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PREFACE 

This second edition is intended to be an introduction to Bayesian statistics for 
students and research workers who have already been exposed to a good preliminary 
statistics and probability course, probably from a ftequentist viewpoint, but who 
have had a minimal exposure to Bayesian theory and methods. We assume a math- 
ematical level of sophistication that includes a good calculus course and some matrix 
algebra, but nothing beyond that. We also assume that our audience includes those 
who are interested in using Bayesian methods to model real problems, in areas that 
range across the disciplines. 

This second edition is really a new book. It is not merely the first edition with a 
few changes inserted, it is a completeIy restructured book with major new chapters 
and material. 

The first edition to this book was completed in 1988. Smce then the field of 
Bayesian statistical science has grown so substantially that it has become necessary 
to rewrite the story in broader terms to account for the changes that have taken place, 
both in new methodologies that have been developed since that time, and in new 
techniques that have emerged for implementing the Bayesian paradigm. Moreover, 
as the fields of computer science, numerical d y s i s ,  artificial intelligence, pattern 
recognition, and machine learning have also made enormous advances in the inter- 
vening years, and because their interfaces with Bayesian statistics have steadily 
increased, it became important to expand our story to include, at least briefly, 
some of those important interface topics, such as data mining free models and 
Bayesian neuml networks. In addition, as the field of Bayesian statistics has 
expanded, the applications that have been made using the Bayesian approach to 
learning from experience and analysis of data now span most of the disciplines in 
the biological, physical, and social sciences. This second edition attempts to tell the 
broader story that has developed. 

One direction of growth in Bayesian statistics that has occurred in recent years 
resulted from the contributions made by Geman and Geman (1984), Tanner and 
Wong (1987), and Gelfand and Smith (1 990). These papers proposed a new method, 
now called MurRov chain Monte Carlo (or just MCMC), for applying and imple- 

xxi 



XXP PREFACE 

menting Bayesian procedures iiumerical ly. The new method is computer intensive 
and involves sampling by computcr (so-called Monte Carlo sampling) from the 
posterior distribution to obtain its properties. Ilsually, Bayesian modeling procedures 
result in ratios of multiple integrals to be evaluated numerically. Sometimes these 
multiple integrals are high dimensional, The results of such Bayesian analysis are 
wonderful theoretically because they arise from a logical, self-consistent, set of 
axioms for making judgments and decisions. In the past, however, to evaluate 
such ratios of high-dimensional multiple integrals numerically it was necessary to 
carry out tedious numerical computations that were difficult to implement for all but 
the very computer-knowledgeable researcher. With a computer environment steadily 
advancing from the early 1980s, and with the arrival of computer software to 
implement the MCMC methodology, Bayesian procedures could finally be imple- 
mented rapidly, and accurately, and without the researcher having to possess a 
sophisticated understanding of numerical methods. 

In another important direction of growth of the field, Bayesian niethodology has 
begun to recognize some of the implications of the important distinction between 
subjecfive and objective prior information. This distinction is both phiiosophical and 
mathematical. When information based upon underlying theory or historical data is 
available (subjective prior information), the Bayesian approach suggests that such 
information be incoqxmted into the prior distribution for use in Bayesian analysis. 
If families of prior distributions are used to capture the prior knowledge, such prior 
distributions will contain their own parameters (called hyperpurrrmeters) that will 
need to be assessed on the basis of the available information. For example. many 
surveys are carried out on the same topic year after year, so that results obtained in 
earlier years can be used as a best guess for what is likely to be obtained in a new 
survey in the current year. Such “best available” information can be incorporated 
into aprior distribution. Such prior distributions are always proper (integrate or sum 
to one), and so behave well mathematically. A Bayesian analysis using such a prior 
distribution is called suhjective Bayesian analysis. 

