B) to be the minimal a-field over B generated by the class 
A f l B .  T h e n a B ( A n B ) = a ( d ) n B .  [Use(a) t o a r g u e t h a t a B ( d n B )  c a ( A ) n B .  
Next, let C = { A  E a(A) : A fl B E aB(d n B)} C a(A). Verify that C is a a-field 
that contains A, hence o ( d )  = C. This will give a(d) n B 
19*. Suppose that A = (A1 , A z , .  - . } is a disjoint sequence of subsets of R with 
u z = l  A, = R. Then each a(d)-set is the union of an at most countable subcollection 
of A1, A2,. . . . [Define C as the class of A E a(A) such that A is an at most countable 
union of A-sets. Show that C is a a-field of subsets of R with C 2 A, which gives 
C = a(d).]  

20*. Let P denote a r-system on R, and let L denote a A-system on 52 with P E L. 
We will show that a ( P )  E L. Let A(P) denote the A-system generated by P ,  and 
for each subset A C R we define QA = {C 
(a) P C A(P) E L. 
(b) If A(P) is shown to be a r-system, then a (P)  2 L. 
( c )  For any A E P ,  GA is a A-system containing P.  If A E A(P), then GA is a 
A-system. 
(d) For all A E P ,  A(P) C GA. 
( e )  For all A E P and B E A(P) we have A E G B .  
(f) For all B E A(P), we have A(P) C GB. 
( g )  A(P) is a A-system, hence a (P)  E 12. 
Comment: This result is called Dynkin's T - X  Theorem, and it is a tool used in 
proving a uniqueness question regarding measures in Chapter 3. All parts of this 
exercise should be straightforward. 

21*. Let T denote a field on R, and let M denote a monotone class on R [See 
Exercise 11. We will show that 3 5 M implies 43) M .  Let n(3) denote the 
minimal monotone class on R generated by 3. That is, m(3)  is the intersection of 
all monotone classes on R containing the collection 3. 
(a) To prove the claim, it is sufficient to show that o(T)  E m(T). 
(b) If m ( T )  is a field, then a ( 3 )  m(3) .  
(c) R E m(3).  
(d) Let G = { A  G R : A' E m ( T ) } .  g is a monotone class on R and m ( T )  C 4. 
(e) m(T) is indeed closed under complementation. 
( f )  Let 91 = { A  C R : A U B E m(3) for all B E 3). Then G1 is a monotone class 
such that T C GI and m(3)  E GI. 
( g )  Let G2 = {B C R : A U B E m(F) for all A E m(3) ) .  Then g, is a monotone 
class such that 3 c 8 2 ,  and m(3)  C Qz. 
(h) m(T)  is closed under finite unions, and hence is a field. 

oB(d  n B).] 

R : A f l  C E A(P)}. 
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Comment: This result is called Halmos’ Monotone Class Theorem, and is similar 
to the K - X  Theorem above. 

1.4 T H E  BOREL a-FIELD 

This and the next section deal with the two very important special cases of the 
abstract theory regarding minimal u-fields presented in the previous section. 
The definition and discussions follow. 

Definition. The Borel a-field [on R] is denoted by B and is defined as 
u ( { ( a , b ]  : -co < a < b < +co}). The sets in B are called [linear, one- 
dimensional] Borel sets. 

The concepts that make B worth careful study are not a t  all obvious, and 
there seems to be nothing so intrinsically special about the rsc subintervals of 
R that the a-field on R generated by them is noteworthy. An explanation of 
the significance of B is to be found in Chapter 3 and more so in Chapter 4, 
when Lebesgue measure is discussed. 

Notation. We will use the following notation again and again in this section, 
and it is best to define everything in one place. Here, z, a ,  b E IW with a < b. 

A1 = intervals of the form (-00,zI 
dB = intervals of the form [z, 00) 

A6 = intervals of the form [a,  b] 
A7 = intervals of the form [a,  b )  
As = open subsets of R 

A2 = intervals of the form (-m,z) 
dq = intervals of the form (z, 00) 

A6 = intervals of the form ( a ,  b] 
A8 = intervals of the form ( a ,  b) 
dl0 = closed subsets of R. 