In some situations, however, it is difficult to specify appropriate subjective prior 
information. For example, at the present time, there is usually very little, if any, prior 
information about the fbnction of particular sequences of nucleotide base pairs in the 
DXA structure of the hunian genome. In such situations it is desirable to have 
meaningfil ways to begin the Bayesian learning updating process. A prior distribu- 
tion adopted for such a situation is called objective, and an analysis based upon such 
an objective prior distribution is called an objective Bayesian analysis. Such analyses 
serve to provide benchmark statistical inferences based upon having inserted as little 
prior information as possible, prior to taking data. Objective prior distributions 
correspond to “knowing little” prior to taking data. When such prior distibutions 
are continuous, it is usually the case that these (improper) prior distributions do not 
integrate to one (although acceptable posterior distributions that correspond to these 
improper prior distributions must integrate to one). Sometimes, in simple cases, 
posterior inferences based upon objective prior distributions will result in inferences 
that correspond to those arrived at by frequentist means. The field has begun to focus 
on the broader implications of the similarities and differences between subjective 
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and objective types of information. We treat this important topic in this edition, and 
recognize its importance in the title of the book. In many applications of interest, 
there is not enough information in a problem for classical inference to be carried out. 
So some researchers resort to subjective Bayesian inference out of necessity. The 
subjective Bayesian approach is adopted because it is the most promising way to 
introduce sufficient additional information into the problem so that a real solution 
can be found. 

In earlier years, it was difficult to take into account uncertainty about which 
model to choose in a Bayesian analysis of data. Now we are learning how to 
incorporate such uncertainty into the analysis by using Bayesian model averaging. 
Moreover, we have been learning how to use Bayesian modeling in a hiemrchicui 
way to represent nested degrees of uncertainty about a problem. A whole new 
framework for explomtory factor analysis has been developed based upon the Baye- 
sian paradigm. These topics are new and are discussed in this edition. 

In this edition, for the first time, we will present an extensive listing. by field, of 
some of the broad-ranging applications that have been made of the Bayesian 
approach. 

As Bayesian statistical science has developed and matured, its principal founders 
and contributors have become apparent. To record and honor them, in this edition we 
have included a Bayesian Hall of Fame, which we developed by means of a special 
opinion poll taken among senior Bayesian researchers. Following the table of 
contents is a collection of the portraits and brief biographies of these most important 
contributors to the development of the field, and there is an appendix devoted to an 
explanation of how the members of the Hall of Fame were selected. 

The first edition of this book contained eight chapters and four appendxes; this 
edition contains 16 chapters, generally quite different from those in the first edition, 
and seven appendices. The current coverage reflects not only the addition of new 
topics and the deletion of some old ones, but also the expansion of some previously 
covered topics into greater depth, and more domains. In addition, there are solutions 
to some of the exercises. 

This second edition has been designed to be used in a year-long course in 
Bayesian statistics at the senior undergraduate or graduate level. If the academic 
year is divided into semesters, Chapters 1-8 can be covered in the first semester and 
Chapters 9-16 in the second semester. If the academic year is divided into quarters, 
Chapters 1-5 (Part I) can be covered in the fall quarter, Chapters 6-1 1 (Parts I1 and 
HI) in the winter quarter, and Chapters 12-16 (Part IV) in the spring quarter. 

Three of the sixteen chapters of this second edition have been written with the 
assistance of four people: Chapter 6 by hofessor Siddhartha Chib of Washington 
University; Complement A to Chapter 6 by Professor George Woodworth of the 
University of Iowa; Chapter 13 by Professor Meriise Clyde of Duke University; and 
Chapter 14 by Professor Alan ZasIavsky of Harvard University. I an: very grateful 
for their help. Much of Appendix 7 was written with the help of my former students, 
Dr. Thomas Ferryman, Dr. Mahmood Gharnsary, and Ms. Dawn Kwnmer. I am also 
gratefui to Stephen Quigley of John Wiley and Sons, Inc., who encowaged me to 
prepare this second edition, and to Heather Haselkorn of Wiley, who helped and 
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prodded me until it was done. Dr. Judith Tanur helped me to improve the exposition 
and to minimize the errors in the manuscript. The remaining errors are totally my 
responsibility. I am gratefit1 to Rachel Tanur for her sketch of Thomas Bayes at the 
beginning of the book. Her untimely death prevented her h m  her intention of also 
sketching the scientists who appear in the Bayesian Hail of Fame. Dr. Linda Penas 
solved some of our more complex LaTex editorial problems, while Ms. Peggy 
Franklin typed some of the chapters in LaTex with indefatigable patience and 
endurance. 