For n = 1,. . . ,8, A: will denote the collection of intervals having the same 
form as those in A,, except that the endpoints are rational. For example, di 
denotes the set of intervals of the form ( a ,  b] with a ,  b E Q, A; denotes the set 
of open intervals ( a ,  b) with a ,  b E Q, etc. 

In the definition above, B was defined as u ( d ~ ) ,  and it might be wondered 
just why u(d6) is of importance instead of [say] u(d3) or any of the other o- 
fields generated by A,, n j4 3 ,6 .  It will be seen below that the choice of d6 for 
a generating class as compared to [say] As or [say] A: is wholly arbitrary, as 
any of A1, . . , Ale, A;, . * , A: generates B. This result is important to  know 
because various books define B differently. Some define B as u(dc),  while 
some write B = u(d9). Halmos’ text on measure theory writes B = u(A7), 
etc. We will show that all of these definitions are equivalent, so that these 
seemingly different definitions are all ultimately saying the same thing. 

Claim 1. Let C,V C 2“ each be nonempty. If each C-set may be wratten 
an terms of complements of V-se t s ,  amc unions of V-sets ,  and amc intersec- 
tions of V-sets ,  then u(C) C u(l7). If in addition each V - s e t  may be written 
similarly in terms of C-sets, then u(C) = cr(V). 
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Proof: The hypotheses imply that each C-set will be in every 0-field con- 
taining D, for 0-fields are closed under complements, amc unions, amc in- 
tersections, and any amc sequences of such operations. Therefore, each C- 
set is in the intersection of each 0-field containing 'D: C 2 a (D) .  Thus 
o(C) c o(a (D) )  = a('D). Under the additional assumptions of the claim, the 
reverse inclusion a('D) & o(C) follows in the exact same fashion. 

Claim 2. B = a(d1) = . . + = u(d10) = a(d;) = * - .  = o(d;). 
Proof: Let x, a, b E R with a < b. Letting the unions and intersections below 
be taken over all n E N, it may be verified that 

(-m, z) = U(-m, z - n-11, [z, +m) = (--Oo,z)=, 

and ( a ,  b )  = u [ a  + n-', b ) .  

Recall next that every open subset of R is an amc union of sets of the form 
( a ,  b ) ,  every closed subset of R is the complement of an open subset of R, and 
(a, b] = [(--00, u] U U [ b + n - l ,  +m)]", which is the complement of a countable 
union of closed sets. Hence, for n = 2,.. .  , l o ,  we have written a typical 
element of A, in terms of amc unions, amc intersections, and complements of 
sets in dn-l, and d1 has been similarly expressed in terms of dlo-sets. We 
may therefore invoke Claim 1 to obtain cT(d1) C_ . . . a(dl0) C_ o(d1), and 
thus these inclusions are actually equalities. 

Next, taking x,a, b E Q above, noting that (--oo,x] = (U(x, b + n))", 
and using Claim 1 yields o(di) c . . .  c c(di) c 0(di), and hence these 
inclusions are actually equalities. We thus have a(d1) = + .  + = a(d10) and 

Finally, observe that for any x E R we may find an increasing rational 
sequence { r n } r ? l  with limit x. Since (--00,x) = U(-CO,T,),  elements of d z  
can be expressed in terms of amc unions of d;-sets, whence a(d2) c a(dS). 
But d; C da, hence u(d;j) C O(dz), ergo a(d2) = a(d:), which, with the 
other equalites, finishes the proof. 

Since d 2 a(d) for arbitrary A, the above theorem says that B contains 
d1, . . . , dlo. That is, B contains every interval of every form, every open set, 
and every closed set. Furthermore, B contains any set that can be obtained 
from the sets in these classes via amc combinations of amc unions, amc in- 
tersections, and complements. It will eventually turn out that B will contain 
just about every subset of R that one can imagine, although it will also turn 
out that (i) there are many subsets of R that are not in B, and (ii) there are 
many sets in B that are inexpressible in terms of amc combinations of amc 
unions, amc intersections, and complements of sets in any and all of the 10 

a(d;) = . . . = 4% 1. 
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aforementioned classes. Assertions (i) and (ii) are given rigorous proofs in 
Sections 1.6 and 1.7. 