S. JAMES PRESS 
Oceanside, CA 
September, 2002 



PREFACE TO THE 
FIRST EDITION 

This book is intended to be an introduction to Bayesian statistics for students and 
research workers who have already been exposed to a good preliminary statistics and 
probability course from a classical (frequentist) point of view but who have had 
minimal exposure to Bayesian theory and methods. We assume a mathematical level 
of sophistication that includes a good calculus course and some matrix algebra but 
nothing beyond that. We also assume that our audience includes those who are 
interested in using Bayesian methods to model real problems in the various scientific 
disciplines. Such people usually want to understand enough of the foundational 
principles so that they will (1) feel comfortable using the procedures, (2) have no 
compunction about recommending solutions based upon these proceduurcts to deci- 
sion makers, and (3) be intrigued enough to go to referenced sources to seek addi- 
tional background and understanding. For this reason we have tried to maximize 
interpretation of theory and have minimized our dependence upon proof of theo- 
rems. 

The book is organized in two parts of four chapters each; in addition, the back of 
the book contains appendixes, a bibliography, and separate author and subjcct 
indexes. The first part of the book is devoted to theory; the second part is devoted 
to models and applications. The appendixes prob ide some biographical material 
about Thomas Bayes, along with a reproduction of Bayes’s original essay. 

Chapter I shows that statistical inference and decision making from a Bayesian 
point of view is based upon a logical, self-consistent system of axioms; it also shows 
that violation of the guiding principles will lead to “incoherent” behavior, that is, 
behavior that would lead to economically unsound decisions in a risky situation. 

Chapter I1 covers the basic principles of the subject. Bayes’s theorem is presented 
for both discrete and absolutely continuous random variabIes. 

We discuss Bayesian estimation, hypothesis testing, and decision theory. It is here 
that we introduce prior distributions, Bayes’ factors, the important theorem of de 
Finetti, the likelihood principle, and predictive distributions. 

xxv 
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Chapter 111 includes various methods for approximating the sometimes compli- 
cated posterior distributions that result from applications of the Bayesian paradigm. 
We present large-sample theory results as well as Laplacian types of approximations 
of integrals (representing posterior densities). We will show how importance 
sampling as well as simulation of distributions can be used for approximation of 
posterior densities when the dimensions are large. We will also provide a convenient 
uptodate summary of the latest Bayesian computer software available for imple- 
mentation. 

Chapter IV shows how prior distributions can be assessed subjectively using a 
group of experts. The methodology is applied to the problem of using a group of 
experts on strategic policy to assess a multivariate prior distribution for the prob- 
ability of nuclear war during the decade of the 1980s. 

Chapter V is concerned with Bayesian inference in both the univariate and multi- 
variate regression models. Here we use vague prior distributions, and we apply the 
notion of predictive distributions to predicting future observations in regression 
models. 

Chapter VI continues discussion of the general linear model begun in Chapter V; 
only here we show how to cany out Bayesian analysis of variance and covariance in 
the multivariate case. We will invoke the de Finetti notion of exchangeability (of the 
population mean vector distributions). 

Chapter VII is devoted to the theory and application of Bayesian classification 
and discrimination procedures. The methodology is illustrated by appylying it to the 
sample survey problem of second guessing “undecided” respondents. 

Chapter V111 presents a case study of how disputed authorship of some of the 
Federalist papers was resolved by means of a Bayesian analysis. 

The book is easily adapted to a one- or twoquarter sequence or to a one- 
semester, senior level, or graduate come  in Bayesian statistics. The first two chap- 
ters and the appendixes could easily fill the first quarter, with Chapters III-VIII 
devoted to the second quarter. In a onequarter or one-semester course, certain 
sections or chapters would need to be deleted; which chapters or sections to 
delete would depend upon the interests of the students and teacher in terms of the 
balance desired bemeen (1) theory and (2) models and applications. 

The book represents ;tn expansion of a series of lectures presented in South 
Australia in July 1984 at the University of Adelaide. These lectures were jointly 
sponsored by the Commonwealth Scientific and lndustrial Research Organization 
(CSIRO), Division of Mathematics and Statistics and by the University of Adelaide’s 
Departments of Economics and Statis6cs. I am gratehi to Drs. Graham Constantine, 
William Davis, and Terry Speed, all of CSIRO, for their stimulating comments on 
the original lecture material, for their encouragement and support, and for planting 
the seeds from which this monograph grew. I am grateh1 to Dr. John Darroch, Dr. 
Alastair Fischer, Dr. Alan James, Dr. W. N. Venables, and to other participants of the 
lecture series for their stimulahng questions that helped to put the book into perspec- 
tive. Dr. John Pratt and Dr. S. L. &bell helped to clarify the issues about de Finetti’s 
theorem in Section 2.9.3, and Dr. S. K. Sinha suggested an example used in Section 
2.7.1. Dr. Persi Diaconis and Dr. Richard Jefiey presented stimulating discussions 
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about randomness, exchangeability, and some of the foundational issues of the 
subject in a seminar at Stanford University during winter quarter of 1984-3985, a 
sabbatical year the author spent visiting Stanford University. I am deeply gratefid to 
Drs. Harry Roberts and Arnold Zellner for exposing me to Bayesian ideas. Dr. 
Stephen Ficnberg provided ericouragement and advice regarding publishing the 
manuscript. I am also grateful to Dr. Stephen Fienberg, Dr. Ingram Olkin, and an 
anonymous publisher’s referee for many helpful suggestions for improving the 
presentation. I am very grateful for suggestions made by Dr. Judith Tanur who 
read the entire manuscript; to Dr. Ruben Klein who read Chapters I and 11; and to 
Drs. Frederick Mosteller and David Wallace who read Chapter VIII. I also wish to 
thank graduate students, James Bentley, David Guy, William Kemple, Thomas 
Lucas, and Hamid Namini whose questions about the material during class prornpted 
me to revise and clarifL various issues. Mrs. Peggy Franklin is to be congratulated 
for her outstanding typing ability and for her forbearance in seeing me through the 
many iterations that the manuscript underwent. We think we have eliminated most, if 
not all, errors in the book, but readers could help the author by calling any additional 
ones they find to his attention. 

S .  JAMES PRESS 



A BAYESIAN HALL OF FAME 

Raycs, Thoinas 
170 1-1 76 1 

M r c m t ,  Morris 
103 1-1 989 

Lindiey, Dcnnis  V. 
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THOMAS BAYES (3710-1761) 
Bayes’ Theorem of inverse probability is attributed to Thomas Bayes. Bayes applied 
the theorem to binomial data in his essay. The essay was published posthumously in 
1763. Bayesian statistical science has developed fiom applications of his theorem. 

BRUNO DE PINETTI (1906-1985) 
One of the founders of the subjectivist Bayesian approach to probability theory 
(Inmduction to Probability Theory, 1970, 2 volumes). He introduced the notion of 
exchangeability in probability as a weaker concept than independence. De Finetti’s 
thcorem on exchangeability yields the strong law of large numbers as a special case, 

MORRIS DE GROOT (1931-1989) 
Morris DeGroot was a student of Jimmie Savage and a leader in the Bayesian 
statitics movement. He contributed to the field in a wide-ranging spectrum of fields 
from economic utility and decision theory (Optinial Stutislicul Decisions, 1970) to 
genetics and the history of statistics. He founded the Camegie Mellon University 
Department of Statistics. 

HAROLD JEFFFREYS (1891-1989) 
Geophysicist, astronomer (The Earth: Its Origin. Histot?. und Phjarcal Consfitu- 
tion), philosopher of science, and statistician (Theory o/ Probuhili[l; especially the 
Third Edition of 1961). The 1961 edition showed using thc principle of invariance, 
how to generate prior probabilities that reflccted “knowing little”). Jcffieys bclicved 
that probabilities should be common to all (objectivist Bayesian approach). He 
advocated placing probabilities on hypotheses and proposed a very general theory of 
hypothesis testing that provided for probab es that could be placed on hypotheses. 