A few extra questions of a somewhat courageous nature might have sug- 
gested themselves by now. These questions are now listed in no special order. 

(Ql )  W h a t  is  card(B)? That  is ,  “how many”  Borel sets  are there? 
(Q2) W h a t  does a generic Borel set ‘(look like?” 
(Q3) Is there some type of “constructive algorithm” for generating B from the  
sets in some or all of the d 1 , .  . . , d l o ,  A;, . . . , di ? 

(Q4) W h y  look at the minimal  u-field generated by any  of the  classes an Cla im 
2 when one  could have the largest 0-field s imply by dealing with 2R? 

Such questions actually invoke some of the very interesting and founda- 
tional items from modern set theory and analysis, such as the Axiom of 
Choice’ (AC) and the various forms of the Continuum Hypothesis2 (CH). 
We will take both of these items as true in this text, and shall attempt loose 
sketches of the answers to questions (Ql)-(Q4) as posed. 

Since card(d6) = c and d 6  g B, we have card(B) 2 c. Since B g 2‘ and 
card(2’) = L‘, we have card(B) 5 zc. Therefore c 5 card(B) 5 zC. If we 
adopt the Generalized Continuum Hypothesis3 (GCH), this fact forces either 
card(B) = c or card(8) = 2‘. It is not obvious which possibility is true, for 
both seem plausible. In Section 1.6 we rigorously show that card(B) = c. If 
we accept this as true, then ~ a r d ( 2 ~ )  = 2‘ > c = card(B), so that there are 
subsets of IR outside B. In fact, since zC - c = 2‘,  “most” subsets of IR are not 
Borel sets. In Chapter 4, we will use (AC) to exhibit as explicitly as possible 
some sets outside B. 

The answers to (Q2) and (Q3) require substantial work. For now, the 
answer to (Q2) is that there is no “nice” generic representation formula for an 
arbitrary B E B. One might very well think that a typical B E B might have 
the form B = A1 * A2 * A3 * .  . . , where each * can freely denote U or n, and 
where each A,  freely denotes an interval of any form, a singleton, a finite set, 
an open set, a closed set, a countable set, or a complement of any one of these 
types of “nice” sets. However, this scheme, while accounting for a subset of B 
with cardinality c ,  will n o t  be sufficient to account for all Borel sets. In fact, 

’One form of (AC) is as follows: Given any collection of nonempty sets A = {A* : i E I}, 
there exists a function 4 with domain A and the property that r$(Ai) 6 A, for each i 6 I .  
More loosely put, given an arbitrary family of nonempty sets, we can form a new set 
consisting of one element from each set in the family. 
*One form of (CH) is this: There exists no cardinal number strictly between N o  and c .  
In advanced set theory, it is shown that (i) both (CH) and (AC) are independent of the 
usual Zermelo-Fraenkel (ZF) axioms, and (ii) in the presence of (ZF), (CH) and (AC) are 
independent. 
3(GCH) asserts that for any infinite cardinal u there is no cardinal D with u < u < 2”. In 
advanced set theory, it is shown that (GCH) implies both (AC) and (CH), so we are forced 
to adopt (GCH) to pursue this discussion. 
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the collection of all sets generated by this scheme will be a  small^' proper 
subset of B .  One might think that sets of the form B = B1 * B2 * B3 * .  . . , 
where each En is a set like A1 *Az*. . in the previous formula, would account 
for all of the Borel sets. Again, c more Borel sets will be accounted for by this 
more comprehensive representation, but many will be excluded. One might 
iterate this process countably many times, obtaining Noc = c Borel sets, but 
surprisingly there will still be c Borel sets that  are excluded. [See Section 
1.7.1 Thus, in proving things about 13, we cannot take a generic B E 23 and 
invoke a “nice” representation of B,  using this hoped-for representation to 
prove a property about our generic B and hence about all Borel sets. Any 
argument involving t? will be cLnonconstructive” in the same sense that many 
of the exercises in the previous section were. 