DENNIS V. LINDLEY (1923- ) 
Dennis Lindley (Intmduction to Probahzliy and Starbtics From a Ru-yesiuw h w -  
point. 1965, 2 volumes), has been a stroong leader of the Bayesian movement. 
Moreover, several of his students have also become leaders of the movement as well 
as developers of important results in the field. He started ;is an objectivist Bayesian 
and became a subjectivist in his later years. Along with A.F.M. Smith he became a 
strong advocate of hierarchical Bayesian modeling 

LEONARD J. (Jimmie) SAVAGE (1917-1971) 
Jimmie Savage began his career as a mathematician, but contributed widely to 
mathematical statistics. probability theory, and economics. He developed an axio- 
matic basis for Baycsian probability theory and decision-making (The Foundutions 
ofSrutisrics, 1954). He held a subjectivist Bayesian view of‘ probability. Along with 
W. Allen Wallis he founded the Department of Statistics at the University of 
Chicago. Along with Edwin Hewitt he demonstrated the widcly applicable Dr 
Fin& theorem involving exchangeability under a broad set of conditions. They 
demonstrated its uniqueness property. 
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The portrait of Leonard J. Savage is reprinted with pemission from “the Writings of 
Leonard Jimmie Savage: A Memorial,” Copyright I98 1 by the American Statistical 
Association and the International Mathematical Society. All rights reserved. 

The portrait of Morris DeGroot is reprinted with the permission of the Institute of 
Mathematical Statistics from Statistical Science Journal. 

The portrait of Bruno De Finetti i s  reprinted with the permission of Springer-Verlag 
from “The Making of Statisticians.” 

The portrait of Harold Jef€reys is reprinted with the permission of Springer-Veriag 
from ”Statisticians of the Centuries.” 

The portrait of Dennis I! Lhdley is reprinted with his permission and the permission 
of John Wiley & Sons, Xnc., from “A Tribute to Lindley.” 
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C H A P T E R  I 

Background 

1.1 
VIEWS OF BAYES’ THEOREM 

RATIONALE FOR BAYESIAN INFERENCE AND PRELIMINARY 

In 1763 an important scientific paper was published in England, authored by a 
Reformist Pntsbyterian minister by the name of Thomas Bayes (Bayes, 1763). 
The implications of the paper indicated how to make statistical inferences that 
build upon earlier understanding of a phenomenon, and how forrmlly to combine 
that earlier understanding with currently measured data in a way that updates the 
degree of belief (subjective probability) of the experimenter. The earlier understand- 
ing and experience is called the “prior belief” (belief or understanding held prior to 
observing the current set of data, available either fiom an experiment or from other 
sources), and the new belief that results from updating the prior belief is callcd the 
“posterior belief” (the belief held after having observed the current data, and having 
examined those data in light of how well they conform with preconceived notions). 
This infmntial updating process is eponymously called Bayesian inference. The 
inferential process suggested by Bayes shows us that to tind our subjective prob- 
ability for some event, proposition, or unknown quantity, we need to multiply our 
prior beliefs about the event by an appropriate summary 0 1  the observational data. 
Thus. Bayesian inference suggests that all formal scientific infmnce inhercntly 
involves two parts. a part that depends upon subjective belief and scientific under- 
standing that the scientist has prior to carrying out an experiment, and a part that 
depend% upon observational data the scientist obtains from the experiment. We 
present Bayes’ theorem compactly here in order to provide an early insight into 
the development of the book in later chapters. 

Briefly, in its most simple form, the form for events (categorical or discrete data), 
Bayes’ theorem or formula asserts that if P {A} denotes the probability of an event A, 
and P{BIA} denotes the probability of an event B conditional on knowing A, then: 

3 
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where B denotes the complementary event to event B. This simpie statement of 
conditional probability is the basis for all Bayesian analysis. P(B) denotes the 
prior belief about B, P{BW) denotes the posterior belief about B (once we know 
A), and P(AlB} denotes the model, that is, the process that generates the event A 
based upon knowing B. 