The answer to (Q3) is in the negative if we want an algorithm that is 
“practical” or not too esoteric. In imprecise language, it will be shown that 
we cannot arrive at  all of B by taking all intervals of all forms and employing 
a recursive scheme that uses countably many operations “in a given order” a t  
each stage, no matter how many stages we let the scheme run. On the other 
hand, there is a scheme that uses countably many operations ‘‘not performed 
in a simple sequence” at  each stage that “after countably many stages” will 
produce B;  the discussion of such a scheme requires using ordinal numbers. 
These utterly imprecise answers would make a professional set theorist or 
logician chafe, and it might be wondered just what all of these loosely worded 
answers really mean. Perhaps it is best to just say that (Q3) has a negative 
answer, and a rigorous formulation of (Q3) is found in Section 1.6. 

The answer to (Q4) will be completely answered in a later chapter. I t  
suffices to say for the present that t? is, in a certain vague sense, the “largest 
a-field containing all of the ‘ordinary’ sets from analysis that will not cause 
mathematical and logical problems with (AC) and our upcorning definition 
of what will be called Lebesgue measure.” This very nebulous statement will 
be completely demystified in the proofs of the two “impossibility theorems” 
found a t  the end of Chapter 4. 

The final topic of this section concerns the extended Borel a-field on B, and 
it is a simple extension of what has been discussed regarding f3 and R. 

Definition. The extended Borel a-field on lk is denoted by s, and is defined 
by 

Just as different authors use different definitions for B ,  so too B has various 
definitions. Some other definitions are (1) the class of sets that are B-sets or 
are B-sets enlarged by one or both of f - 0 0 ,  (2) the a-field on a generated by 
the class of intervals of the form (a, b ) ,  [--00, a ) ,  and (b, +oo], where a ,  b E R, 
(3) the a-field on R generated by intervals of the form [-m,x), x E R, (4) 
a ( a U {  { --00}, {+-00}}), and ( 5 )  the a-field on generated by the open subsets 
of R, sets of the form A ,  A U ( a ,  -001, A U [--00, x ) ,  and A U [-00, x) U (y, +-00], 

where A is an open subset of R and x,y E R. The reader may rest assured 

a({ ( a ,  b] : a, b E R, a < b } ) .  Sets in are called estended Borel sets. 
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that all of these definitions are equivalent to ours. In fact, (1) may be the 
most useful working characterization of &sets. It is straightforward to verify 
the equivalences; see Exercise 6. 

There are some final points that should be stated. First, every Borel set is 
an extended Borel set. Second, the definition of B implies that {-oo,+oo}, 
{+GO}, and {-m} are extended Borel sets. These facts are obtained by using 
(1): If every 6-set is a B-set possibly augmented by one or both points f o o ,  
then, taking 0 E B, it follows that laU{-oo,+cm}, 0 U { - o o } ,  and 0U{+co} 
are &sets. Third, the answers to questions (Ql)-(Q4) are not changed in any 
way by now allowing consideration of foo .  Finally, the natural extension of 
Claim 2 holds in the extended Borel setting. 

Exercises. 

l*. Show directly that a(d3) = a(d:), a(d4) = a(d7), and a(d;) = a ( d l o ) .  

2*. All amc subsets of W are Borel sets. All subsets of W that differ from a Borel 
set by at most countably many points are Borel sets. That is, if the symmetric 
difference C A B  is amc and B E B, then C E B. 