As an example, suppose you take a laboratory test for diabetes. Let A denote the 
outcome of the test; it is a positive outcome if the test finds that you have the tell-tale 
indicators of diabetes, and it is a negative outcome if you do not. But do you really 
have the disease? Sometimes, although you do not actually have diabetes, the test 
result is positive because of imperfect characteristics of the laboratory test. Similarly, 
sometimes when you take the test there is a negative outcome when in fact you do 
have the disease. Such results are called false positives and false negatives, respec- 
tively. Let B denote the event that you actually do have diabetes. You would like to 
know the chances that you have diabetes in light of your positive test outcome, 
P(B1A). You can check with the laboratory to determine the sensitivity of the test. 

Suppose you find that when the test is negative, the error rate is 1 percent (false 
negative error rate), and when the test is positive, its accuracy is 3 percent (the false 
positive e m r  rate). En terms of the Bayes' formula, 

P(A = +tc?stlB = diabetes) = 1 - P{,? = --restlB = diabetes) 

= 1 - 0.01 = 0.099, 

and 

P(+tcsr@ = no diabetes) = probability of a false positive = 0.03. 

Bayes' formula then gives: 

(0.99)PIBJ 
(0.99)PfB) + (0.03)PIB) ' 

P( diabetes f 4 J = 

It only remains to determine P{B} ,  the chances of someone having diabetes. Suppose 
there is no indication that diabetes runs in your Wily, so the chance of you having 
diabetes is that of a randomly selected person in the population about your age, say 
about one chance in one million, that is, P(B} = Substituting in the above 
formula gives: 

P( you have diabetes lpositive test result} = 0.003 = 0 . 3 % ~ ~  
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If we are concerned with making inferences about an unknown quantity 6, which 
is continuous, Bayes’ theorem takes the form appropriate for continuous 8: 

where h(-) dtnotes the probability density of the unknown 8 subsequent to observing 
data (xl, . . . , xn) that bear on 8, f denotes the likelihood bc t ion  of the data, and g 
denotes the probability density of 0 prior to observing any data. The integration is 
taken over the support of 8. This form of the theorem is still just a statement of 
conditional probability, as we will see in Chapter 4. 

A large international school of scientists (some of whom even preceded Bayes) 
supported, expanded, and developed Bayesian thinking about science. These include 
such famous scientists as Jamcs Bernoulli, writing in 1713, Pierre Simon de Laplace, 
writing in 1774, and many nineteenth- and twentieth-century scientists. Today, 
scientists schwled in the Bayesian approach to scientific inference have been chan- 
ging the way statistical methodology itself has hen  developing. Many believe that a 
paradigm shift has been taking place in the way scientific inference is camed out, 
away from what is sometimes referred to as classical, or frequentist, statistical 
inference. Many scientists now recognize the advantages of bringing prior beliefs 
into the inferential process in a formal way from the start, instead of striving, and 
altnost inevitably failing, to achieve total objectivity, and bringing the prior informa- 
tion into the problem anyway, in surreptitious, or even unconscious ways. Subjec- 
tivity may enter the scientific process surreptitiously in the form of seemingly 
arbitrarily imposed constraints in the introduction of initial and boundary conditions 
in thc arbitrary levels of what should be called a significant result (selecting the 
“level of significance”), and in the de-emphasizing of certain outlying data points 
that represent suspicious observations. 

Scientists will see that Bayes‘ theorem gives the degree of a person’s belief (that 
person’s subjective probability) about some unknown entity once something about it 
has been observed (Lea, posterior to collecting data about that entity}, and shows that 
this subjective probability is proportional to the product of two types of information. 
The first type of information characterizes the data that am observed; this is usually 
thought of as the objective portion of posterior belief, since it involves the collection 
of data, and data are generally thought to be objectively determined. (We recognize 
that we do not really mean that data are objective unless we assume that there were 
no subjective influences surrounding the data collected.) This so-called objective 
information is summarized in the likelihood bc t ion .  But the likelihood function is 
of course almost invariably based upon data that has been influenced by the subjec- 
tivity of the observer. Moreover, in small or often in even moderate size samples its 
structural form is not very well determined. So the likelihood function will almost 
invariably contain substantial subjective influences and uncertainty, 

The second type of information used in Bayesian analysis is the person’s degree 
of belief, the subjective probability about the unknown entity, held prior to observing 
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anything related to it. This belief may be based, at least in part, on things that were 
observed or learned about this unknown quantity prior to this most recent tneasure- 
ment. Using Bayes' theorem, scientific belief about some phenomenon is formally 
updated by new measurements, the idea being that we learn about something by 
modifying what we already believe about it (our prior belief) to obtain a posterior 
belief after new observations are taken. 