3*. The Borel o-f ie ld  on (0,1] is denoted by Bpi] and is defined as the a-field on 
(0,1] generated by the rsc subintervals of (0,1]. D(O,ll may be equivalently defined 
by {B n (0,1] : B E B}. 
4*. B is generated by the compact subsets of W. 
5. B is not generated by the following: 
(a) Any finite collection of subsets of W 
(b) The collection of real singletons. 
( c )  The collection of all finite subsets of W. 
(d) The collection of all amc subsets of W. 
6*. The representations (1)-(5) give equivalent formulations of a. [Let C denote 
the generating class for a given in the definition, and let V denote the collection 
of sets that are in B or are B-sets possibly augmented by one or both of -m and 
+m. It is nearly automatic that V is a a-field on I!%. Clearly an interval of the form 
(a, b] where -m 5 a < b 5 +oo is in V ,  so C C V ,  hence a(C) 2 a(V) = V. The 
reverse inclusion V a(C) follows from the facts that (i) V contains C and (ii) V 
is clearly the smallest such a-field containing C. This gives a(C) = V ,  and therefore 
the definition of a is equivalent to the formulation given in (1). The equivalence 
between the definition and (2)-(5) follows in the same fashion.] 

1.5 THE k-DIMENSIONAL BOREL a-FIELD 

This section generalizes the last section to k-dimensional Euclidean space 
for arbitrary k E N. There are some interesting questions that arise in higher 
dimensions; these cannot be asked when interest is restricted to one dimension. 
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Definition. Let k E N. The k-dimensional Borel a-field [on Rk] is denoted 
by Bk, and is a( { (a ,b ]  : a < b,  a , b  E Itk}). The sets in Bk are called 
[Ic-dimensional] Borel sets. 

The symbol Bk is not to be construed as the k-fold Cartesian product 
B x . . . x B even though the notation suggests this; see the following discussion 
for further details. 

Notation. We desire to adapt the notation of the previous section to Rk 
for any k E N. To that end, we will let di denote {(--oo,z] : 2 E a’}, 
df* will denote {(-oo,z] : 2 E Qk}, with di, A;*, . . . ,  d,k, dt* defined 
in analogous fashion; the classes d!j and Ato will denote the open subsets of 
Rk and the closed subsets of Rk,  respectively. When k = 1, these definitions 
reduce exactly to the definitions given in the last section. 

According to the definition of Bk, we have Bk = a(dt). As in the previous 
section, various authors define Bk as the o-field of subsets of Rk generated by 
A:*, A!*, and A;*, among other things. The following result says that any 
of the eighteen classes listed will generate B” 

Cla im 1. Bk = a(d:) = . . .  = a(dt0) = u(df*)  = . . .  = u(dk*). 

The proof of Claim 1 proceeds along the same tedious lines as does Claim 2 
from the previous section; we merely need to make the natural modifications 
for k dimensions. 

By Claim 1, the following types of subsets of Rk are k-dimensional Borel 
sets: all rectangles of all forms, all singletons, all finite subsets, all countably 
infinite sets, all open sets, all closed sets, and all sets that differ from a Bk-set 
by at  most countably many points. Bk will contain many more sets than 
these aforementioned types of sets, and, just as when k = 1, Bk will in the 
end be seen to include just about every set that one encounters in doing 
analysis on Rk. Also, the questions (Ql)-(Q4) from the previous section, 
modified for k dimensions, have the same answers for all k 2 1, with the 
proofs and careful discussions being postponed until later. In other words, we 
may state in colloquial terms that (i) there are c sets in Bk, (ii) there is no 
“nice” representation of a generic Bk-set, (iii) there is a transfinite algorithm 
for obtaining all of Bk from countably infinite set operations performed on 
k-dimensional rectangles of all forms, and (iv) certain logical problems with 
the Axiom of Choice will arise in conjunction with future developments if we 
consider every subset of Rk as compared to  merely some of them. 

Notat ion.  Rk is the k-fold Cartesian product R x . . .  x R. For example, 
R3 = R x R x R, and the elements of R3 are ordered triples (z1,~2,x3), 
where 21,~2,~3 E R. Strictly speaking, (R x R) x R, R x (R x R), and 
R x R x R are distinct; this is because the elements of (R x R) x R are or- 
dered pairs of the form ((z1,z2),z3), whereas the elements of R x (R x R) are 
ordered pairs of the form (XI, ( ~ 2 ~ ~ 3 ) ) .  Clearly ((z1,z2),z3) # (21, (zz,zs)), 
and none of these equal (z~,zp,zg). However, there is an obvious one-to- 