While it is well known that for a wide variety of reasons there are always some 
subjective influences in the research of scientists, and always have been, it is less 
well known that strong major subjective influences have actually been present in 
some of the work of the most famous scientists in history (see, for example, Press 
and Tanur. 2001). The personal beliefs and opinions of these scientists have often 
very strongly influenced the data they collected and the conclusions they drew from 
those data. W'hile the phenomena these scientists were investigating were generally 
truly objective phenomena, external to the human mind, nevertheless, the data 
collected about these phenomena, and the decisions made relative to these pheno- 
mena were often driven by substantial subjectivity. Bayesian analysis, had it been 
available to these scientists, and had it been used, might have pennitted these 
scientists to distinguish between models whose cocxistcnce has caused controversy 
about their results even hundreds of years later. 

Further, several scientists examining the same set of data from an experiment 
often develop diflerent interpretations. This phenomenon is not unusual in science. 
When several scientists interpret the same set of data they rarely have exacdv the 
same interpretations. Almost invariably, their own prior beliefs about the underlying 
phenomenon enter their thinking, as do their individual understanding of how mean- 
inghl each data point is. Their conclusions regarding the extent to which the data 
support thc hypothesis will gencrally reflect a mixture of their prior degree of belief 
about the hypothesis they are studying, and the observed data. 

Thus, we see that whether formal Bayesian inference is actually used in dealing 
with the data in an experiment, or whether other, nonI3ayesim methods are used, 
subjective prior belief is used in one way or another by all good scientists in a 
natural, and sonietiines quite informal, way. Science cannot, and should not, be 
totally objective, but should and does involve a mixture of both subjective and 
objective procedures, with the one type of procedure feeding back on the other. 
As the data show the need for modification of' the hypothesis, a new hypothesis is 
entertained, a new experiment is designed, new data are taken, and what was pos- 
terior belief in the earlier experiment becomes the prior belief in the new expen- 
ment, because the result of the last experiment is now the best understanding the 
scientist has of what result to expect in a new experiment. To study the future, 
scientists must learn from the past. and it is important -- indeed inevitable-that 
the teaming process be partly sub.jective. 

During the twentieth century, since the development of methods of' Bayesian 
statistical inference, there have been many exciting new scientific discoveries and 
developments. Some have been simply of the qualitative type where certain pheno- 
mcna hake been discovered that were not previously known (such as the discovery of 
the existence of the radiation belts that surround the Earth, the discovery of super- 
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conductivity, or the discovery of the double helical structure of DNA), and others 
have been quantitative, establishing relationships not previously established (such as 
the discoveries of the dose/effect relationships of certain pharmaceutical drugs, 
vaccines, and antibiotics that would minimize the chances of contracting various 
infectious diseases, or maximize the chance of a cure). 

Considerable scientific advance is based upon finding important phenomena that 
are sometimes so shrouded in noise that it is extremely difficult to distinguish the 
phenomenon of interest from other factors and variables. In such cases, prior infor- 
mation about the process, often based upon previous theory, but sometimes on 
intuition or even wild guesses, can often be profitably brought to bear to improve 
the chances of detecting the phenomenon in question. A considerable amount of 
Bayesian statistical inference procedures that formally admit such prior information 
in the scientific process of data analysis have had to await the advent of modem 
computer methods of analysis, an advent that did not really occur until the last 
couple of decades of the twentieth century. However, since the arrival of real-time 
interactive computers, computational Bayesian methods such as Markov Chain 
Monte Carlo (MCMC, see Chapter 6) have been very usefblly applied to problems 
in imaging and other problems in physics and engineering (see the series of books 
edited by different authors, every year since 1980, Maximum Entropy and Bayesian 
Methods published by KIuwer), problems of metaanalysis to synthesize results in a 
field--in biology, medicinc, economics, physics, sociology, education, and others- 
and in a variety of scientific fields (see, for example, Appendix 5). 

Subjectivity in science implies that we generally arrive at universal scientific 
truths by a combination of subjective and objective means. In other words, the 
methodology we use to discover scientific truths benefits greatly from bringing 
informed scientific judgment to bear on the hypotheses we formulate, and on the 
inferences we make fiom data we collect from experiments designed to test these 
hypotheses. Informed scientific judgment should not be shunned as a nonobjective, 
and therefore a poor methodological approach; collateral information about the 
underlying process should be actively sought so that it can be used to improve 
understanding of the process being studied. Combining informed knowledge with 
experimental data will generally improve the accuracy of predictions made about 
future obscrvations. 

Subjectivity is an inherent and required part of statistical inference and the 
scientific method. It is a sine qua nun in the process of creating new understanding 
of nature. It must play a fundamental rote in how science is carried out. 

However, excessive, informal, untested subjectivity in science is also responsible 
for some basic errors, misrepresentations, overrepresentations. or scientific beliefs 
that were later shown to bc falsc, that have occurred in science (see, for example, 
Press and Tanur, 2001). This author’s views of subjectivity in science coincide 
closely with those of Wolpert ( 1992, p. 18) who mte:  

. . .the idea of scientific objectivity has only limited value, for the way in which 
scientific ideas are generated can be highly subjective, and scientists will defend their 
views vigorously. . . It is, however, an illusion to think that scientists are unemotional in 
their attachment to their scientific views-they may fail to give them up even in the face 
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of evidence against them. . . scientific theories involve a continual interplay with other 
scientists and prw5ously acquired knowledge. . . and an explanation which the other 
scientists would accept. 

To illustrate the notion that subjectivity underlies experimental science, in Section 
1.2 we use a very simple example involving whether or not a desired effect is 
observed in an experiment to show that merely observing scientific data and forming 
a likelihood fhnction can involve considerable subjectivity. 

1.2 EXAMPLE: OBSERWG A DESIRED EXPERIMEKT.4L EFFECT 

Let us suppose that 100 observations are collected from an experiment replicated 
100 times; there is one observation from each replication. These data are sent to five 
scientists located in five different parts of the world. All five scientists examine the 
same data set, that is, the same 100 data points. (Note that for thc purposes of this 
example, the subjectivity involved in deciding what data to collect and in making the 
observations themselves is eliminated by sending the same “objective” data to all 
five scientists.) Should we expect all five of the scientists to draw the same conclu- 
sions from these data? 

The answer to this question is a very definite “no”. But how can it be that 
different observers will probably draw different conclusions h m  precisely the 
same data? As has been said above, inferences from the data will be a mixture of 
both subjective judgment (theorizing) and objective observation (empirical verifica- 
tion). Thus, even though the scientists are all looking at the same observational data, 
they will come to those same data with differing beliefs about what to expect. 
Consequently, some scientists will tend to weight certain data points more heavily 
than others, while different scientists are likely to weight experimental errors of 
measurement differently from one another. Moreover, if scientists decide to carry 
out formal checks and statistical tests about whether the phenomenon of interest in 
the experiment was actually demonstrated (to ask how strongly the claimed experi- 
mental result was supported by the data), such tests are likely to have different results 
for different scientists, because different scientists will bring different assumptions to 
the choice of statistical test. More broadly, scientists often differ on the mathematical 
and statistical models they choose to analyse a particular data set, and different 
modeb usually generate different conclusions. Different assumptions about these 
models will very often yield different implications for the same data. 

These ideas that scientists can differ about the facts are perhaps startling. Let us 
return to our 100 observations and five scientists to give a very simple and elemen- 
tary example, with the a~surance that analogous arguments will hold generally for 
more realistic and more complicated situations. 

Let us assume that the purpose of the experiment is to detemiine the probability 
that a certain genetic effect will take place in the next generdtion of a given type of 
simple organism, The question at issue is whether the effwt occurs randomly or is 
subject to certain genetic laws. If the experiment is carried out many times, inde- 


